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• Epipolar geometry and fundamental matrix
S  f  i• Structure from motion

• Factorization method
• Bundle adjustment
• Applications• Applications

Epipolar geometry & 
fundamental matrix

The epipolar geometry

epipolar geometry demo

C C’ x x’ and X are coplanarC,C ,x,x and X are coplanar



The epipolar geometry

What if only C C’ x are known?What if only C,C ,x are known?

The epipolar geometry

All points on π project on l and l’All points on π project on l and l

The epipolar geometry

Family of planes π and lines l and l’ intersect at eFamily of planes π and lines l and l intersect at e
and e’

The epipolar geometry

epipolar pole
= intersection of baseline with image plane 

epipolar geometry demo
= intersection of baseline with image plane 
= projection of projection center in other image

epipolar plane = plane containing baselineepipolar plane  plane containing baseline
epipolar line = intersection of epipolar plane with image



The fundamental matrix F
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The fundamental matrix F

0' =Τ Epp pp

Let M and M’ be the intrinsic matrices, then
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The fundamental matrix F

• The fundamental matrix is the algebraic 
representation of epipolar geometryrepresentation of epipolar geometry

Th  f d t l t i  ti fi  th  diti  • The fundamental matrix satisfies the condition 
that for any pair of corresponding points x↔x’ 
i  th  t  iin the two images

0Fxx'T = ( )0l'x'T =0Fxx = ( )0lx



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 
for all x↔x’for all x↔x

1. Transpose: if F is fundamental matrix for (P,P’), then FT

is fundamental matrix for (P’,P)
2 Epipolar lines: l’ F  & l FT ’2. Epipolar lines: l’=Fx & l=FTx’
3. Epipoles: on all epipolar lines, thus e’TFx=0, ∀x 

⇒e’TF=0, similarly Fe=0⇒e F 0, similarly Fe 0
4. F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
5. F is a correlation, projective mapping from a point x to 

a line l’=Fx (not a proper correlation, i.e. not invertible)

The fundamental matrix F

• It can be used for 
– Simplifies matching
– Allows to detect wrong matchesAllows to detect wrong matches

Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

0=ΤFxx'
for any pair of matches x and x’ in two images.
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each match gives a linear equation
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8-point algorithm

11

⎥
⎥
⎤

⎢
⎢
⎡

f
f

1´´´´´´ 13

12

111111111111
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

⎥
⎤

⎢
⎡

f
f
f

vuvvvvuuuvuu

0
1´´´´´´

22

21
222222222222

111111111111

=
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

⎥
⎥
⎥

⎢
⎢
⎢

f
f

vuvvvvuuuvuu
MMMMMMMMM

1´´´´´´
31

23

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎥
⎥

⎦
⎢
⎢

⎣ f
f

vuvvvvuuuvuu nnnnnnnnnnnn

MMMMMMMMM

33

32
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ f
f

33 ⎦⎣ f
• In reality, instead of solving            , we seek f

to minimize          subj.           . Find the vector 
0=Af

Af 1=fj
corresponding to the least singular value.



8-point algorithm

• To enforce that F is of rank 2, F is replaced by 
F’ that minimizes              subject to                 'FF 0'det FF  that minimizes              subject to                . 'FF − 0'det =F

• It is achieved by SVD. Let                , where Τ= VUF Σy ,
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then                    is the solution. Τ= VUF Σ''

8-point algorithm
% Build the constraint matrix

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...[ ( , ) ( , ) ( , ) ( , ) ( , )
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.p g g

F = reshape(V(:,9),3,3)';

% E f  k2 t i t % Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1 1) D(2 2) 0])*V';F = U diag([D(1,1) D(2,2) 0]) V ;

8-point algorithm

• Pros: it is linear, easy to implement and fast
C  ibl   i• Cons: susceptible to noise

Problem with 8-point algorithm
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Orders of magnitude difference
between column of data matrix 33 ⎦⎣ f

! between column of data matrix
→ least-squares yields poor results



Normalized 8-point algorithm

1. Transform input by                ,
2 C ll 8 i              b i

ii Txx =ˆ '
i

'
i Txx =ˆ

'ˆˆ ˆ2. Call 8-point on           to obtain
3.

ii xx ˆ,ˆ
TFTF ˆΤ'=

F

0=ΤFxx' 0Fxx

0ˆ'ˆ 1 =−Τ−Τ xFTTx'

F̂

Normalized 8-point algorithm

normalized least squares yields good results
T f  i   [ 1 1] [ 1 1]

(700,500)(0,500) (1,1)(-1,1)
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Transform image to ~[-1,1]x[-1,1]
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Normalized 8-point algorithm
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...

x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...

[ , ] p ( );

x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U D V]  svd(A);[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';F  reshape(V(:,9),3,3) ;

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;

Normalization
function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')';   % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.p( , ) p ( , ) ( ); g
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

T = [scale      0    -scale*c(1)
0     scale  -scale*c(2)
0         0            1      ];

t   T* tnewpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until Γ(#inliers,#samples)>95% or too many times ( , p ) y

compute F based on all inliers

Results (ground truth)

Results (8-point algorithm) Results (normalized 8-point algorithm)



Structure from motionStructure from motion

Structure from motion

UnknownUnknownUnknownUnknown
cameracamera

viewpointsviewpoints

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self 
calibration technique and called automatic camera trackingcalibration technique and called automatic camera tracking
or matchmoving.

Applications

• For computer vision, multiple-view shape 
reconstruction  novel view synthesis and reconstruction, novel view synthesis and 
autonomous vehicle navigation.
F  fil  d ti  l  i ti  f CGI • For film production, seamless insertion of CGI 
into live-action backgrounds

Matchmove

example #1 example #2 example #3 example #4



CCRFA
• http://www.ccrfa.com/ccrfa/ 

M ki  f “Th  Di i  A ”• Making of “The Disappearing Act”
• 2007 winner

Structure from motion

2D feature
tracking 3D estimation optimization

(bundle adjust)
geometry 

fitting

SFM pipelineSFM pipeline

Structure from motion

• Step 1:  Track Features
Detect good features  Shi & Tomasi  SIFT– Detect good features, Shi & Tomasi, SIFT

– Find correspondences between frames
• Lucas & Kanade-style motion estimationy
• window-based correlation
• SIFT matching

KLT tracking

http://www ces clemson edu/~stb/klt/http://www.ces.clemson.edu/ stb/klt/



Structure from Motion
• Step 2:  Estimate Motion and Structure

Si lifi d j ti  d l    [T i 92]– Simplified projection model, e.g.,  [Tomasi 92]
– 2 or 3 views at a time  [Hartley 00]

Structure from Motion
• Step 3:  Refine estimates

“B dl  dj t t” i  h t t– “Bundle adjustment” in photogrammetry
– Other iterative methods

Structure from Motion
• Step 4:  Recover surfaces (image-based 

triangulation  silhouettes  stereo )triangulation, silhouettes, stereo…)

Good meshGood mesh

Factorization methodsFactorization methods



Problem statement Notations

• n 3D points are seen in m views
( 1)  2D i  i• q=(u,v,1): 2D image point

• p=(x,y,z,1): 3D scene point
• Π: projection matrix
• π: projection function• π: projection function
• qij is the projection of the i-th point on image j
λ j ti  d th f • λij projective depth of qij

)( pq Ππ )//()( zyzxzyx =π)( ijij pq Π=π )/,/(),,( zyzxzyx =π
zij =λ

Structure from motion

• Estimate      and     to minimizejΠ ip

));((log),,,,,(
1 1

11 ijij

m

j

n

i
ijnm Pw qpΠppΠΠ πε ∑∑

= =

=LL
j

otherwise
j in view  visibleis  if    

0
1 i

ij

p
w

⎩
⎨
⎧

=
                 otherwise0j

⎩

• Assume isotropic Gaussian noise, it is reduced top ,

2

11 )(),,,,,( ijij

m n

ijw qpΠppΠΠ −=∑∑ πε LL
1 1

11 )(),,,,,( ijij
j i

ijnm w qpΠppΠΠ ∑∑
= =

πε

• Start from a simpler projection model• Start from a simpler projection model

SFM under orthographic projection

2D image 
Orthographic projection
incorporating 3D rotation 3D scene

image
offsetpoint

incorporating 3D rotation 3D scene
point

offset

tΠ tΠpq +=
12× 32× 13× 12×12× 32× 13× 12×

• Trick
– Choose scene origin to be centroid of 3D pointsg p
– Choose image origins to be centroid of 2D points
– Allows us to drop the camera translation:Allows us to drop the camera translation:

Πpq = pq



factorization (Tomasi & Kanade)
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projection of n features in one image:
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Key Observation:  rank(W) <= 3

Factorization

3322
= SMWknown solve for

• Factorization Technique

n33m2n2m ×××

Factorization Technique
– W is at most rank 3 (assuming no noise)
– We can use singular value decomposition to factor W:

3322
''= SMW

We can use singular value decomposition to factor W:

n33m2n2m ×××

– S’ differs from S by a linear transformation A:

))(('' ASMASMW 1−==

– Solve for A by enforcing metric constraints on M

Metric constraints

• Orthographic Camera
R  f Π  th l ⎥

⎦
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⎡
=∏∏ 10

01T

– Rows of Π are orthonormal:

• Enforcing “Metric” Constraints
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⎦

⎢
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∏ ∏ 10

– Compute A such that rows of M have these 
properties

MAM ' MAM ='
Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in AAT :

( ) TTTT where AAGGAA =∏∏=∏∏=∏∏=⎥
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• Solve for G first by writing equations for every Πi in M
• Then G = AAT by SVD (since U = V)

( )⎥
⎦

⎢
⎣ 10

Then G AA by SVD (since U  V)

Factorization with noisy data

+= ESMW
nm2n33m2n2m ××××

• SVD gives this solutiong
– Provides optimal rank 3 approximation W’ of W

' += EWW
nm2n2mn2m ×××

+ EWW

• Approach
– Estimate W’, then use noise-free factorization of W’

as before
– Result minimizes the SSD between positions of image 

features and projection of the reconstruction



Results Extensions to factorization methods

• Projective projection
Wi h i i  d• With missing data

• Projective projection with missing data

Bundle adjustmentBundle adjustment

Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method  steepest descent and the Newton method. 
When the current solution is far from the 
correct one  the algorithm behaves like a correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge  When the current solution is close to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
methodmethod.



Nonlinear least square 

 find  try to, tsmeasuremen ofset  aGiven x

Hereminimalisdistancesquared
  that theso vector parameter best  the p

Tεε
).(ˆ with ,ˆ

 Here, minimal. is distance squared
pxxx f=−=ε

εε

Levenberg-Marquardt method

Levenberg-Marquardt method

• μ=0 → Newton’s method
  d  h d• μ→∞ → steepest descent method

• Strategy for choosing μ
– Start with some small μStart with some small μ
– If error is not reduced, keep trying larger μ until it 

does
– If error is reduced, accept it and reduce μ for the 

next iteration 

Bundle adjustment

• Bundle adjustment (BA) is a technique for 
simultaneously refining the 3D structure and simultaneously refining the 3D structure and 
camera parameters
It i  bl  f bt i i   ti l • It is capable of obtaining an optimal 
reconstruction under certain assumptions on 
i   d l  F   G i  image error models. For zero-mean Gaussian 
image errors, BA is the maximum likelihood 

ti testimator.



Bundle adjustment

• n 3D points are seen in m views
i  h  j i  f h  i h i   i  j• xij is the projection of the i-th point on image j

• aj is the parameters for the j-th cameraj

• bi is the parameters for the i-th point
• BA attempts to minimize the projection error• BA attempts to minimize the projection error

Euclidean distance

predicted projection

Euclidean distance

Bundle adjustment

Bundle adjustment

3 views and 4 points

Typical Jacobian



Block structure of normal equation Bundle adjustment

Bundle adjustment

Multiplied by

Issues in SFM

• Track lifetime
N li  l  di i• Nonlinear lens distortion

• Degeneracy and critical surfaces
• Prior knowledge and scene constraints
• Multiple motions• Multiple motions



Track lifetime

every 50th frame of a 800-frame sequencey q

Track lifetime

lifetime of 3192 tracks from the previous sequencep q

Track lifetime

track length histogramg g

Nonlinear lens distortion



Nonlinear lens distortion

effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallelp

Prior knowledge and scene constraints

add a constraint that it is a turntable sequenceq

Applications of matchmoveApplications of matchmove



2d3 boujou

Enemy at the Gate, Double Negative 

2d3 boujou

Enemy at the Gate, Double Negative 

Jurassic park Photo Tourism



VideoTrace

http://www.acvt.com.au/research/videotrace/

Project #3 MatchMove

• It is more about using tools in this project
Y   h  i h  lib i    • You can choose either calibration or structure 
from motion to achieve the goal

• Calibration 
• Icarus/Voodoo
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