- Acquisition of geometry and material

Range image

Range acquisition taxonomy

shape from X :
stereo motion shading
texture focus defocus
active variants of passive methods Stereo w. projected texture Active depth from defocus Photometric stereo

Outline

- Passive approaches
- Stereo
- Multiview approach
- Active approaches
- Triangulation
- Shadow scanning
- Active variants of passive approaches
- Photometric stereo
- Example-based photometric stereo

Passive approaches

- One distinguishable point being observed
- The preimage can be found at the intersection of the rays from the focal points to the image points
- Many points being observed
- Need some method to establish correspondences

Components of stereo vision systems

- Camera calibration
- Image rectification: simplifies the search for correspondences
- Correspondence: which item in the left image corresponds to which item in the right image
- Reconstruction: recovers 3-D information from the 2-D correspondences

Epipolar geometry

- Epipolar constraint: corresponding points must lie on conj ugate epipolar lines
- Search for correspondences becomes a 1-D problem

- Warp images such that conjugate epipolar lines become collinear and parallel to u axis

- With rectified images, disparity is just (horizontal) displacement of corresponding features in the two images
- Disparity $=0$ for distant points
- Larger disparity for closer points
- Depth of point proportional to 1 / disparity

Reconstruction

- Geometric
- Construct the line segment perpendicular to R and R' that intersects both rays and take its mid-point

Basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost
- For each pixel
- For each disparity
- For each pixel in window
- Compute difference
- Find disparity with minimum SSD
- For each disparity
- For each pixel
- For each pixel in window
- Compute difference
- Find disparity with minimum SSD at each pixel

Incremental computation

DigivFX
Incremental computation

- Want: SSD at next location

Image 1

$\mathbb{1}$

Image 2

- Subtract contributions from leftmost column, add contributions from rightmost column

Image 1

Image 2

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:

Non-square windows

- Compromise: have a large window, but higher weight near the center

3 pixel window

20 pixel window

- Example: Gaussian
- Example: Shifted windows

- Order of matching features usually the same in both images
- But not always: occlusion

- Treat feature correspondence as graph problem

Cost of edges = similarity of regions between image features

Dynamic programming

- Find min-cost path through graph

Energy minimization

- Another approach to improve quality of correspondences
- Assumption: disparities vary (mostly) smoothly
- Minimize energy function:

$$
\mathrm{E}_{\text {data }}+\lambda \mathrm{E}_{\text {smoothness }}
$$

- $\mathrm{E}_{\text {data }}$: how well does disparity match data
- $E_{\text {smoothness }}$: how well does disparity match that of neighbors - regularization
- If data and energy terms are nice (continuous, smooth, etc.) can try to minimize via gradient descent, etc.
- In practice, disparities only piecewise smooth
- Design smoothness function that doesn't penalize large jumps too much
- Example: $\mathrm{V}(\alpha, \beta)=\min (|\alpha-\beta|, \mathrm{K})$

Stereo as energy minimization

- Matching Cost Formulated as Energy
- "data" term penalizing bad matches

$$
D(x, y, d)=|\mathbf{I}(x, y)-\mathbf{J}(x+d, y)|
$$

- "neighborhood term" encouraging spatial smoothness

$$
\begin{aligned}
V\left(d_{1}, d_{2}\right) & =\text { cost of adjacent pixels with labels } \mathrm{d} 1 \text { and } \mathrm{d} 2 \\
& =\left|d_{1}-d_{2}\right| \quad \text { (or something similar) }
\end{aligned}
$$

$$
E=\sum_{(x, y)} D\left(x, y, d_{x, y}\right)+\sum_{\text {neighbors }(x 1, y 1),(x 2, y 2)} V\left(d_{x 1, y 1}, d_{x 2, y 2}\right)
$$

Energy minimization

- Hard to find global minima of non-smooth functions
- Many local minima
- Provably NP-hard
- Practical algorithms look for approximate minima (e.g., simulated annealing)

Stereo results

- Data from University of Tsukuba

http:// cat. middlebury. edu/ stereo/

normalized correlation (best window size)

graph cuts (Potts model E, expansion move algorithm)

Stereo evaluation

Stereo-best algorithms

Eror Thestold $=1$		Sortby nonoce	Sort by all V		Sorto disc
Enor Thestold. . -		∇			∇
Agooritm	∇				

- Goal: find a model consistent with images
- "Model-centric" (vs. image-centric)
- Typically use discretized volume (voxel grid)
- For each voxel, compute occupied / free (for some algorithms, also color, etc.)
- Result: not necessarily the correct scene
- Many scenes produce the same images

- Find silhouettes in all images
- Exact version:
- Back-project all silhouettes, find intersection

Silhouette carving

- Limit of silhouette carving is visual hull or line hull
- Complement of lines that don't intersect object
- In general not the same as obj ect
- Can't recover "pits" in object
- Not the same as convex hull
- Discrete version:
- Loop over all voxels in some volume
- If projection into images lies inside all silhouettes, mark as occupied
- Else mark as free

Voxel coloring

- Seitz and Dyer, 1997
- In addition to free / occupied, store color at each voxel
- Explicitly accounts for occlusion
- Basic idea: sweep through a voxel grid
- Project each voxel into each image in which it is visible
- If colors in images agree, mark voxel with color
- Else, mark voxel as empty
- Agreement of colors based on comparing standard deviation of colors to threshold
- Problem: which voxels are visible?
- Solution: constrain camera views
- When a voxel is considered, necessary occlusion information must be available
- Sweep occluders before occludees
- Constrain camera positions to allow this sweep

Inward-looking Cameras above scene

Outward-looking
Cameras inside scene

Selected Dinosaur Images

- Calibrated Turntable
- 360° rotation (21 images)

- Faster alternative:
- Sweep plane in each of 6 principal directions
- Consider cameras on only one side of plane
- Repeat until convergence

True Scene

Reconstruction

Space carving results: African violet
DigivFX
Space canving results: hand

Reconstruction

Input image
(1 of 100)

- Basic idea: send out pulse of light (usually laser), time how long it takes to return

Active approaches

Laser scanning (triangulation)

- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning
- Other patterns are possible

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

Cyberware

face and hand
full body

[^0]

- Calibration issues:
- where's the camera wrt. ground plane?
- where's the shadow plane?
- depends on light source position, shadow edge

- Advantages
- don't need to pre-calibrate the light source
- shadow plane determined from two shadow edges

Results

accuracy: 0.1 mm over $10 \mathrm{~cm} \longrightarrow \sim 0.1 \%$ error

Textured objects
-

Scanning with the sun

Active variants of passive approaches

- The Bidirectional Reflection Distribution Function

$$
\text { - Given an incoming ray }\left(\theta_{i}, \phi_{i}\right) \text { and outgoing ray }\left(\theta_{e}, \phi_{e}\right)
$$ what proportion of the incoming light is reflected along outgoing ray?

$$
\begin{aligned}
& \rho(l, v)=k_{d} \longleftarrow \text { albedo } \\
& I=k_{d} \mathbf{N} \cdot \mathbf{L}
\end{aligned}
$$

Assuming that light strength is 1.

$$
\begin{aligned}
& {\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{L}_{1}{ }^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}{ }^{T}
\end{array}\right] k_{d} \mathbf{N}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G}=\mathrm{L}^{-1} \mathrm{I} \\
& k_{d}=\|\mathbf{G}\| \\
& \mathbf{N}=\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

- Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{1} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

- Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

- Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
- Weight each equation by the pixel brightness:

$$
I_{i}\left(I_{i}\right)=I_{i}\left[k_{d} \mathbf{N} \cdot \mathbf{L}_{\mathbf{i}}\right]
$$

- Gives weighted least-squares matrix equation:

$$
\left[\begin{array}{c}
I_{1}^{2} \\
\vdots \\
I_{n}^{2}
\end{array}\right]=\left[\begin{array}{c}
I_{1} \mathbf{L}_{1}^{T} \\
\vdots \\
I_{n} \mathbf{L}_{\mathbf{n}}^{T}
\end{array}\right] k_{d} \mathbf{N}
$$

- Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before

Procedure

- Calibrate camera
- Calibrate light directions/ intensities
- Photographing objects (HDR recommended)
- Estimate normals
- Estimate depth
- Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is
- Use a ruler

Normalize light intensities

Estimate normals

Example-based photometric stereo

- Estimate 3D shape by varying illumination, fixed camera
- Operating conditions
- any opaque material
- distant camera, lighting
- reference object available
- no shadows, interreflections, transparency

Virtual views

Velvet

Active stereo with structured lightive

Range image

Tesellation

Range surface

The Digital Michelangelo Project

- Goal: scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Stanford University, Ied by Marc Levoy

Systems, projects and applications

height of gantry: weight of gantry:
7.5 meters 800 kilograms

- steps

1. manual initial alignment
2. ICP to one existing scan
3. automatic ICP of all overlapping pairs
4. global relaxation to spread out error
5. merging using volumetric method

Comparison

photograph

1.0 mm computer model

The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage
- Institute of Industrial Science, University of Tokyo, led by Katsushi Ikeuchi

Processing

- 20 range images (a few million points)
- Simultaneous all-to-all ICP
- Variant of volumetric merging (parallelized)

- 3D scanning
- Hybrid camera for IMAX
- View interpolation

3D scanning

- 6K resolution, 42 linear bits per pixel
- For CG, it typically takes 6 hours for a frame
- 45-minute IMAX 3D CG film requires a 100-CPU rendering farm full-time for about a year just for rendering
- For live-action, camera is bulky (like a refrigerator)

Hybrid input

Hybrid input

Combine multiple hires to lores

Bullet time video

High-quality video view interpolation

Final project

- Assigned: 5/ 14
- Due: ?
- Proposal by 5/ 27
- Research (1-2 people)
- System (1-3 people)
- Film (3-4 people)
- Define a problem and try to solve it
- You don't need to solve it all, but have to make a reasonable progress, for example, solve a simplified version.
- Find inspirations from SIGGRAPH/ CVPR/ ICCV papers

System

- Implement existing algorithm into a useful system such as implementing recent SIGGRAPH or CVPR/ ICCV papers
- It must be an "effect" film.
- You can use any tools as you want. But, assume that you have to write some on your own.
- Find inspirations from

Gatech's vfx course
http:// www.cc. gatech. edu/ classes/ AY2004/ cs4480_spring/
independent film makers
http:// www. peerlessproductions. com/ ADs/ films/YouTube

- Submit two videos, final and making-of.

[^0]: http:/ / www. vision. caltech.edu/ bouguetj/ ICCV98/

