Bilateral filtering

Bilateral Filters

Digital Visual Effects, Spring 2009
Yung-Yu Cbuang
2009/5/21
with slides by Fredo Durand, Ramesh Raskar, Sylvain Paris, Soonmin Bae

[Ben Weiss, Siggraph 2006]

A Wide Range of Options

- Diffusion, Bayesian, Wavelets.
- All have their pros and cons.
- Bilateral filter
- not always the best result [Buades 05] but often good
- easy to understand, adapt and set up

Basic denoising

Noisy input

Median 5x5

Tone Mapping
[Durand 02]

HDR input

Tone Mapping
[Durand 02]

output

Photographic Style Transfer [Bae 06]

input

6 papers at SIGGRAPH'07

Gaussian Blur

Equation of Gaussian Blur

Same idea: weighted average of pixels.

$G B[I]_{\mathbf{p}}=\sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p}-\mathbf{q}\|) I_{\mathbf{q}}$
 normalized
 Gaussian function

Gaussian Profile
$G_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$

Spatial Parameter

$$
G B[I]_{\mathbf{p}}=\sum_{\mathbf{q} \in S} G_{\boldsymbol{q}}(\|\mathbf{p}-\mathbf{q}\|) I_{\mathbf{q}}
$$

size of the window

small σ

limited smoothing

large σ

How to set σ

- Depends on the application.
- Common strategy: proportional to image size
- e.g. 2% of the image diagonal
- property: independent of image resolution

Properties of Gaussian Blur

- Weights independent of spatial location
- linear convolution
- well-known operation
- efficient computation (recursive algorithm, FFT...)

Properties of Gaussian Blur

- Does smooth images
- But smoothes too much: edges are blurred.
- Only spatial distance matters
- No edge term

$$
G B[I]_{\mathbf{p}}=\sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p}-\mathbf{q}\|) I_{\mathbf{q}}
$$

Same Gaussian kernel everywhere.

Bilateral Filter No Averaging across Ediges

The kernel shape depends on the image content.

Bilateral Filter Definition

Same idea: weighted average of pixels.

Gaussian Blur and Bilateral Filter Digivex
Gaussian blur

Bilateral filter [Aurich 95, Smith 9
 Tomasi 98]
\leftarrow əбие» \rightarrow

- 1D image $=$ line of pixels
- Better visualized as a plot

$\underbrace{B F[I]_{\mathbf{p}}}=\frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathrm{S}} \underbrace{G_{\sigma_{\mathbf{s}}}(\|\mathbf{p}-\mathbf{q}\|)} \underbrace{G_{\sigma_{\mathbf{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)} I_{\mathbf{q}}$

Influence of Pixels

$B F[I]_{\mathbf{p}}=\frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{5}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{r}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}}$

- space σ_{s} : spatial extent of the kernel, size of the considered neighborhood.
- range σ_{r} : "minimum" amplitude of an edge

Only pixels close in space and in range are considered.

How to Set the Parameters
Depends on the application. For instance:

- space parameter: proportional to image size
- e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude - e.g., mean or median of image gradients
- independent of resolution and exposure

Iterating the Bilateral Filter

$$
I_{(n+1)}=B F\left[I_{(n)}\right]
$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.

Advantages of Bilateral Filter

- Easy to understand
- Weighted mean of nearby pixels
- Easy to adapt
- Distance between pixel values
- Easy to set up
- Non-iterative
- Nonlinear $\quad B F[I]_{\mathrm{p}}=\frac{1}{W_{\mathrm{p}}} \sum_{\mathrm{q} \in S} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathrm{q}}\right|\right) I_{\mathrm{q}}$
- Complex, spatially varying kernels
- Cannot be precomputed, no FFT...

- Brute-force implementation is slow >10 min
- Slow but some accelerations exist:
- [Elad 02]: Gauss-Seidel iterations
- Only for many iterations
- [Durand 02, Weiss 06]: fast approximation
- No formal understanding of accuracy versus speed
- [Weiss 06]: Only box function as spatial kernel

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
- Gaussian on space distance
- Gaussian on range distance
- sum to 1

$I_{\mathbf{p}}^{\mathrm{bf}}=\frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} \frac{G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|)}{\text { space }} \frac{G_{\sigma_{\mathbf{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)}{\text { range }} I_{\mathbf{q}}$
- Link with linear filtering
- Fast and accurate approximation

Intuition on 1D Signal

Weighted Average of Neighbors

- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.

Link with Linear Filtering DigivFX 1. Handling the Division

Handling the division with a projective space.

$$
\begin{array}{ll}
I_{\mathbf{p}}^{\mathrm{bf}}= & \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right) I_{\mathbf{q}} \\
W_{\mathbf{p}}^{\mathrm{bf}}= & \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)
\end{array}
$$

- Normalizing factor as homogeneous coordinate
- Multiply both sides by $W_{\mathbf{p}}^{\text {bf }}$

$$
\binom{W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}}}{W_{\mathbf{p}}^{\mathrm{bf}}}=\sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)\binom{I_{\mathbf{q}}}{1}
$$

Formalization: Handling the Division
DigivFX
$\binom{W_{\mathbf{p}}^{\text {bf }} I_{\mathbf{p}}^{\text {bf }}}{W_{\mathbf{p}}^{\text {bf }}}=\sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p}-\mathbf{q}\|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}}$ with $W_{\mathbf{q}}=1$

- Similar to homogeneous coordinates
in proj ective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

Corresponds to a 3D Gaussian on a 2D image.

Link with Linear Filtering

sum all values multiplied by kernel \Rightarrow convolution

Link with Linear Filtering

result of the convolution

$$
\binom{W_{\mathbf{p}}^{\text {bf }} I_{\mathbf{p}}^{\text {bf }}}{W_{\mathbf{p}}^{\text {bf }}}=\sum_{(\mathbf{q}, \zeta) \in S \times \mathcal{R}} \text { space-range Gaussian }\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}}
$$

Link with Linear Filtering 2. Introducing a Convolution

result of the convolution

$$
\binom{W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{ff}}}{W_{\mathrm{p}}^{\mathrm{bf}}}=\sum_{(\mathbf{q}, \zeta) \in \mathcal{S} \times \mathbb{R}} \text { space-range Gaussian }\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}}
$$

Reformulation: Summary

linear:	$\left(w^{\mathrm{bf}} i^{\mathrm{bf}}, w^{\mathrm{bf}}\right)$	$=g_{\sigma_{\mathrm{s}}, \sigma_{\mathrm{r}}} \otimes(w i, w)$	
		$I_{\mathbf{p}}^{\mathrm{bf}}$	$=\frac{w^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right) i^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right)}{w^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right)}$

1. Convolution in higher dimension

- expensive but well understood (linear, FFT, etc)

2. Division and slicing

- nonlinear but simple and pixel-wise

Exact reformulation

Fast Convolution by Downsampling
DigivFX

- Downsampling cuts frequencies above Nyquist limit
- Less data to process
- But induces error
- Evaluation of the approximation
- Precision versus running time
- Visual accuracy
- Finer sampling increases accuracy.
- More precise than previous work.

Straightforward implementation is over 10 minutes.
higher dimension \Rightarrow "better" computation

Practical gain

- Interactive running time
- Visually similar results
- Simple to code (100 lines)

Theoretical gain

- Link with linear filters
- Separation linear/ nonlinear
- Signal processing framework

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1 \mathrm{~s}$ for both techniques
1200×1600

(in

Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

Ansel Adams, Clearing Winter Storm

Goals

- Control over photographic look
- Transfer "look" from a model photo

For example,
we want

- Subject choice
- Framing and composition
\rightarrow Specified by input photos

Input

- Tone distribution and contrast
\rightarrow Modified based on model photos

Model

Ansel Adams

Kenro Izu

Tonal aspects of Look - Global Contrastivi

Ansel Adams

Tonal aspects of Look - Local Contrast

Ansel Adams

Kenro Izu

- Transfer look between photographs
- Tonal aspects

- Separate global and local contrast

- Naïve decomposition: low vs. high frequency
- Problem: introduce blur \& halos

Low frequency Global contrast

High frequency Local contrast

Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

Residual after filtering Local contrast

Bilateral Filter

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

Residual after filtering Local contrast

DigivFX

-

Result

Global Contrast

- Intensity remapping of base layer

Global Contrast (Model Transfer) DigivFx

Global contrast

The amount of local contrast DigivFX is not uniform

- Uniform control:
- Multiply all values in the detail layer

Input

Local Contrast Variation

- We define "textureness": amount of local contrast
- at each pixel based on surrounding region

Smooth region \Rightarrow Low textureness

Textured region
\Rightarrow High textureness

Input signal High frequency H Amplitude $|\mathrm{H}| \quad$ Edge-preserving filter

Textureness Transfer

Step 1:
Histogram transfer

Input
textureness

Step 2:
Scaling detail layer (per pixel) to match desired textureness

A Non Perfect Result

- Decoupled and Iarge modifications (up to $6 x$)
\rightarrow Limited defects may appear

result after global and local adjustments

Intensity Remapping
DigjVFX

- Some intensities may be outside displayable range.
\rightarrow Compress histogram to fit visible range.

Preserving Details

1. In the gradient domain:

- Compare gradient amplitudes of input and current
- Prevent extreme reduction \& extreme increase

2. Solve the Poisson equation.

uncorrected result

corrected result

Result

model
Result

Additional Effects

- Soft focus (high frequency manipulation)
- Film grain (texture synthesis [Heeger 95])
- Color toning (chrominance $=f$ (luminance))

Result

Result

User provides input and model photographs.
\rightarrow Our system automatically produces the result.

Running times:

- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

Comparison with Naïve Histogram Matchigg ${ }_{\mathrm{FX}}$
 Local contrast, sharpness unfaithful

- Lab color space: modify only luminance

- Noise and J PEG artifacts
- amplified defects

- Can lead to unexpected results if the image content is too different from the model
- Portraits, in particular, can suffer

Video Enhancement Using DigivFX
J oint bilateral filtering

$$
\begin{aligned}
& J_{p}=\frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(\|p-q\|) g\left(\left\|I_{p}-I_{q}\right\|\right) \\
& J_{p}=\frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(\|p-q\|) g\left(\left\|\tilde{I}_{p}-\tilde{I}_{q}\right\|\right)
\end{aligned}
$$

Flash / No-Flash Photo Improvement Diqivfx (Petschnigg04) (Eisemann04)

Merge best features: warm, cozy candle light (no-flash)
low-noise, detailed flash image

Basic approach of both flash/noflash papers

Remove noise + details from image A,

Keep as image A Lighting
\qquad

Petschnigg:

- No Flash,

Registration

flash

Our Approach

Diqivex

Decomposition

Decomposition

Color / Intensity:

Decomposition

Decoupling

large scale

Decoupling

- Lighting : Large-scale variation
- LTofxthye Langaldssall pakariation
- Texture : Small-scale variation

Lighting

Texture

Large-scale Layer

DigivFX

- Bilateral filter - edge preserving filter

Large-scale Layer

- Bilateral filter

Recombination

Large-scale No-flash

Detail
Flash

Recombination: Large scale * Detail = Intensity

Recombination

Recombination: Intensity * Color = Original

Our Approach DigivFX

Shadow Detection/Treatment

no-flash

Results

$$
\begin{aligned}
& J_{p}=\frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(\|p-q\|) g\left(\left\|I_{p}-I_{q}\right\|\right) \\
& J_{p}=\frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(\|p-q\|) g\left(\left\|\tilde{I}_{p}-\tilde{I}_{q}\right\|\right) \\
& \tilde{S}_{p}=\frac{1}{k_{p}} \sum_{q_{\downarrow} \in \Omega} S_{q_{\downarrow}} f\left(\left\|p_{\downarrow}-q_{\downarrow}\right\|\right) g\left(\left\|\tilde{I}_{p}-\tilde{I}_{q}\right\|\right)
\end{aligned}
$$

Upsampled Result

J oint bilateral upsampling

Upsampled Result

Nearest Neighbor Upsampling

Gaussian Upsampling

Joint Bilateral Upsampling

J oint bilateral upsampling

