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Announcements

e Project #2 artifact voting by next Wednesday

Outline

e Models from multiple (sparse) images
- Structure from motion
- Facade
» Models from single images
- Tour into pictures
- Single view metrology
- Other approaches

Models from multiple images
(Fagade, Debevec et al. 1996)




Facade i

Use a sparse set of images

Calibrated camera (intrinsic only)

Designed specifically for modeling architecture
Use a set of blocks to approximate architecture

Three components:

- geometry reconstruction
- texture mapping

- model refinement

-
Idea =

-
Idea =

. . Digi
Geometric modeling =

Bounding Box

A block is a geometric primitive
with a small set of parameters
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Reasons for block modeling

« Architectural scenes are well modeled by
geometric primitives.

» Blocks provide a high level abstraction, easier
to manage and add constraints.

e No need to infer surfaces from discrete
features; blocks essentially provide prior
models for architectures.

« Hierarchical block modeling effectively reduces
the number of parameters for robustness and
efficiency.
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Results
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3 of 12 photographs

Texture mapping e




Texture mapping in real world

Demo movie

Michael Naimark,
San Francisco Museum
of Modern Art, 1984

Texture mapping

Texture mapping

View-dependent texture mapping

view |

virtual view view 2
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View-dependent texture mapping - View-dependent texture mapping

model VDTM

single
texture VDTM

map
Model-based stereo — Stereo Digi
e Use stereo to refine the geometry
scene point
known .-~"""'".image plane

camera
viewpoints

optical center




Stereo RIEIVFX

e Basic Principle: Triangulation
- Gives reconstruction as intersection of two rays
- Requires
« calibration
= point correspondence

DigiI24
Stereo correspondence :

e Determine Pixel Correspondence
- Pairs of points that correspond to same scene point

epipolar line . epipolar line
epipolar plane

» Epipolar Constraint

- Reduces correspondence problem to 1D search along
conjugate epipolar lines

Finding correspondences e

e apply feature matching criterion (e.g.,
correlation or Lucas-Kanade) at all pixels
simultaneously

= search only over epipolar lines (much fewer
candidate positions)

Digill3
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Image registration (revisited)

 How do we determine correspondences?

- block matching or SSD (sum squared differences)

E(z,y;d) = > (1" +d,y )~ Ir(z',y)]?
(@, y)EN(z,y)
d is the disparity (horizontal motion)

e How big should the neighborhood be?




Neighborhood size

DigiY2%

« Smaller neighborhood: more details

e Larger neighborhood: fewer isolated mistakes

Depth from disparity
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input image (1 of 2) depth map 3D rendering
[Szeliski & Kang ‘95]
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Stereo reconstruction pipeline ™ Model-based stereo e
e Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

« \What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions

- Violations of brightness constancy (specular reflections)

- Large motions
- Low-contrast image regions

key image warped offset image
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Epipolar geometry Results
\ actual
approximate structure
model
epipolar plane
key/ :
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Comparisons Final results
VDTM, flat

VDTM, model-
based stereo
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B JIVFX
Final results LIEIVeX

Results Results




Commercial packages

e REALVIZ ImageModeler

The Matrix

Cinefex #79, October 1999.

Since the bullet-time rig would be visible in shots featuring
a 360-degree sweep of the characters, it was employed only for
the shooting of the foreground subject — namely, the actors or
their stunt doubles — necessitating a different approach for the
backgrounds. Shot separately, the backgrounds used a virtual
cinematography process that allowed a 360-degree environ-
ment to be constructed in the computer from stills taken on
set. This approach for generating the backgrounds was based
on the Berkeley Tower flyover, a novel image-based rendering
technique presented at Siggraph ‘97 by George Borshukov and
Paul Debevec, a researcher at UC Berkeley. The technique em-
ployed twenty stills of that town's college campus to create a
virtual environment through which the camera could travel.
“Instead of reinventing the background in traditional CG fash-
ion — painting textures, shooting orthographic views of the set,
and then proceeding to texture replication —we generated a
completely free, high-resolution camera move that would have
been impossible to achieve using traditional CG,” Rorshukov
said, “and we did it working from just a handful of stills.”

The Matrix

 Academy Awards for Scientific and Technical
achievement for 2000

To George Borshukov, Kim Libreri and Dan
Piponi for the development of a system for
image-based rendering allowing choreographed
camera movements through computer graphic
reconstructed sets. 2

<

This was used in The Matrix and Mission
Impossible 1l; See The Matrix Disc #2 for
more details

Models from single images




Vanishing points

image plane

vanishing point

Camera
center

ground plane

» Vanishing point
- projection of a point at infinity

Vanishing points (2D)
image pla$A

vanishing point

camera
center

line on ground plane

Vanishing points

image plane
~
vanishing point V

/
camera
center
C -
line on ground plane

line on ground plane

e Properties

- Any two parallel lines have the same vanishing point

v

- The ray from C through v is parallel to the lines
- An image may have more than one vanishing point

Vanishing lines

» Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing

point

- The union of all of these vanishing points is the horizon line
« also called vanishing line

- Note that different planes define different vanishing lines




Computing vanishing points
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Tour into pictures ALy

« Create a 3D “theatre stage” of
five billboards

« Specify foreground objects

P, +tDy P, /t+Dy Dy through bounding polygons
- R +tD, - R /t+D, o P = D,
P, +tD, P, /t+D, D,
1 1/t 0
* Properties v=1P, _
. . o . — e Use camera transformations to
- POo IS a point at |nf|n|ty, V IS Its projection . t th h th
- They depend only on line direction havigate throug € scene
- Parallel lines P, + tD, P, + tD intersect at P
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Tour into pictures
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(b) Background mnage

I projection background

(¢) Foreground mask

(f) Modeling () Camera p
foreground objects

(1) Rendered mmage

The idea RIFIVFX

» Many scenes (especially paintings), can be
represented as an axis-aligned box volume
(i.e. a stage)

» Key assumptions:

- All walls of volume are orthogonal

- Camera view plane is parallel to back of volume
- Camera up is normal to volume bottom

- Volume bottom is y=0

e Can use the vanishing point
to fit the box to the

particular Scene!

Cailing

Leftwall Rear wall Right well

Flaor




Fitting the box volume e Foreground Objects S

» Use separate
billboard for each

e For this to work,

e

Comer points Inner rectangle th ree Separate
= User controls the inner box and the vanishing lmag_e_s US_edZ
point placement (6 DOF) - Original image.

- Mask to isolate
desired foreground
images.

- Background with
objects removed

CIFTVEX CIFTVEX

Foreground Objects Example

e Add vertical
rectangles for
each foreground
object

e Can compute 3D
coordinates PO, P1 (a) Input image (b) Background
since they are on fovegror object foveground object mode] o St rerdugle /] \\\ P )

known plane.
e P2, P3 can be
computed as
before (similar
triangles)

W ‘ feétangle

A A Y 4 ([ v
ta) Initial state {b) Specifieation result




Example
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glTip =
e http://www.cs.ust.hk/~cpegnel/glITIP/

1. Find world coordinates (X,Y,Z) for a few points
2. Connect the points with planes to model geometry
- Texture map the planes
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Approach: unwarp then measure
What kind of warp is this?




Digil24 . . Digil24
Solving for homographies
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To unwarp (rectify) an image .
« solve for homography H given p and p’ hgf
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» Defines a least squares problem:
minimize ||[Ah — 0|2
- Since hAis only defined up to scale, solve for unit
vector h
- Works with 4 or more points

1. Define the ground plane (Z=0)
2. Compute points (X,Y,0) on that plane
3. Compute the heights Z of all other points




Measuring height

g
IR

Computing vanishing points

P1

- Intersect p,q, with p,q,

e Least squares version

- Better to use more than two lines and compute the “closest”
point of intersection

- See notes by Bob Collins for one good way of doing this:
e http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Criminisi et al., ICCV 99

e Load in an image

e Click on lines parallel to X axis
- repeat for Y, Z axes

e Compute vanishing points

Criminisi et al., ICCV 99

IVerticaI vanishing
point
i (at infinity)
Vanishing
line

Vanishing ==

: Vanishing
point

point




Criminisi et al., ICCV 99 RIFIVFX

e Load in an image

e Click on lines parallel to X axis
- repeat for Y, Z axes

e Compute vanishing points

» Specify 3D and 2D positions of 4 points on reference
plane

e Compute homography H

« Specify a reference height

e Compute 3D positions of several points
e Create a 3D model from these points

e Extract texture maps

e Qutput a VRML model

Results

Zhang et. al. CVPR 2001 S

Zhang et. al. CVPR 2001

CIFTVEX

original image

constraints

3D wireframe

novel view

Methods Iteration 0 Tteration 200 Tteration 1200 Tteration 2500 Tteration 9500

No hierarchical
transformation




Oh et. al. SIGGRAPH 2001 DigilT2s

vertical

t

Oh et. al. SIGGRAPH 2001

DigiY2%

shape video
automatic use of’
the lowest pixel
- per column
user input reference of the layer
ground plane "‘“‘lcig;f:;:ﬁ”
. DIFIVEX . DIFIVEX
Automatic popup Geometric cues
Input  Geometric Labels  Cut'n’Fold 3D Model Color Texture

Ground

Location

Perspective




Automatic popup Results

| | Feature Descriptions | Num | Used |

Color 15 15
C1. RGB values: mean 3 3
2. HSV values: comversion from mean RGB values 3 3
3. Hue: histogram (3 bins) and entropy & &
4. Saturation: histogram (3 bins) and entropy 3 L]
29 13

12 3

1 O

1 1

T4, DOOG Filters: (me - median) of variables in T1 1 1
T3, Textons: mean abs response 12 7
Té. Textons: max of variables in TS 1 o
{max - median of variables in T3 1 1

hape 12 1

ormalized x and y. mean 2 2

norm. % and v, 104 and 90F% percentile 4 i

norm. ¥ wrt horzon, 107" and 90°% peil 2 2

number of superpixels in constellation 1 1

L3, Shape: number of sides of convex hull 1 0
Lis num pivels (arealconvey hull) 1 1
L7 whether the constellation region is contiguous 1 1)
1L ry ES) %
Gl Long Lines: total number in constellation region 1 1
2. Long Lines: % of nearly parallel pairs of lines 1 1
Line Intersection: hist. over 12 onentations, entropy 13 11

4. Line Intersection: % nght of center 1 1
G35, Line Intersection: % above center 1 1
G, Line Intersection far from center at 8 orientations & 4

ar from center at 8 orientations 8 5 |nput |mages Automatlc Photo Pop-up
5" (T2) center 2 2

Results Failures

Labeling Errors

This approach works roughly for 35% of images.
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