Image-based modeling

Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/5/7

with slides by Richard Szeliski, Steve Seitz and Alexei Efros

• Project #2 artifact voting by next Wednesday

Outline

- Models from multiple (sparse) images
 - Structure from motion
 - Facade
- Models from single images
 - Tour into pictures
 - Single view metrology
 - Other approaches

Models from multiple images (Façade, Debevec *et. al.* 1996)

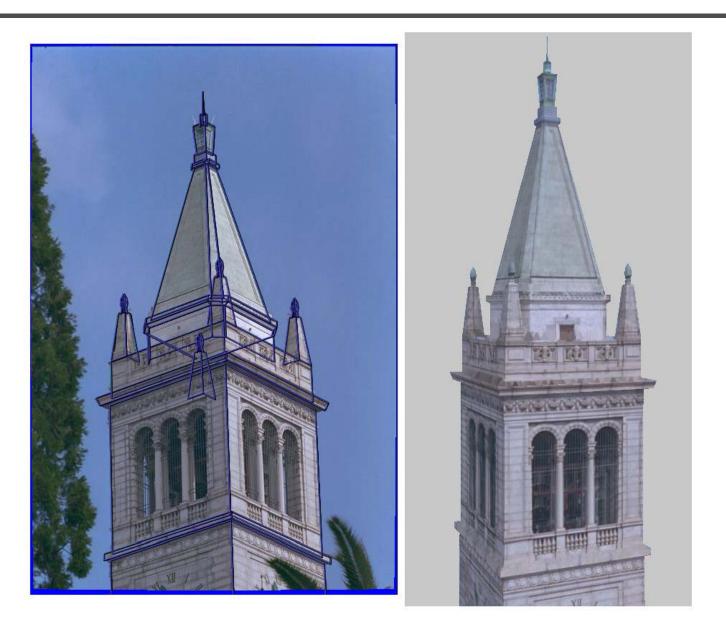
Facade

- Use a sparse set of images
- Calibrated camera (intrinsic only)
- Designed specifically for modeling architecture
- Use a set of blocks to approximate architecture
- Three components:
 - geometry reconstruction
 - texture mapping
 - model refinement

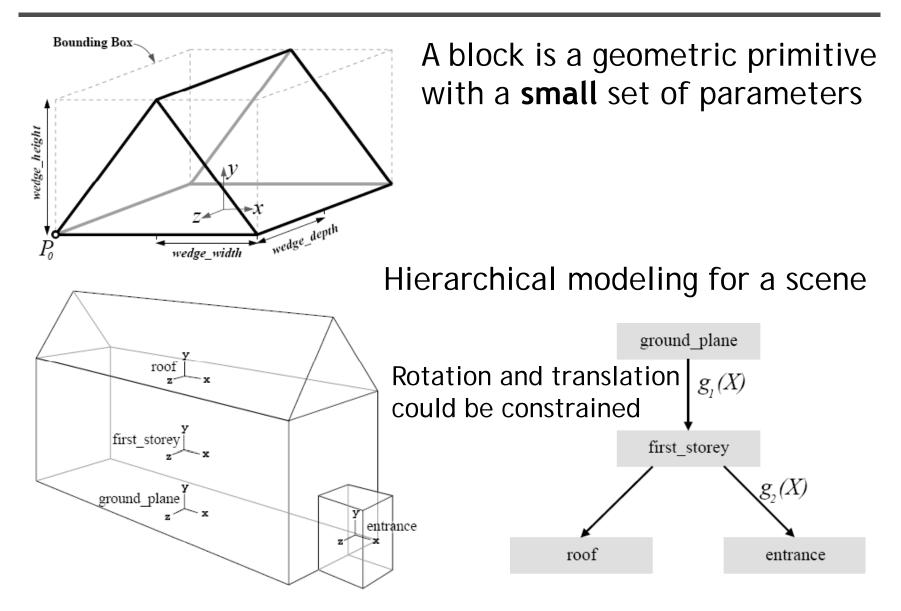
Idea



Idea

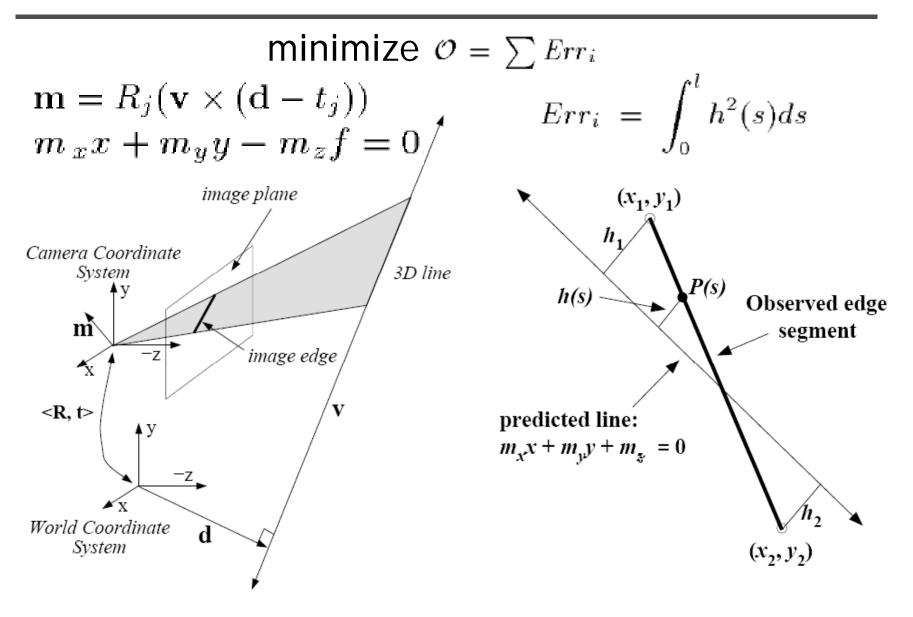


Geometric modeling



- Architectural scenes are well modeled by geometric primitives.
- Blocks provide a high level abstraction, easier to manage and add constraints.
- No need to infer surfaces from discrete features; blocks essentially provide prior models for architectures.
- Hierarchical block modeling effectively reduces the number of parameters for robustness and efficiency.

Reconstruction



Reconstruction

$$Err_{i} = \int_{0}^{l} h^{2}(s)ds \qquad h_{1} = \frac{m_{x}x_{1} + m_{y}y_{1} + m_{z}}{\sqrt{m_{x}^{2} + m_{y}^{2}}}$$

$$h_{1} = \frac{m_{x}x_{1} + m_{y}y_{1} + m_{z}}{\sqrt{m_{x}^{2} + m_{y}^{2}}}$$

$$h_{2} = \frac{m_{x}x_{2} + m_{y}y_{2} + m_{z}}{\sqrt{m_{x}^{2} + m_{y}^{2}}}$$

$$h(s) = h_{1} + s\frac{h_{2} - h_{1}}{l}$$

$$Err_{i} = \int_{0}^{l} h^{2}(s)ds$$

$$= \frac{l}{3}(h_{1}^{2} + h_{1}h_{2} + h_{2}^{2})$$

Reconstruction

$$Err_{i} = \int_{0}^{l} h^{2}(s)ds = \frac{l}{3}(h_{1}^{2} + h_{1}h_{2} + h_{2}^{2}) = \mathbf{m}^{T} (A^{T}BA)\mathbf{m}$$

$$h_{1} = \frac{m_{x}x_{1} + m_{y}y_{1} + m_{z}}{\sqrt{m_{x}^{2} + m_{y}^{2}}}$$

$$h_{2} = \frac{m_{x}x_{2} + m_{y}y_{2} + m_{z}}{\sqrt{m_{x}^{2} + m_{y}^{2}}}$$

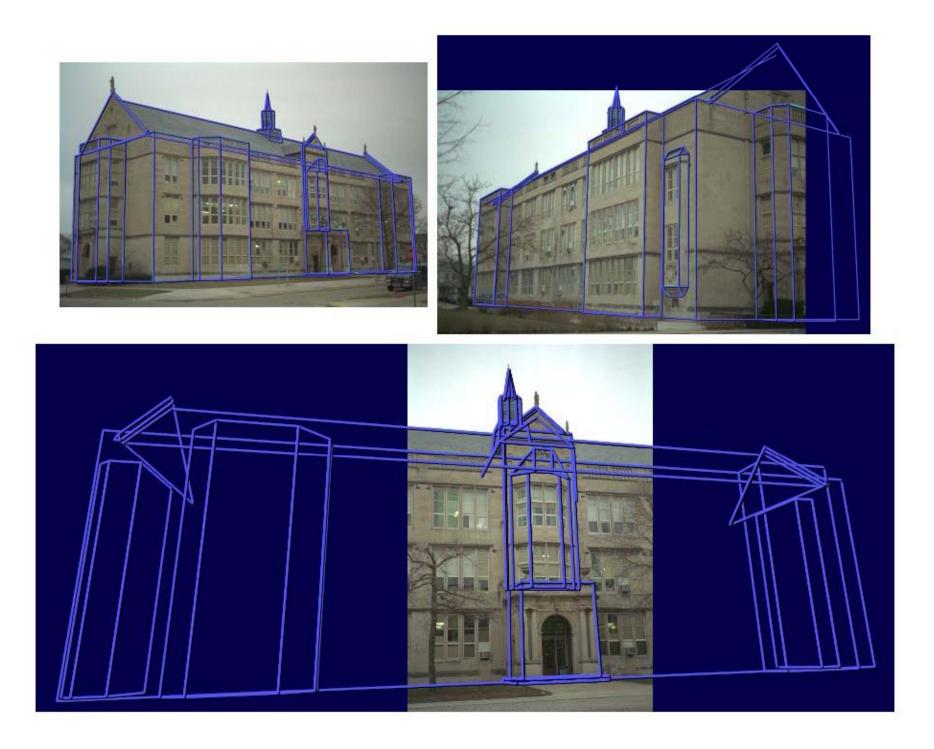
$$\mathbf{m} = (m_{x}, m_{y}, m_{z})^{T} \qquad \mathbf{m} = R_{j}(\mathbf{v} \times (\mathbf{d} - t_{j}))$$

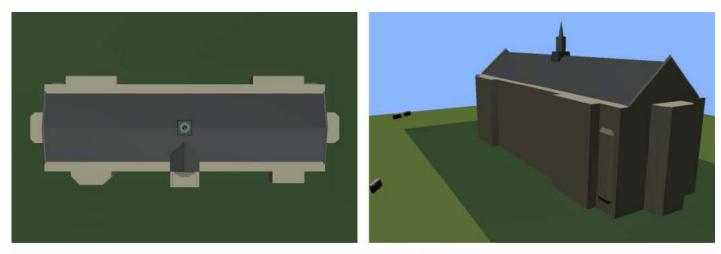
$$A = \begin{pmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{pmatrix}$$
nonlinear w.r.t. camera and model
$$B = \frac{l}{3(m_{x}^{2} + m_{y}^{2})} \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$

Results

3 of 12 photographs

TITT





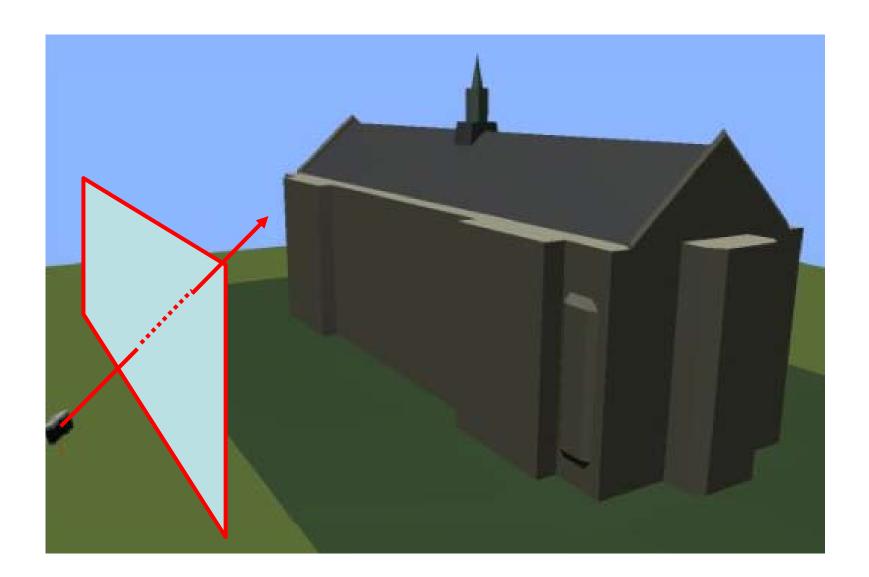


Texture mapping

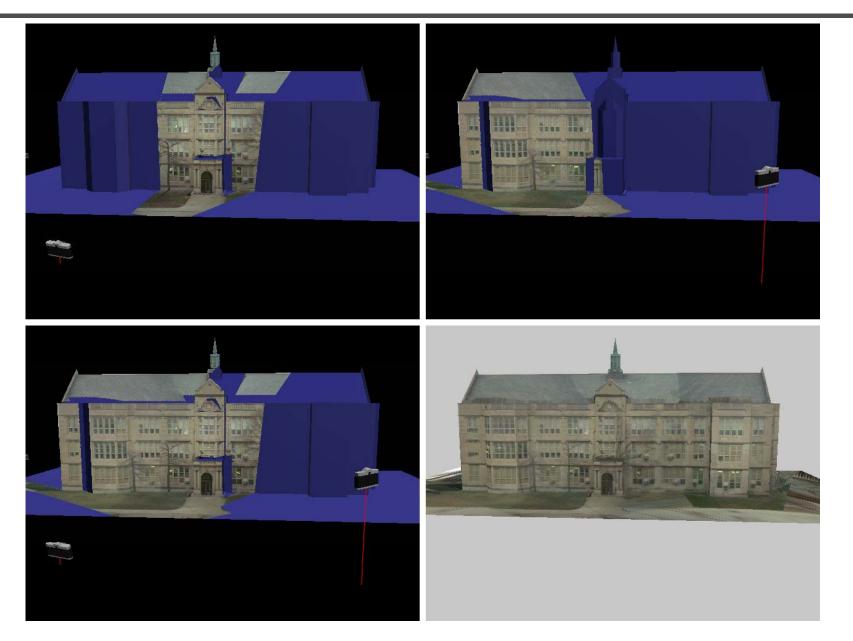
Texture mapping in real world

Demo movie Michael Naimark, San Francisco Museum of Modern Art, 1984

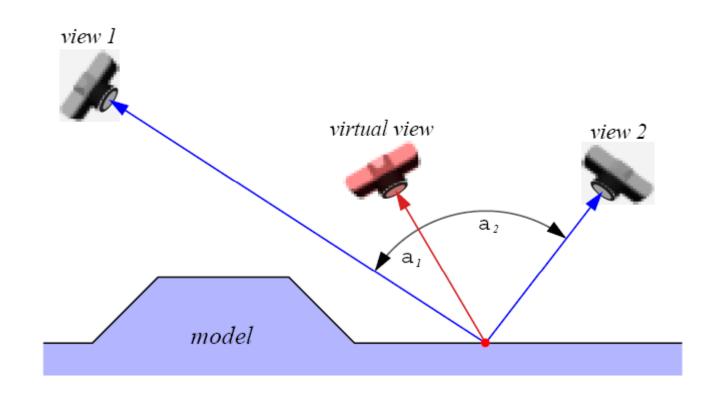
Texture mapping



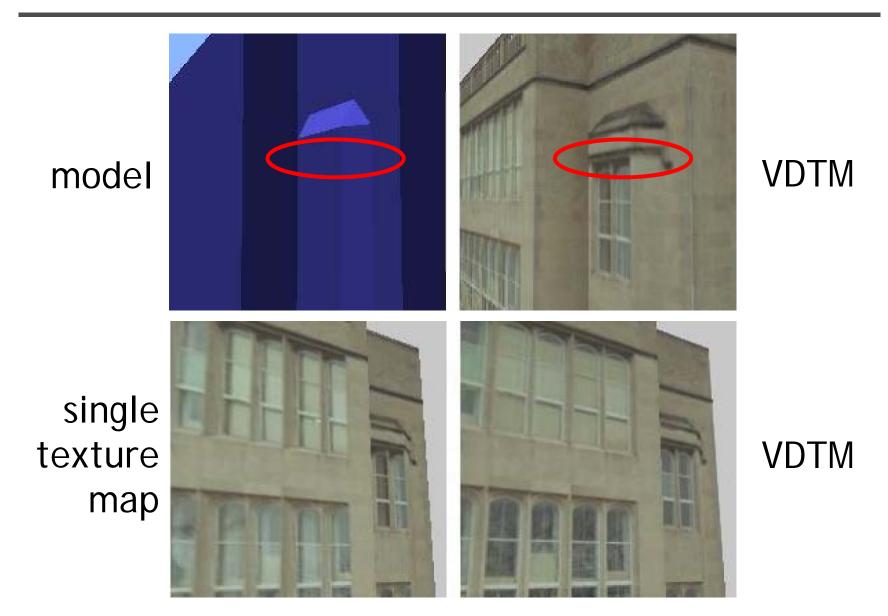
Texture mapping



View-dependent texture mapping



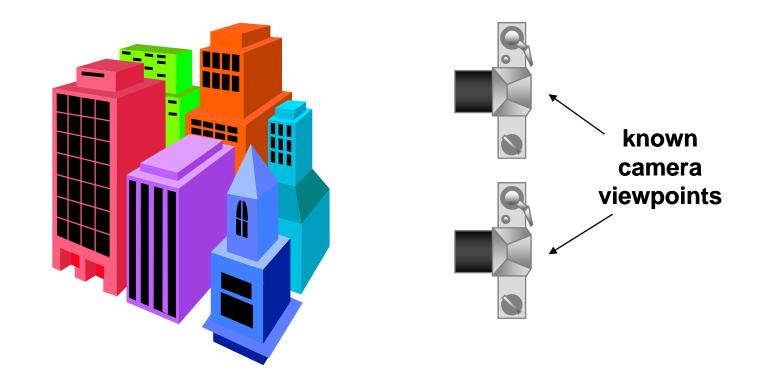
View-dependent texture mapping

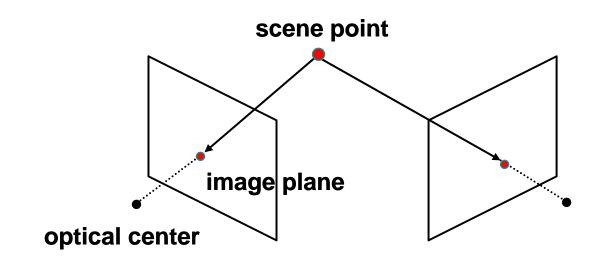


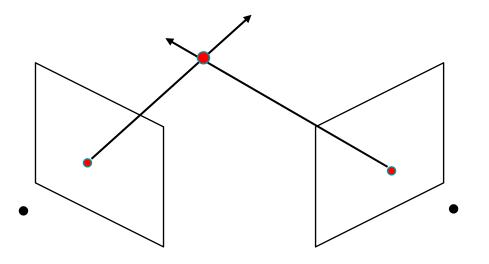
View-dependent texture mapping

Model-based stereo

• Use stereo to refine the geometry



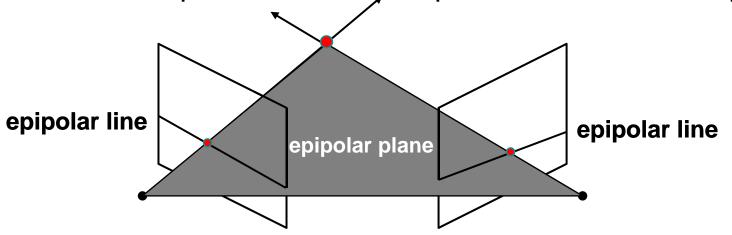




- Basic Principle: Triangulation
 - Gives reconstruction as intersection of two rays
 - Requires
 - calibration
 - point correspondence

Stereo correspondence

- Determine Pixel Correspondence
 - Pairs of points that correspond to same scene point



- Epipolar Constraint
 - Reduces correspondence problem to 1D search along conjugate epipolar lines

- apply feature matching criterion (e.g., correlation or Lucas-Kanade) at *all* pixels simultaneously
- search only over epipolar lines (much fewer candidate positions)

- How do we determine correspondences?
 - *block matching* or *SSD* (sum squared differences)

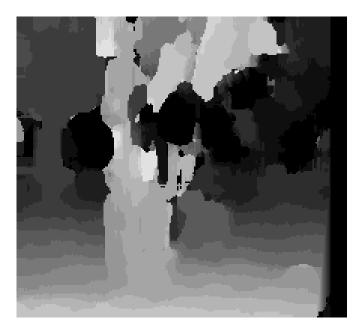
 $E(x, y; d) = \sum_{(x', y') \in N(x, y)} [I_L(x' + d, y') - I_R(x', y')]^2$

d is the disparity (horizontal motion)

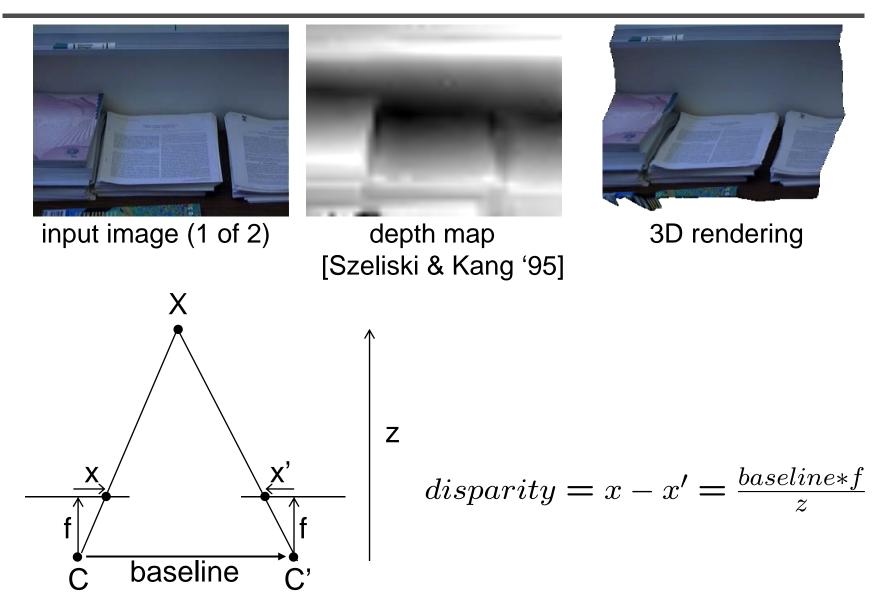
• How big should the neighborhood be?

Neighborhood size

- Smaller neighborhood: more details
- Larger neighborhood: fewer isolated mistakes



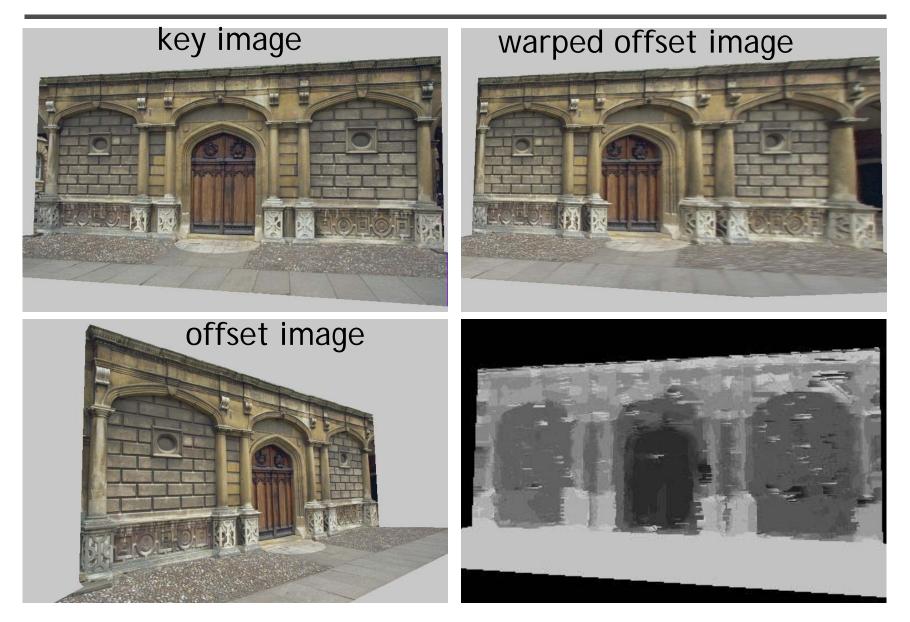
Depth from disparity



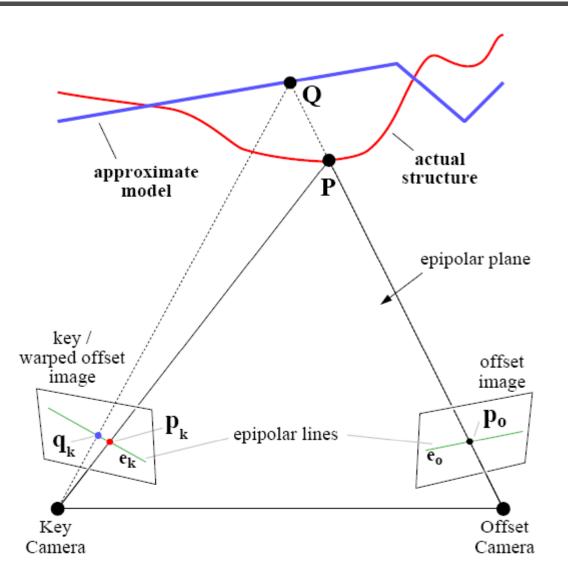
Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth
- What will cause errors?
 - Camera calibration errors
 - Poor image resolution
 - Occlusions
 - Violations of brightness constancy (specular reflections)
 - Large motions
 - Low-contrast image regions

Model-based stereo



Epipolar geometry

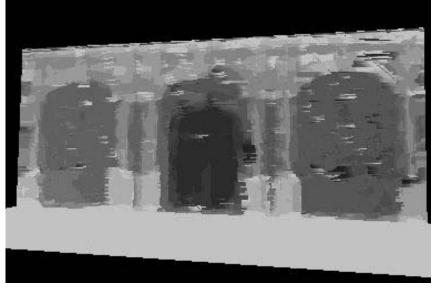


Results

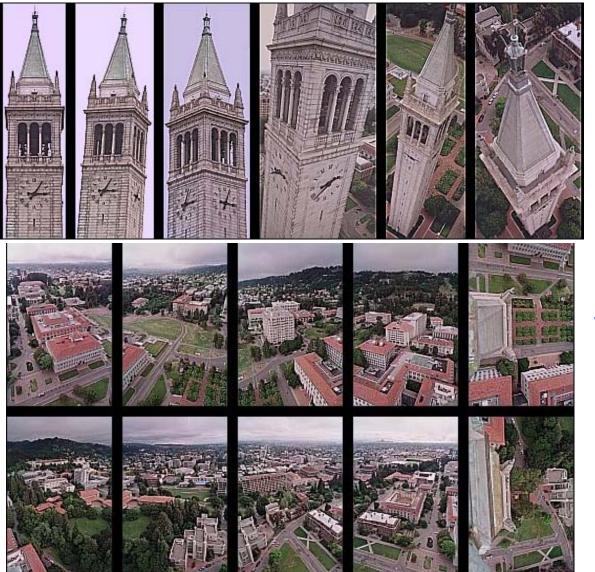


Comparisons

VDTM, modelbased stereo

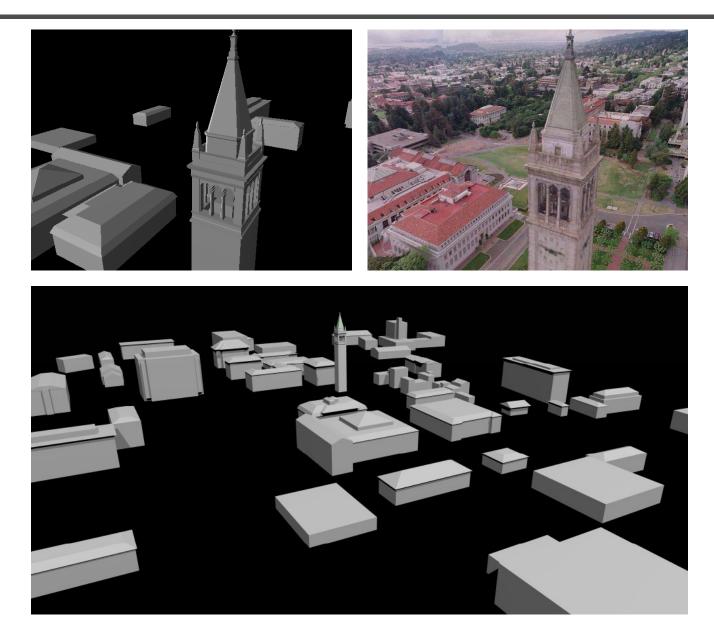


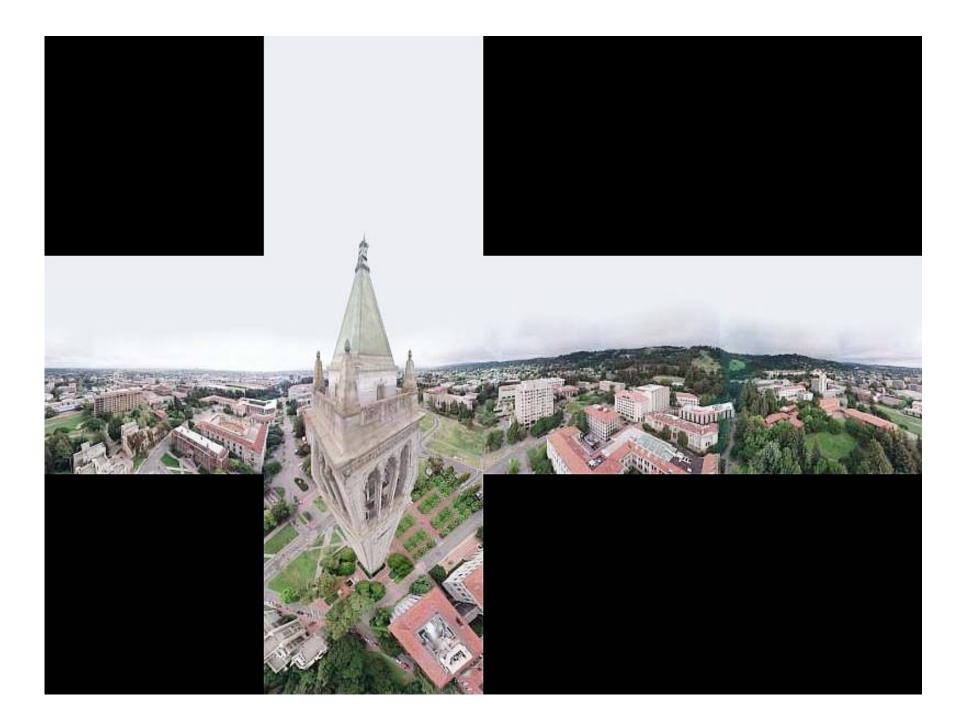
Final results



Kite photography

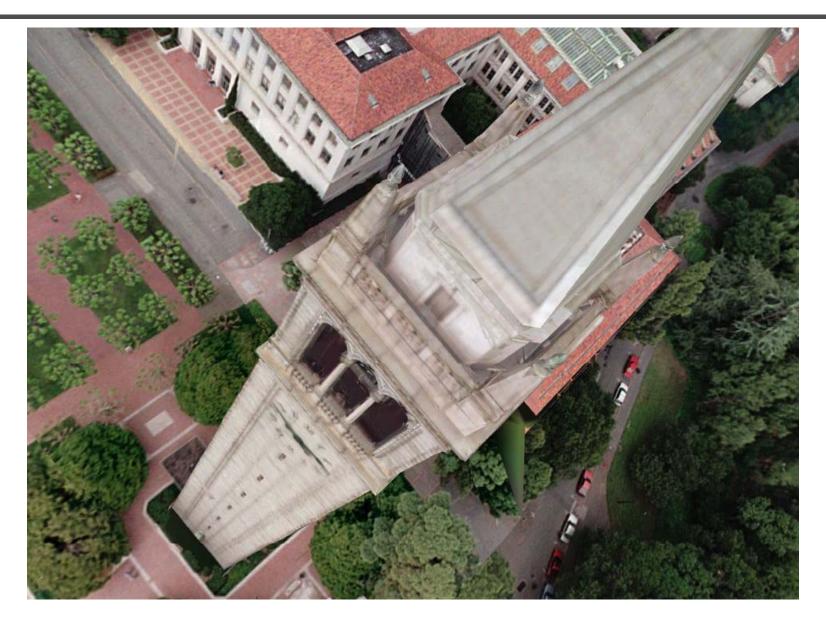
Final results





Results

Results



Commercial packages

REALVIZ ImageModeler

The Matrix

Cinefex #79, October 1999.

Since the bullet-time rig would be visible in shots featuring a 360-degree sweep of the characters, it was employed only for the shooting of the foreground subject - namely, the actors or their stunt doubles - necessitating a different approach for the backgrounds. Shot separately, the backgrounds used a virtual cinematography process that allowed a 360-degree environment to be constructed in the computer from stills taken on set. This approach for generating the backgrounds was based on the Berkeley Tower flyover, a novel image-based rendering technique presented at Siggraph '97 by George Borshukov and Paul Debevec, a researcher at UC Berkeley. The technique employed twenty stills of that town's college campus to create a virtual environment through which the camera could travel. "Instead of reinventing the background in traditional CG fashion - painting textures, shooting orthographic views of the set, and then proceeding to texture replication - we generated a completely free, high-resolution camera move that would have been impossible to achieve using traditional CG," Borshukov said, "and we did it working from just a handful of stills."

The Matrix

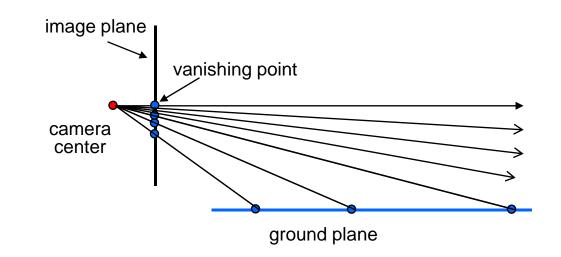
• Academy Awards for Scientific and Technical achievement for 2000

To George Borshukov, Kim Libreri and Dan Piponi for the development of a system for image-based rendering allowing choreographed camera movements through computer graphic reconstructed sets.

This was used in The Matrix and Mission Impossible II; See The Matrix Disc #2 for more details

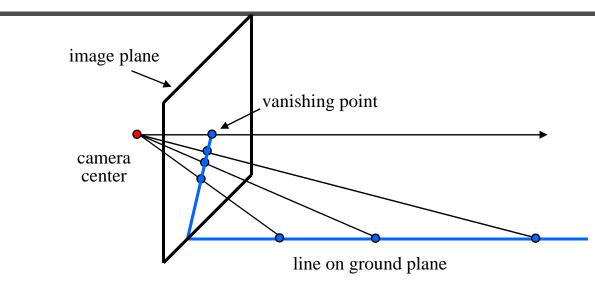
Models from single images

Vanishing points

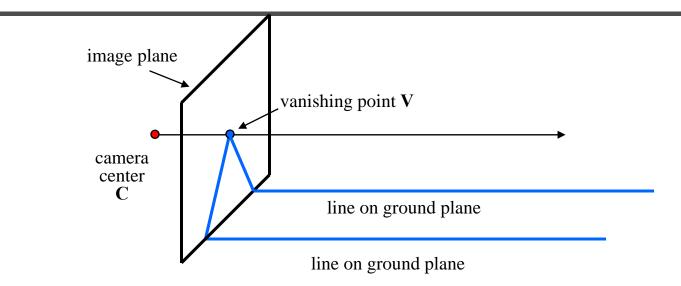


- Vanishing point
 - projection of a point at infinity

Vanishing points (2D)



Vanishing points



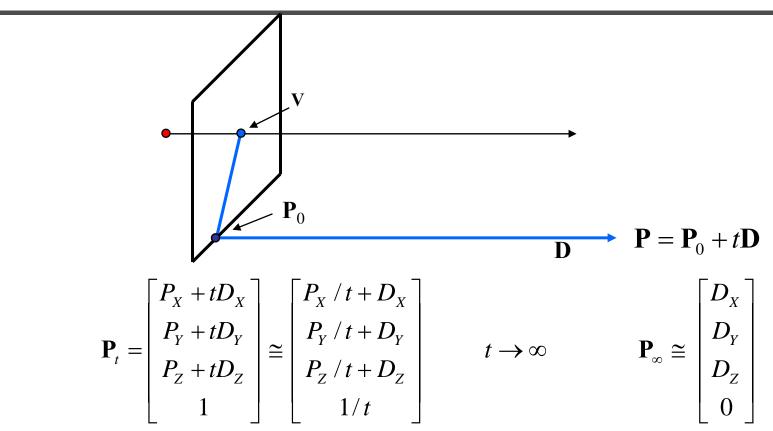
- Properties
 - Any two parallel lines have the same vanishing point
 v
 - The ray from **C** through **v** is parallel to the lines
 - An image may have more than one vanishing point

Vanishing lines



- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called *vanishing line*
 - Note that different planes define different vanishing lines

Computing vanishing points



- Properties $v = \Pi P_{\infty}$
 - \mathbf{P}_{∞} is a point at *infinity*, **v** is its projection
 - They depend only on line *direction*
 - Parallel lines \mathbf{P}_0 + t \mathbf{D} , \mathbf{P}_1 + t \mathbf{D} intersect at \mathbf{P}_{∞}

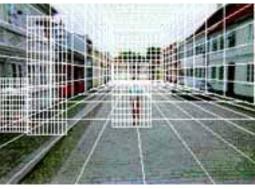
Tour into pictures

 Create a 3D "theatre stage" of five billboards

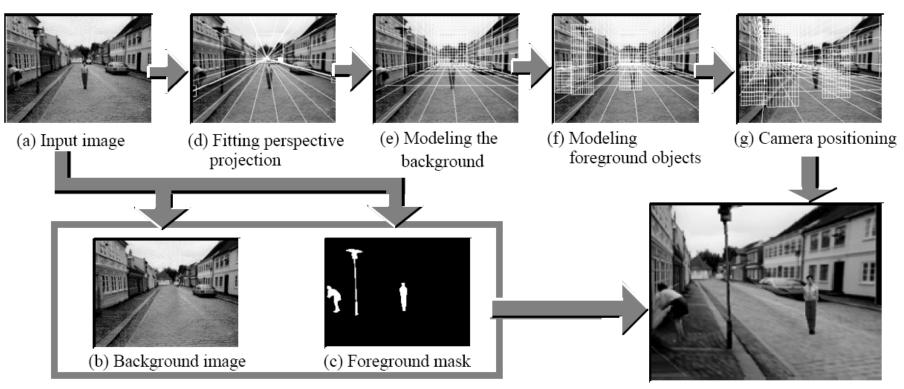
• Specify foreground objects through bounding polygons

• Use camera transformations to navigate through the scene





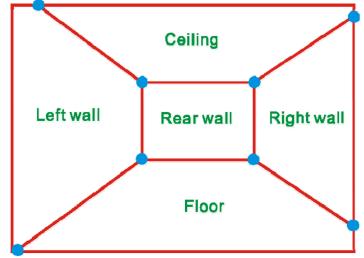
Tour into pictures



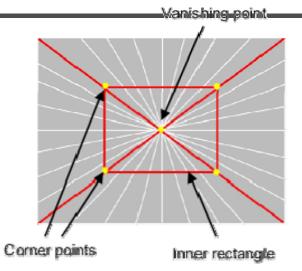
(h) Rendered image

The idea

- Many scenes (especially paintings), can be represented as an axis-aligned box volume (i.e. a stage)
- Key assumptions:
 - All walls of volume are orthogonal
 - Camera view plane is parallel to back of volume
 - Camera up is normal to volume bottom
 - Volume bottom is y=0
- Can use the vanishing point to fit the box to the particular Scene!



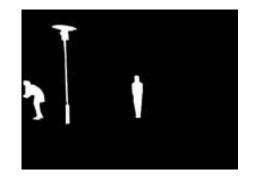
Fitting the box volume



• User controls the inner box and the vanishing point placement (6 DOF)

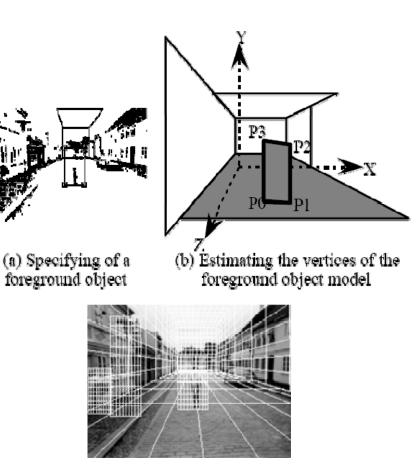
Foreground Objects

- Use separate billboard for each
- For this to work, three separate images used:
 - Original image.
 - Mask to isolate desired foreground images.
 - Background with objects removed



Foreground Objects

- Add vertical rectangles for each foreground object
- Can compute 3D coordinates P0, P1 since they are on known plane.
- P2, P3 can be computed as before (similar triangles)

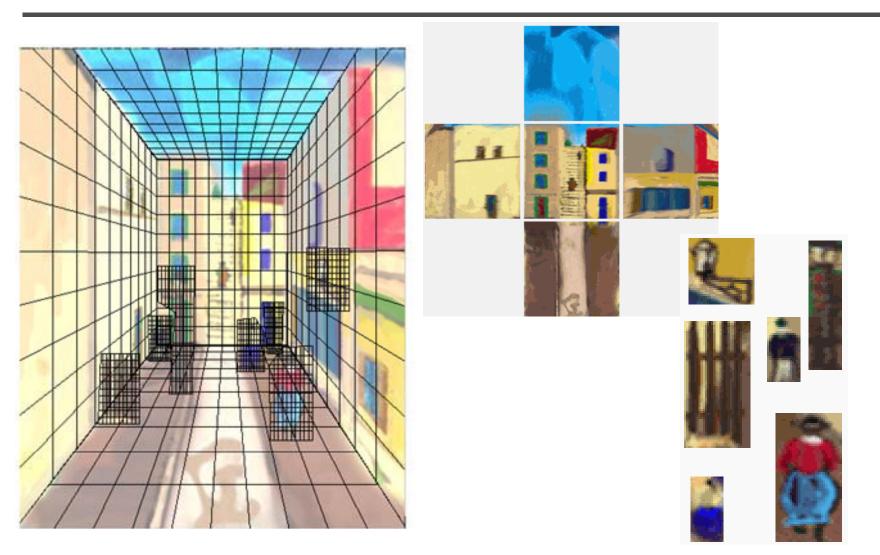


(c) Three foreground object models

Example



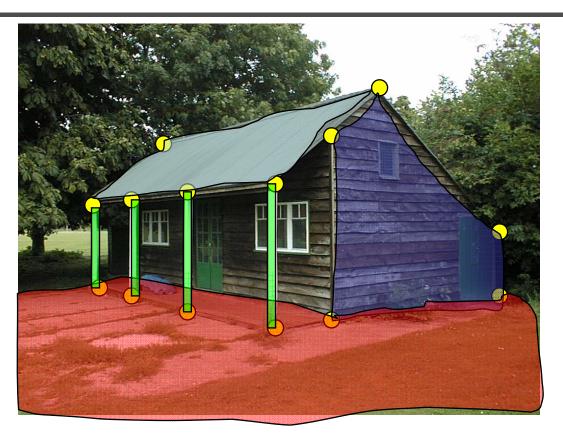
Example



glTip

http://www.cs.ust.hk/~cpegnel/glTIP/

Criminisi et al. ICCV 1999



- 1. Find world coordinates (X,Y,Z) for a few points
- 2. Connect the points with planes to model geometry
 - Texture map the planes

Measurements on planes

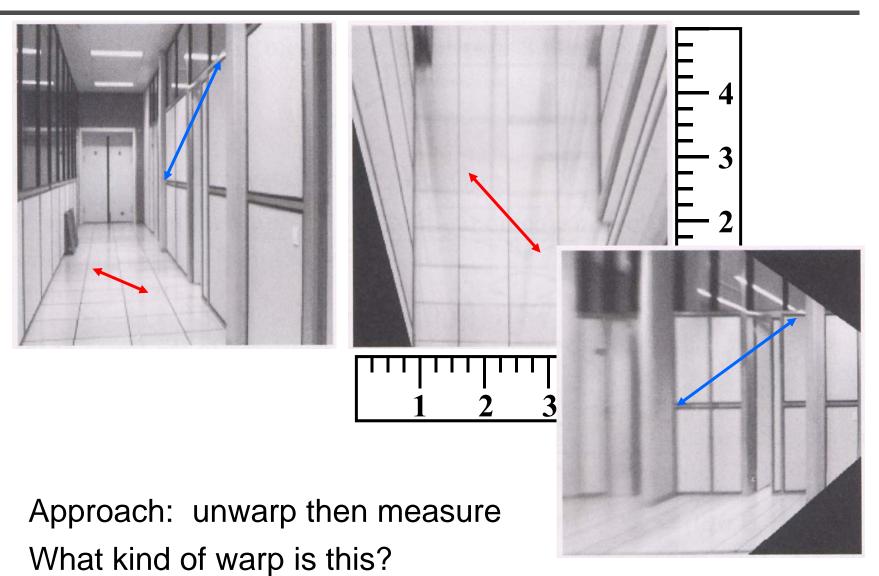
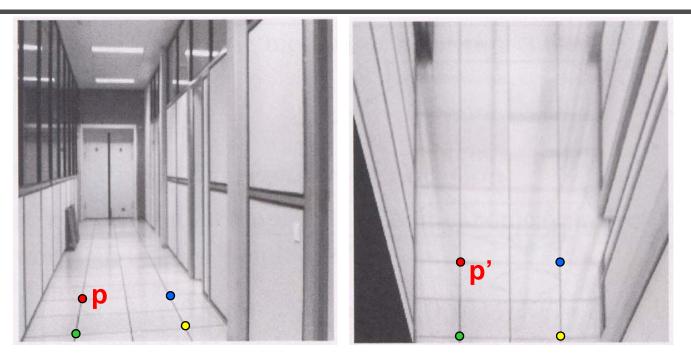


Image rectification



To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of ${\bf H}$
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?

Solving for homographies

$$\begin{aligned} x'_{i} \\ y'_{i} \\ 1 \end{aligned} & \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \\ 1 \end{bmatrix} \\ x'_{i} &= \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}} \\ y'_{i} &= \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}} \end{aligned}$$

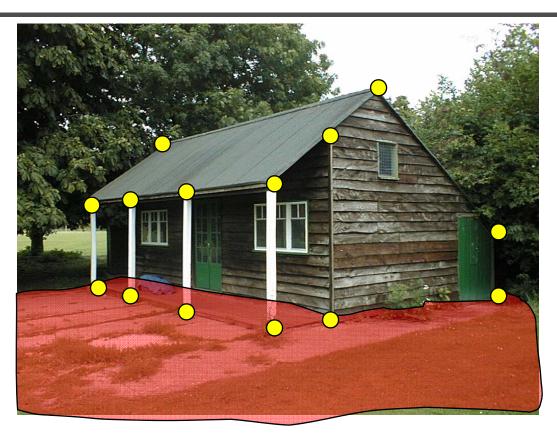
$$\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\ 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies

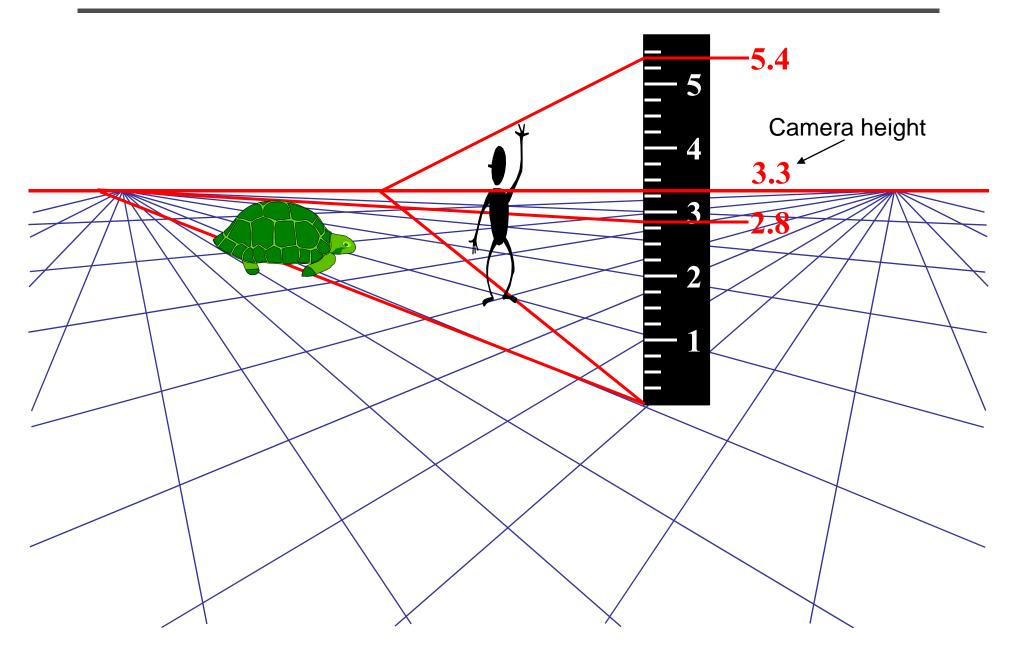
- Defines a least squares problem: minimize $\|Ah 0\|^2$
 - Since \boldsymbol{h} is only defined up to scale, solve for unit vector $\boldsymbol{\hat{h}}$
 - Works with 4 or more points

Finding world coordinates (X,Y,Z)

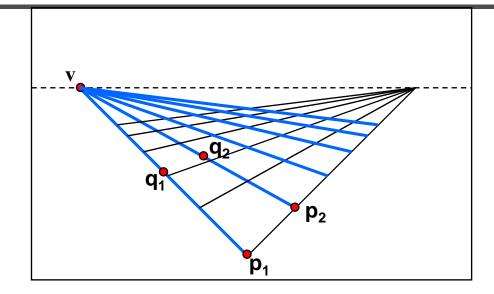


- 1. Define the ground plane (Z=0)
- 2. Compute points (X,Y,0) on that plane
- 3. Compute the *heights* Z of all other points

Measuring height



Computing vanishing points

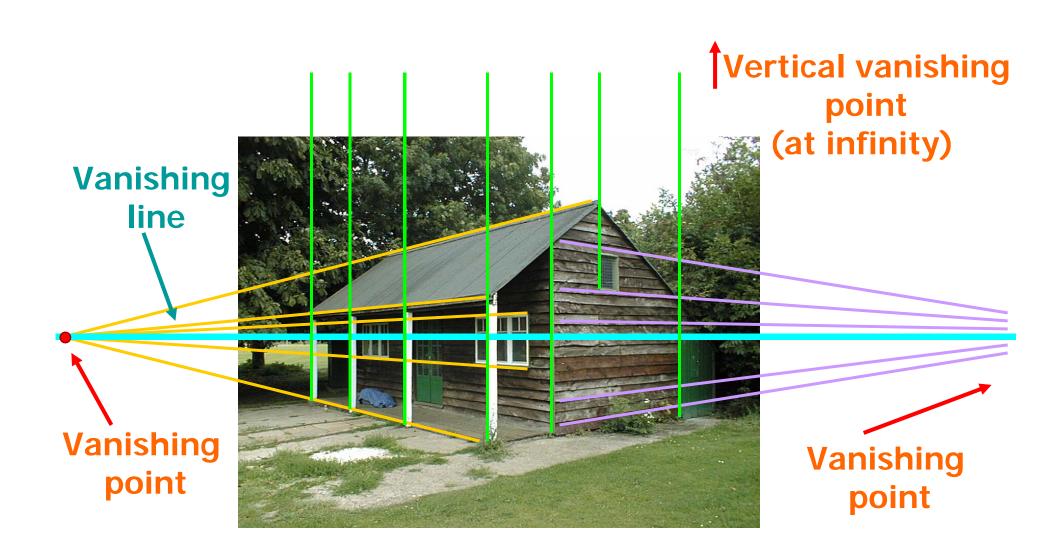


- Intersect p_1q_1 with p_2q_2
- Least squares version
 - Better to use more than two lines and compute the "closest" point of intersection
 - See notes by <u>Bob Collins</u> for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Criminisi et al., ICCV 99

- Load in an image
- Click on lines parallel to X axis
 - repeat for Y, Z axes
- Compute vanishing points

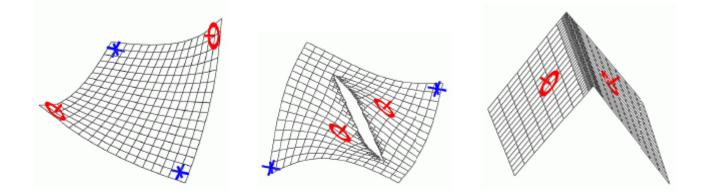
Criminisi et al., ICCV 99



Criminisi et al., ICCV 99

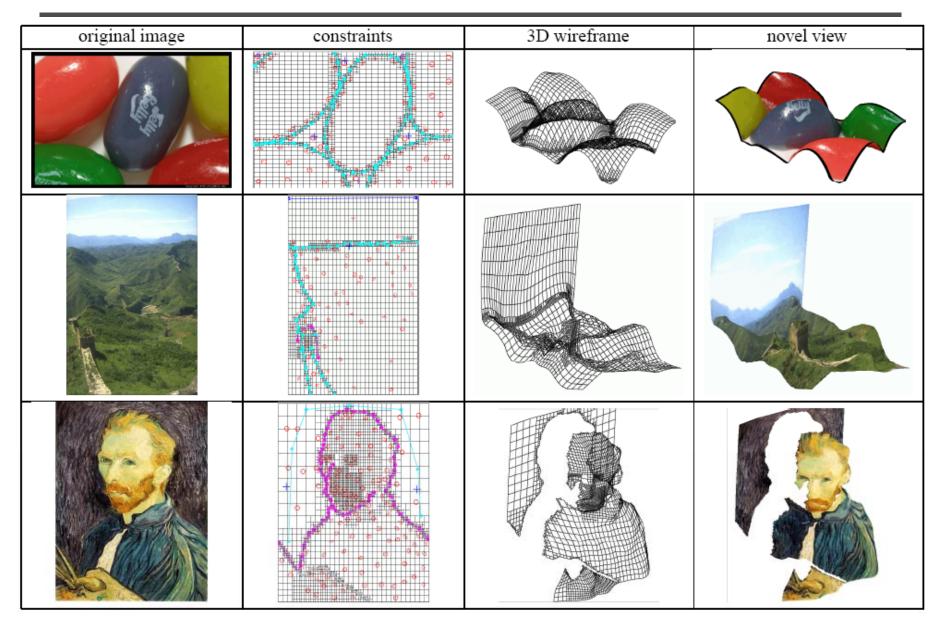
- Load in an image
- Click on lines parallel to X axis
 - repeat for Y, Z axes
- Compute vanishing points
- Specify 3D and 2D positions of 4 points on reference plane
- Compute homography H
- Specify a reference height
- Compute 3D positions of several points
- Create a 3D model from these points
- Extract texture maps
- Output a VRML model

Results



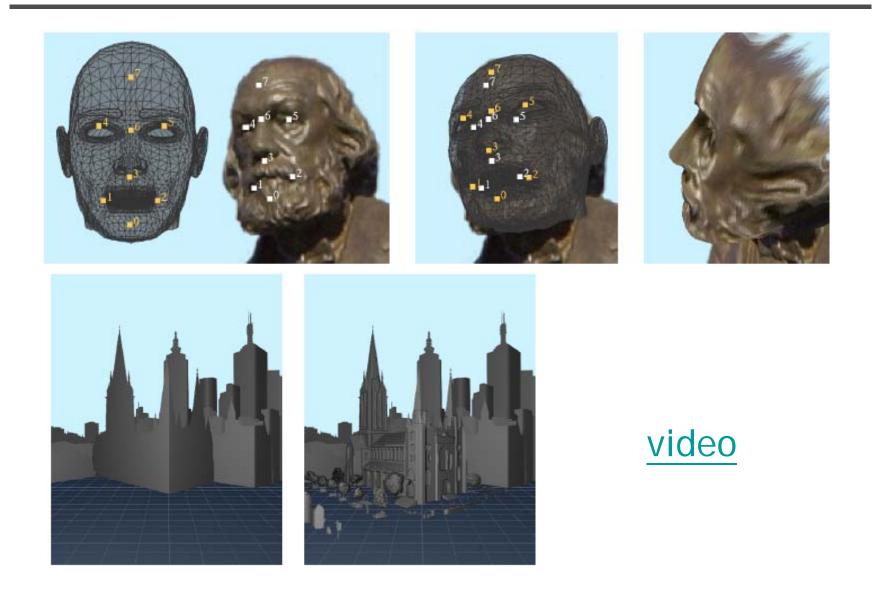
Methods	Iteration 0	Iteration 200	Iteration 1200	Iteration 2500	Iteration 9500
No hierarchical transformation			*		0

Zhang et. al. CVPR 2001

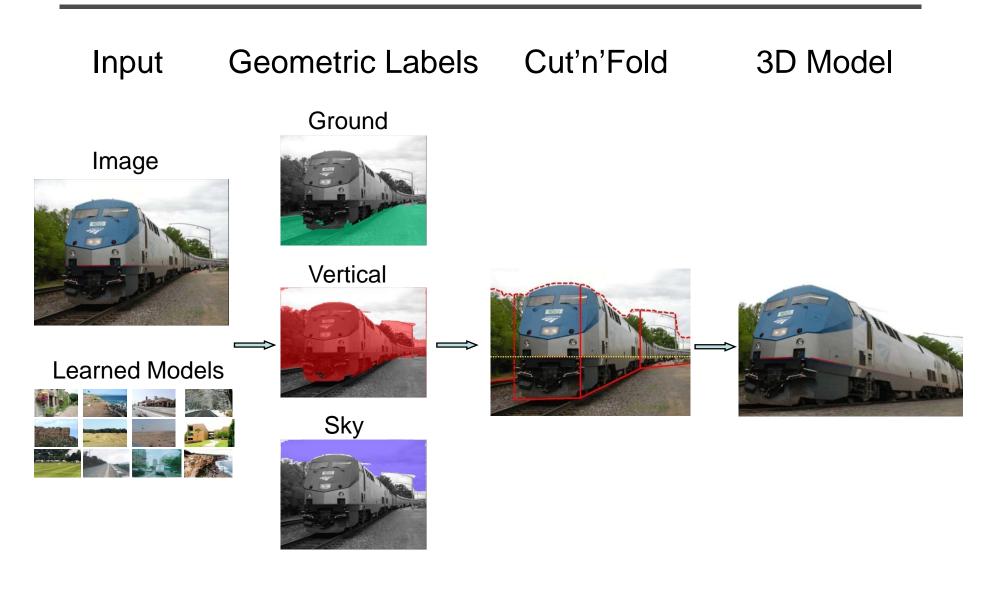


Oh et. al. SIGGRAPH 2001

Oh et. al. SIGGRAPH 2001



Automatic popup



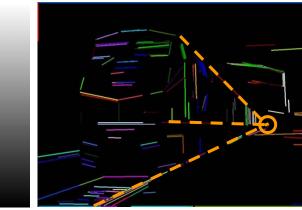
Geometric cues

Color

Location

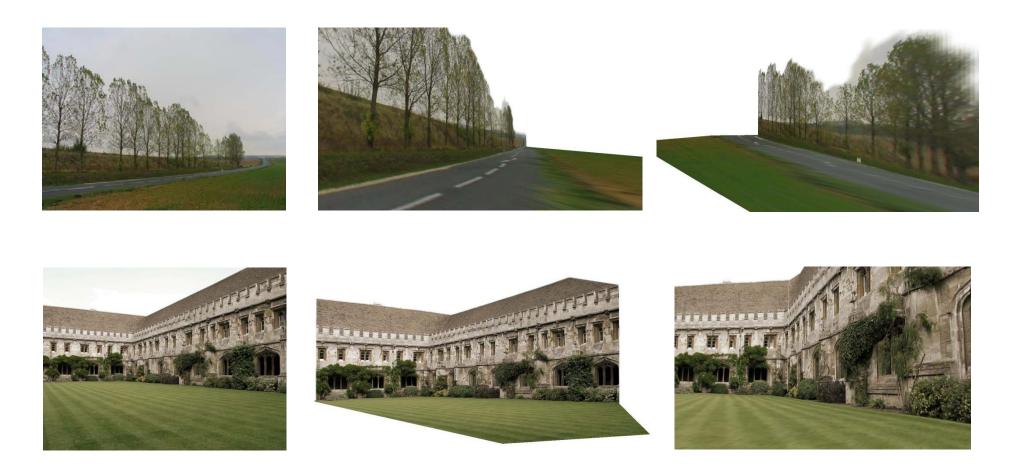
Texture

Perspective



Automatic popup

Feature Descriptions	Num	Used
Color	15	15
C1. RGB values: mean		3
C2. HSV values: conversion from mean RGB values		3
C3. Hue: histogram (5 bins) and entropy		6
C4. Saturation: histogram (3 bins) and entropy	3	3
Texture		13
T1. DOOG Filters: mean abs response	12	3
T2. DOOG Filters: mean of variables in T1		0
T3. DOOG Filters: id of max of variables in T1		1
T4. DOOG Filters: (max - median) of variables in T1	1	1
T5. Textons: mean abs response	12	7
T6. Textons: max of variables in T5	1	0
T7. Textons: (max - median) of variables in T5	1	1
Location and Shape		10
L1. Location: normalized x and y, mean	2	2
L2. Location: norm. x and y, 10^{th} and 90^{th} percentile		4
L3. Location: norm. y wrt horizon, 10th and 90th pctl		2
L4. Shape: number of superpixels in constellation		1
L5. Shape: number of sides of convex hull		0
L6. Shape: num pixels/area(convex hull)		1
L7. Shape: whether the constellation region is contiguous	1	0
3D Geometry	35	28
G1. Long Lines: total number in constellation region	1	1
G2. Long Lines: % of nearly parallel pairs of lines	1	1
G3. Line Intersection: hist. over 12 orientations, entropy	13	11
G4. Line Intersection: % right of center		1
G5. Line Intersection: % above center	1	1
G6. Line Intersection: % far from center at 8 orientations	8	4
G7. Line Intersection: % very far from center at 8 orientations		5
G8. Texture gradient: x and y "edginess" (T2) center	2	2



Input Images

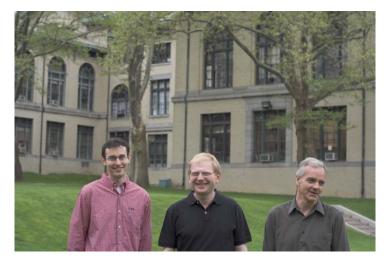
Automatic Photo Pop-up

This approach works roughly for 35% of images.

Labeling Errors

Failures

Foreground Objects



References

- P. Debevec, C. Taylor and J. Malik. <u>Modeling and</u> <u>Rendering Architecture from Photographs: A Hybrid</u> <u>Geometry- and Image-Based Approach</u>, SIGGRAPH 1996.
- Y. Horry, K. Anjyo and K. Arai. <u>Tour Into the Picture:</u> <u>Using a Spidery Mesh Interface to Make Animation from</u> <u>a Single Image</u>, SIGGRAPH 1997.
- A. Criminisi, I. Reid and A. Zisserman. <u>Single View</u> <u>Metrology</u>, ICCV 1999.
- L. Zhang, G. Dugas-Phocion, J.-S. Samson and S. Seitz. Single View Modeling of Free-Form Scenes, CVPR 2001.
- B. Oh, M. Chen, J. Dorsey and F. Durand. <u>Image-Based</u> <u>Modeling and Photo Editing</u>, SIGGRAPH 2001.
- D. Hoiem, A. Efros and M. Hebert. <u>Automatic Photo</u> <u>Pop-up</u>, SIGGRAPH 2005.