Matting and Compositing

Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/4/30

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Photomontage

The Two Ways of Life, 1857, Oscar Gustav Rejlander Printed from the original 32 wet collodion negatives.

Photographic compositions

Lang Ching-shan

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Optical compositing

King Kong (1933) Stop-motion + optical compositing

Digital matting and compositing

The lost world (1925)

The lost world (1997)

Miniature, stop-motion

Computer-generated images

Digital matting and composting

King Kong (1933)

Optical compositing

Jurassic Park III (2001)

Blue-screen matting, digital composition, digital matte painting

Oscar award, 1996

Matting and Compositing

Matting and Compositing

Digital matting: bluescreen matting

Forrest Gump (1994)

- The most common approach for films.
- Expensive, studio setup.
- Not a simple one-step process.

Color difference method (Ultimatte)

F

 $C = F + \overline{\alpha}B$

Blue-screen photograph

Spill suppression Matte creation if B>G then B=G $\overline{\alpha}$ =B-max(G,R) demo with Paint Shop Pro (B=min(B,G))

Problems with color difference

Background color is usually not perfect! (lighting, shadowing...)

Chroma-keying (Primatte)

Chroma-keying (Primatte)

<u>demo</u>

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Three approaches: 1 reduce #unknowns 2 add observations 3 add priors $C = \alpha F + (1 - \alpha)B$ compositing equation Matting

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

para-
meters
$$z \rightarrow f(z)+\varepsilon \rightarrow y$$
 observed
signal
 $z^* = \max_{z} P(z \mid y)$
 $= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$ de-blocking
...
 $= \max_{z} L(y \mid z) + L(z)$
Bayesian framework
posterior probability
 $\arg \max_{F,B,\alpha} \frac{P(F,B,\alpha \mid C)}{P(C \mid F,B,\alpha)} P(F) P(B) P(\alpha) / P(C)$

 $L(C | F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^2 / 2\sigma_C^2$

Bayesian framework

$$\overline{F} = \frac{1}{W} \sum_{i \in N} w_i F_i$$

$$\Sigma_F = \frac{1}{W} \sum_{i \in N} w_i (F_i - \overline{F}) (F_i - \overline{F})^T$$
Unknown
Foreground
$$L(F) = -(F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$$

$$Priors$$

$$\arg \max_{F,B,\alpha} L(C \mid F, B, \alpha) + L(F) + L(B)$$

$$\arg \max_{F,B,\alpha} - \|C - \alpha F - (1 - \alpha)B\|^2 / \sigma_C^2$$

$$- (F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$$

$$- (B - \overline{B})^T \Sigma_B^{-1} (B - \overline{B}) / 2$$

Bayesian matting

repeat

1. fix alpha

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I(1-\alpha)^2/\sigma_C^2 \end{bmatrix} \begin{bmatrix} F \\ B \end{bmatrix}$$

$$= \begin{bmatrix} \Sigma_F^{-1}\overline{F} + C\alpha/\sigma_C^2 \\ \Sigma_B^{-1}\overline{B} + C(1-\alpha)/\sigma_C^2 \end{bmatrix}$$

2. fix F and B

$$\alpha = \frac{(C-B) \cdot (F-B)}{\|F-B\|^2}$$

until converge

Optimization

Bayesian image matting

Bayesian image matting

Bayesian image matting

Bayesian image matting

Bayesian image matting

green

B samples

input image

Comparisons

Comparisons

Comparisons

input video

Video matting

Sample composite

Garbage mattes

Garbage mattes

Background estimation

Background estimation

Alpha matte

without background with background

Comparison

Problems with Bayesian matting

- It requires fine trimaps for good results
- It is tedious to generate fine trimaps
- Its performance rapidly degrades when foreground and background patterns become complex
- There is no direct and local control to the resulted mattes

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Scribble-based input

trimap

scribble

Motivation

LazySnapping
$$E(X) = \sum_{i \in \mathcal{V}} \overline{E_1(x_i)} + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$
 $i \in \mathcal{V}$ $i \in \mathcal{V}$

Matting approaches

- Sampling approaches: solve for each alpha separately by utilizing local fg/bg samples, e.g. Ruzon/Tomasi, Knockout and Bayesian matting.
- Propagation approaches: solve the whole matte together by optimizing, e.g. Poisson, BP, random walker, closed-form and robust matting.

$$\begin{split} \textit{Poisson matting} \\ & I = \alpha F + (1 - \alpha) B \\ & \nabla I = (F - B) \nabla \alpha + \alpha \nabla F + (1 - \alpha) \nabla B \\ & \nabla \alpha \approx \frac{1}{F - B} \nabla I \\ & \alpha^* = \arg \min_{\alpha} \int \int_{p \in \Omega} ||\nabla \alpha_p - \frac{1}{F_p - B_p} \nabla I_p||^2 dp \end{split}$$

Poisson matting

Robust matting

Jue Wang and Michael Cohen, CVPR 2007

Robust matting

 Instead of fitting models, a nonparametric approach is used

Robust matting

• We must evaluate hypothesized foreground/background pairs

Robust matting

 To encourage pure fg/bg pixels, add weights

Robust matting

• Combine them together. Pick up the best 3 pairs and average them confidence

$$f(F^{i}, B^{j}) = exp\left\{-\frac{R_{d}(F^{i}, B^{j})^{2} \cdot w(F^{i}) \cdot w(B^{j})}{\sigma^{2}}\right\}$$

Demo (EZ Mask)

Evaluation

- 8 images collected in 3 different ways
- Each has a "ground truth" matte

Evaluation

- Mean square error is used as the accuracy metric
- Try 8 trimaps with different accuracy for testing robustness
- 7 methods are tested: Bayesian, Belief propagation, Poisson, Random Walk, KnockOut2, Closed-Form and Robust matting

Subjective evaluation

Ranks of these algorithms

Subjective evaluation

Our

Iter.

Clos.

Baye

Ground-truth

Our

Grd-Tru.

Random walk

Iterative BP

R.W.

K.O

Knockout

Closed-form

Pois.

	accuracy	robustness
Poisson	6.9	6.8
Random walk	6.0	4.4
Knockout2	4.5	4.5
Bayesian	3.9	6.0
Belief Propagation	3.3	3.1
Close-form	2.6	2.0
Robust matting	1.0	1.3

Summary

- Propagation-based methods are more robust
- Sampling-based methods often generate more accurate mattes than propagation-based ones with fine trimaps
- Robust matting combines strengths of both

New evaluation (CVPR 2009)

<u>http://www.alphamatting.com/</u>

Method	SAD	MSE	Grad.	Conn.
Closed-form [13]	1.3	1.4	1.5	2.0
Robust matting [23]	1.9	1.8	1.7	3.4
Random walk [8]	3.3	3.2	3.5	1.3
Easy matting [9]	4.0	4.4	4.2	3.7
Bayesian matting [6]	4.5	4.3	4.3	5.0
Poisson matting [20]	5.9	5.9	6.0	5.6

Soft scissor

- Jue Wang et. al., SIGGRAPH 2007
- Users interact in a similar way to intelligent scissors

Flowchart

Matte Solver

Matting with multiple observations

- Invisible lights
 - Polarized lights
 - Infrared
- Thermo-key
- Depth Keying (ZCam)
- Flash matting

Invisible lights (Infared)

Invisible lights (Polarized)

Invisible lights (Polarized)

Thermo-Key

ZCam

Thermo-Key

Defocus matting

video

Matting with camera arrays

Flash matting

$$I = \alpha F + (1 - \alpha)B,$$

$$I^{f} = \alpha F^{f} + (1 - \alpha)B^{f},$$

Background is much further than foreground and receives almost no flash light $B^f \approx B$

$$I^f = \alpha F^f + (1 - \alpha)B$$

Flash matting

Foreground flash matting

Foreground flash matting equation

$$I' = I^f - I = \alpha(F^f - F) = \alpha F'$$

Generate a trimap and directly apply Bayesian matting.

$$\arg \max_{\alpha,F'} L(\alpha,F'|I')$$

$$= \arg \max_{\alpha,F'} \{L(I'|\alpha,F') + L(F') + L(\alpha)\}$$

$$L(I'|\alpha,F') = -||I' - \alpha F'||/\sigma_{I'}^{2}$$

$$L(F') = -(F' - \overline{F'})^{T} \Sigma_{F'}^{-1}(F' - \overline{F'})$$

$$Flash matting$$

$$I = \alpha F + (1 - \alpha)B$$
$$I' = \alpha F'$$
$$\arg \max_{\alpha, F, B, F'} L(\alpha, F, B, F'|I, I')$$
$$= \arg \max_{\alpha, F, B, F'} \{L(I|\alpha, F, B) + L(I'|\alpha, F') + L(F) + L(F) + L(F) + L(F') + L(\alpha)\}$$

Joint Bayesian flash matting

$$\begin{array}{c} \alpha = \frac{\sigma_{I'}^{2}(F-B)^{T}(I-B) + \sigma_{I}^{2}F'^{T}I'}{\sigma_{I'}^{2}(F-B)^{T}(F-B) + \sigma_{I}^{2}F'^{T}F'} \\ \left[\begin{array}{c} \Sigma_{I'}^{-1} + \operatorname{Ia}^{2}/\sigma_{I}^{2} & 0 \\ 1\alpha(1-\alpha)\sigma_{I}^{2} & \Sigma_{I'}^{-1} + \operatorname{Ia}^{2}/\sigma_{I'}^{2} & 0 \\ 0 & \Sigma_{I'}^{-1} + \operatorname{Ia}^{2}/\sigma_{I'}^{2} & 0 \\ \end{array} \right] \left[\begin{array}{c} F \\ B \\ F' \end{array} \right] \\ = \left[\begin{array}{c} \Sigma_{I'}^{-1}\overline{F} + I\alpha/\sigma_{I}^{2} \\ \Sigma_{I'}^{-1}\overline{F} + I'\alpha/\sigma_{I'}^{2} \end{array} \right], \\ \mathbf{Joint Bayesian flash matting} \\ \end{array} \right]$$
 foreground flash matting to int Bayesian flash matting to int Bayesian flash matting flas

Comparison

WANNAPA

Flash matting

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Conclusions

- Matting algorithms improves a lot in these 10 years
- In production, it is still always preferable to shoot against uniform backgrounds
- Algorithms for more complex backgrounds
- Devices or algorithms for automatic matting