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Family of planes = and lines | and I’ intersect at e
and e’

= intersection of baseline with image plane
= projection of projection center in other image
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epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image




The fundamental matrix F

ZaNi

‘ T=C’-C ‘

Two reference frames are related via the extrinsic parameters

p'=R(p-T)

The equation of the epipolar plane through X is

(p-T) (Txp)=0 = (R"'p")" (Txp)=0

The fundamental matrix F

(R'p")' (Txp)=0

Txp=Sp
o -T, T,
S=| T, 0 -T,
T, T, 0

= (R'p) (Sp)=0
= (p"[R)Sp)=0
) p' =(0  essential matrix

The fundamental matrix F

T
p' Ep=0
Let M and M’ be the intrinsic matrices, then

p= M—IX pv: Mv—l x'

= (M 'x)'EM 'x)=0
= X M EM'x=0
- X'T|EX =0 fundamental matrix

The fundamental matrix F

» The fundamental matrix is the algebraic
representation of epipolar geometry

e The fundamental matrix satisfies the condition
that for any pair of corresponding points x«<x’
in the two images

xTFx=0  (x"I=0)




The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0
for all xe&x’

1. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)

Epipolar lines: U'=Fx & [=F"x’

Epipoles: on all epipolar lines, thus e’TFx=0, Vx

=e’TF=0, similarly Fe=0

4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)

5. Fis a correlation, projective mapping from a point x to
a line l’=Fx (not a proper correlation, i.e. not invertible)

w N

The fundamental matrix F

e It can be used for
- Simplifies matching
- Allows to detect wrong matches

Estimation of F — 8-point algorithm
« The fundamental matrix F is defined by
x''Fx=0
for any pair of matches x and x’ in two images.
fl] f12 f13
« Letx=(u,v,1)Tand x’=(u’v’,1)T, F=|f, f, f,
f31 f32 f33

each match gives a linear equation

uu'f +wu' f,+u fo+uv' f, +w' f, +v' f,, +uf, +vf, + £, =0

8-point algorithm
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« In reality, instead of solving Af = (), we seek f
to minimize |Af| subj. ||f|f: 1. Find the vector
corresponding to the least singular value.




8-point algorithm

» To enforce that F is of rank 2, F is replaced by
F’ that minimizes HF — F'H subject to det F'=0.

« It is achieved by SVD. Let F = UXV | where

o 0 0 o 0 0
=0 o, O, let =0 o, 0
0 o, 0 0 0

then F'= UX'V Tis the solution.

8-point algorithm

% Build the constraint matrix
A=[x2(1,:)*x1(1,:) x2(1,:).*x1(2,:)" x2(1,:)" ..
X2(2,:).*x1(1,:) x2(2,:).*x1(2,:)" x2(2,:)".
x1(1,:)’ x1(2,:) ones(npts,1) ]

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)’;

% Enforce rank2 constraint
[U,D,V] = svd(F
F = U*diag([D(1, 1) D(2,2) 0])*V

8-point algorithm

e Pros: it is linear, easy to implement and fast
» Cons: susceptible to noise

Problem with 8-point algorithm
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Normalized 8-point algorithm

1. Transform input by %; = Tx;, %; = Tx

2. Call 8-point on %,,%; to obtain F
3. F=T'"FT

x 'Fx=0

/\

Normalized 8-point algorithm

normalized least squares yields good results

Transform image to ~[-1,1]x[-1,1]
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Normalized 8-point algorithm “Tved Normalization Rl
Ex;, E} = normat?seggpis:x;;; function [newpts, T] = normalise2dpts(pts)
X = normalise2dpts(x2);
= [x2(1,:)".*x1(1, ) x2(1,:).*x1(2, ) x2(1,:)". ¢ = mean(pts(1:2,:)"); % Centroid
X%g ; x1(1,:) 1>(<§( X 1) X1(2,0) X ( (2t )1)] newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
x1(1,: X ones(npts,1) 1;

[U,D,V] = svd(A);
F = reshape(V(:,9),3,3)’;

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V;

% Denormalise
F=T2"F*T1;

newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:)."2 + newp(2,:)."2));
scale = sqrt(2)/meandist;

T = [scale 0 -scale*c(1)
0 scale -scale*c(2)
0 0 1 1
newpts = T*pts;




RANSAC

repeat

select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until I'(#inliers,#samples)>95% or too many times
compute F based on all inliers

Results (8-point algorithm) e

Results (ground truth)

® Ground truth with standard stereo calibration

B 8-point algorithm

Results (normalized 8-point algorith

® Normalized 8-point algorithm




Structure from motion

Structure from motion RIEIVFX

Unknown
\ camera
N viewpoints

-
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structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self
calibration technique and called automatic camera tracking
or matchmoving.

Applications e

» For computer vision, multiple-view shape
reconstruction, novel view synthesis and
autonomous vehicle navigation.

» For film production, seamless insertion of CGI
into live-action backgrounds

Matchmove

example #1 example #2 example #3  example #4




CCRFA = Structure from motion —

o http://www.ccrfa.com/ccrfa/

e Making of “The Disappearing Act”

e 2007 winner
2D feature |_, . A R timizati .| geometry
tracking 3D estimation (boupnljrlnéz;j;ﬁgt) fitting

SFM pipeline
Structure from motion — KLT tracking =

« Step 1: Track Features
- Detect good features, Shi & Tomasi, SIFT

- Find correspondences between frames
 Lucas & Kanade-style motion estimation
» window-based correlation
 SIFT matching

http://www.ces.clemson.edu/~stb/klt/




Structure from Motion

« Step 2: Estimate Motion and Structure

- Simplified projection model, e.g., [Tomasi 92]

- 2 or 3 views at a time [Hartley 00]
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Structure from Motion

» Step 3: Refine estimates
— “Bundle adjustment” in photogrammetry
- Other iterative methods
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Structure from Motion

CIFTVEX

» Step 4: Recover surfaces (image-based
triangulation, silhouettes, stereo...)

Factorization methods




Problem statement

Notations

n 3D points are seen in m views

g=(u,v,1): 2D image point

p=(x,y,z,1): 3D scene point

IT: projection matrix

n: projection function

dj; is the projection of the i-th point on image j
4;; projective depth of g;;

q; =7(I1;p;) 7(X,Y,2)=(X/2,y/2)
/1” =2

Structure from motion

« Estimate Hjand P; to minimize

g(Hla”'nnm)p])'”apn):zzwij log P(”(iji);qij)

j=1 i=l
_ |1 if pyisvisiblein view j
" 10 otherwise
» Assume isotropic Gaussian noise, it is reduced to
m n 2
5(H1>"',Hmap1a"',pn):Zzwij””(njpi)_%”

j=1 i=l

« Start from a simpler projection model

SFM under orthographic projection
ZDpi(;?gfe |Scrgr]gg:2$|?:f ?E)Igogsgtiioonn 3% scene :JTfigei
/
q=IIp+t
e Trick 2x1 2x33x1 2x1

- Choose scene origin to be centroid of 3D points
- Choose image origins to be centroid of 2D points
- Allows us to drop the camera translation:

q=1Ip




factorization (Tomasi & Kanade) Factorization
rojection of n features in one image:
Pro) g known—@Z 2M3 S ——solve for
a0 @ - a)=TIl p. - p.] w3 3
2xn 2%x3 3xn . . .
- tion of n f * _ _ » Factorization Technique
_ projection of n _eatures I M Images - W is at most rank 3 (assuming no noise)
Q0 9 - G I, - We can use singular value decomposition to factor W:
Ay Gy o G |_ |1
:21 :22 . 2 = ;2 [pl P, - pn] W =M"S'
) 3xn 2m xn 2mx3 3xn
RV AR B AR L - §' differs from S by a linear transformation A:
2mxn 2mx3 )
_ ' | -
W measurement M motion S shape W=M'S'= (MA )( AS)
Key Observation: rank(W) <=3 - Solve for A by enforcing metric constraints on M
Digi2 DOVFX

Metric constraints

Factorization with noisy data

« Orthographic Camera M- - {1 0}
- Rows of IT are orthonormal: 1o 1

e Enforcing “Metric” Constraints
- Compute A such that rows of M have these
properties
M'A=M
Trick (not in original Tomasi/Kanade paper, but in followup work)
+ Constraints are linear in AAT :
Ll) ﬂ =TI =IT'A(ATI") =TI'GII™  where G = AA"

« Solve for G first by writing equations for every IT, in M
* Then G = AAT by SVD (since U = V)

W=M S+ E

2m xn 2mx3 3xn 2mxn

» SVD gives this solution
- Provides optimal rank 3 approximation W’ of W

W =W'+ E
2m xn 2m xn 2mxn
» Approach
- Estimate W’, then use noise-free factorization of W’
as before

- Result minimizes the SSD between positions of image
features and projection of the reconstruction




Results

Extensions to factorization methods

e Projective projection
» With missing data
» Projective projection with missing data

Bundle adjustment

Levenberg-Marquardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton’s
method.




- gi\j
Nonlinear least square

Given a set of measurements x, try to find
the best parameter vector p so that the
squared distance &' ¢ is minimal. Here,

£=x-X,withx= f(p).

Levenberg-Marquardt method

For a small [|dp||, f(P+dp) =~ f(p) + Jdp

J is the Jacobian matrix ﬂ-gijp:'

it is required to find the J, that minimizes the quantity

[ — f(p + ﬁ|:l]|| ~ |x - flp) — Jﬁp“ = |le - Jﬁp”
J'35, = e
Nop =J7e

N;; = ;1L+ [JTJ]H

damping term

Levenberg-Marquardt method

e p=0 — Newton’s method
¢ p—=— steepest descent method

 Strategy for choosing p
- Start with some small p

- If error is not reduced, keep trying larger p until it
does

- If error is reduced, accept it and reduce p for the
next iteration

Bundle adjustment

» Bundle adjustment (BA) is a technique for
simultaneously refining the 3D structure and
camera parameters

« It is capable of obtaining an optimal
reconstruction under certain assumptions on
image error models. For zero-mean Gaussian
image errors, BA is the maximum likelihood
estimator.




Bundle adjustment

n 3D points are seen in m views

X;; is the projection of the i-th point on image j
a; is the parameters for the j-th camera

b; is the parameters for the i-th point

BA attempts to minimize the projection error

T

II]]HZ Z d(Q(a;, b;), :w:i.,-)2

aj,bi 175 j=1
predicted projection

Euclidean distance

Bundle adjustment

Bundle adjustment

3 views and 4 points P = (a,”. a;”, as”. b)". by", by". by")?

= (xn 7, xi2”, xi3T, xa T, x0T x3”, xa1 T x32”, x33”, xn L x0? xu3

A 0 0 B 0 0 0

0 Ay 0 B2 0 0 0

0 0 A,; By 0 0 0

Ay 0 0 0 By 0 0

0 Ay O 0 By 0 0

(i34 B 0 0 A3 0 By 0 0
P |Am 0O 0O 0 0 By 0
0 Ag 0 0 0 By O

0 0 Az 0 0 Dy 0

Ay 0 0 0 0 0 By

0 Ay 0 0 0 0 By

0 0 As 0 0 0 Buas

'I')’I'

Typical Jacobian




Block structure of normal equation

W

Bundle adjustment
Uy 0 0 Wi Wy Wy Wy Oa, €a,

0 U, 0 Wy Wiy Wi Wy Oa, €a,

0 0 U; Wiz Wy Wy Wy Oas €ay
W' W' Wyt vy 0 0 0 ob, | = | n,
Wl Wal W' 0 Va0 0 by €b,
Wi T Wil Wil 0 0 V; 0 by €y
Wal W' Wil oo 0 0 Vi b, €hy

Bundle adjustment

Multiplied by (I —WV*‘I)
0 I

(U*—WV*_]WT 0 ) (r‘ia) (fa—wv*—l eb)

€h

(U -WV' T W a=ea =WV g

Vo, =6, — WL 4,

Issues in SFM

» Track lifetime

Nonlinear lens distortion

Degeneracy and critical surfaces

Prior knowledge and scene constraints
Multiple motions




Track lifetime

every 50th frame of a 800-frame sequence

Track lifetime RIEIVFX

Frame number

800

0 500 1000 1500 2000 2500 3000 3500
Track index

lifetime of 3192 tracks from the previous sequence

Track lifetime RIEIVFX

0 20 40 60 30 100 120

track length histogram

. . - |:ﬂ_1- WVFX
Nonlinear lens distortion




- - - Diai . . Digi
Nonlinear lens distortion Prior knowledge and scene constraint@™

effect of lens distortion add a constraint that several lines are parallel

: -
Prior knowledge and scene constraint@a’™

Applications of matchmove

add a constraint that it is a turntable sequence
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Enemy at the Gate, Double Negative

Enemy at the Gate, Double Negative

Jurassic park

Photo Tourism

Digi

@ Photo Tourism Microsoft

s Exploring photo collections in 3D

BE e S

T A 3

mEER L P
it
2

EL Y'Y
TS e

{a) (b)

e

el
e Vol TF 5




VideoTrace

http://www.acvt.com.au/research/videotrace/

Project #3 MatchMove

It is more about using tools in this project

You can choose either calibration or structure
from motion to achieve the goal

Calibration
Icarus/Voodoo

gi\'J
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