Structure from motion

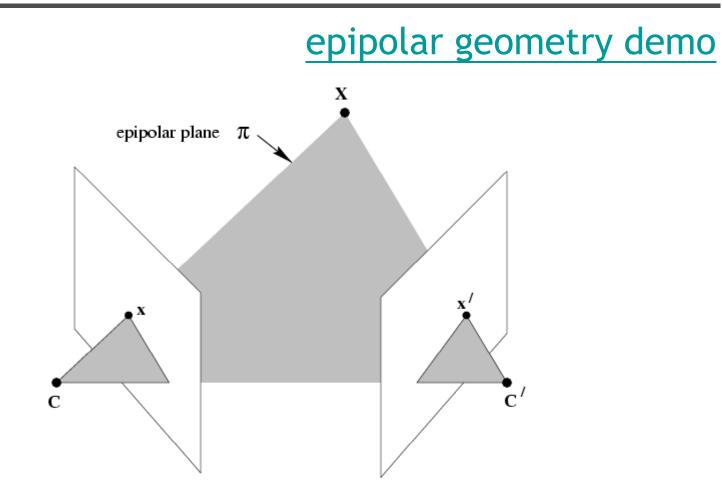
Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/4/23

with slides by Richard Szeliski, Steve Seitz, Zhengyou Zhang and Marc Pollefyes

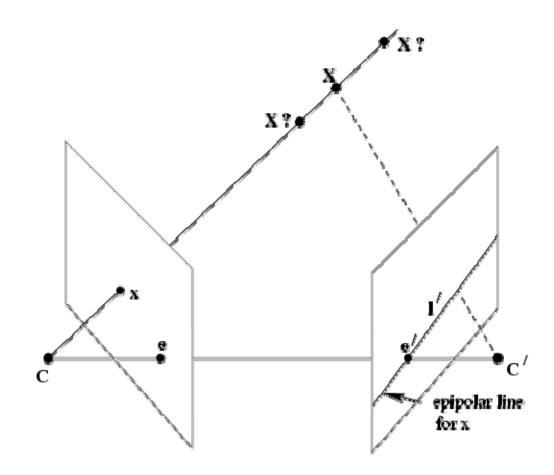
Outline

- Epipolar geometry and fundamental matrix
- Structure from motion
- Factorization method
- Bundle adjustment
- Applications

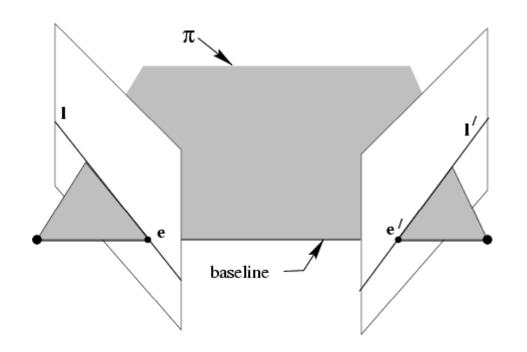
Epipolar geometry & fundamental matrix



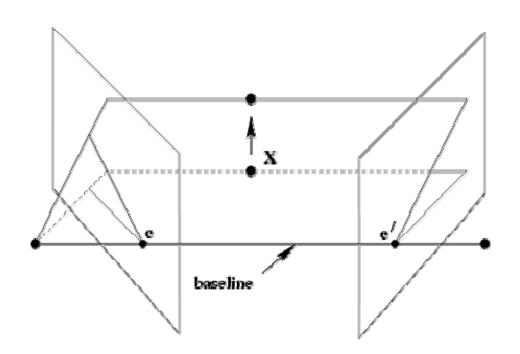
C, C', x, x' and X are coplanar



What if only *C*,*C*',*x* are known?



All points on π project on / and /'

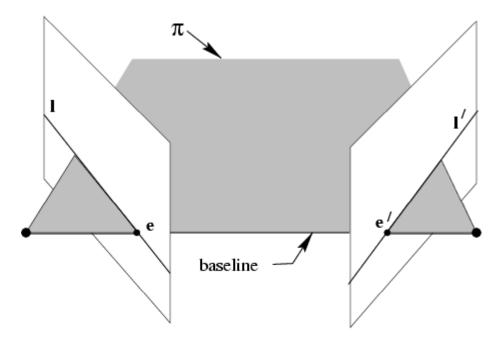


Family of planes π and lines l and l' intersect at e and e'

The epipolar geometry

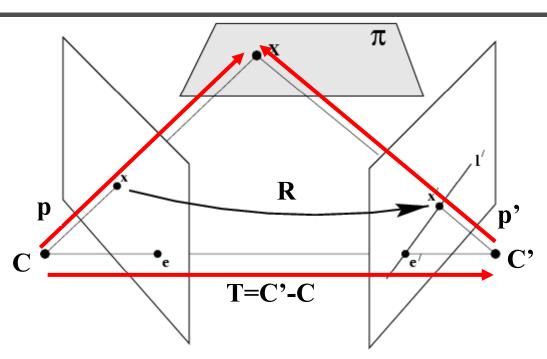
epipolar pole <u>epipolar geometry demo</u>

- = intersection of baseline with image plane
- = projection of projection center in other image



epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image

The fundamental matrix F



Two reference frames are related via the extrinsic parameters

$$\mathbf{p'} = \mathbf{R}(\mathbf{p} - \mathbf{T})$$

The equation of the epipolar plane through X is

$$(\mathbf{p} - \mathbf{T})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = 0 \implies (\mathbf{R}^{\mathrm{T}}\mathbf{p'})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = 0$$

$$(\mathbf{R}^{\mathrm{T}}\mathbf{p'})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p}) = 0$$

$$\mathbf{T} \times \mathbf{p} = \mathbf{S}\mathbf{p}$$

$$\mathbf{S} = \begin{bmatrix} 0 & -T_{z} & T_{y} \\ T_{z} & 0 & -T_{x} \\ -T_{y} & T_{x} & 0 \end{bmatrix}$$

$$(\mathbf{R}^{\mathrm{T}}\mathbf{p'})^{\mathrm{T}}(\mathbf{S}\mathbf{p}) = 0$$

$$(\mathbf{p'}^{\mathrm{T}}\mathbf{R})(\mathbf{S}\mathbf{p}) = 0$$

$$\mathbf{p'}^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0 \text{ essential matrix}$$

$$\mathbf{p'}^{\mathrm{T}} \mathbf{E} \mathbf{p} = \mathbf{0}$$

Let M and M' be the intrinsic matrices, then

$$p = M^{-1}x$$
 $p' = M'^{-1}x'$

$$(\mathbf{M'}^{-1} \mathbf{x'})^{\mathrm{T}} \mathbf{E} (\mathbf{M}^{-1} \mathbf{x}) = 0$$

$$\mathbf{x'}^{\mathrm{T}} \mathbf{M'}^{-\mathrm{T}} \mathbf{E} \mathbf{M}^{-1} \mathbf{x} = 0$$

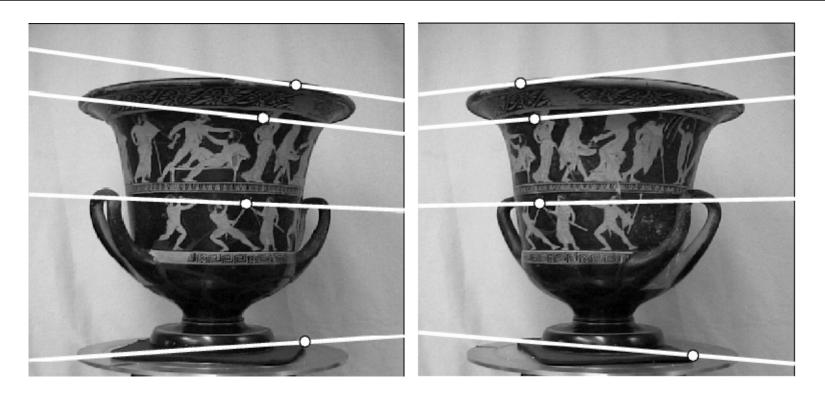
$$\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = 0$$
 fundamental matrix

- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x'$ in the two images

$$\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0} \qquad \left(\mathbf{x'}^{\mathrm{T}} \mathbf{l'} = \mathbf{0} \right)$$

- F is the unique 3x3 rank 2 matrix that satisfies $x'^TFx=0$ for all $x \leftrightarrow x'$
- 1. Transpose: if F is fundamental matrix for (P,P'), then F^{T} is fundamental matrix for (P',P)
- 2. Epipolar lines: l'=Fx & $l=F^Tx'$
- 3. Epipoles: on all epipolar lines, thus e'^TFx=0, $\forall x \Rightarrow e'^{T}F=0$, similarly Fe=0
- 4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- 5. F is a correlation, projective mapping from a point x to a line l'=Fx (not a proper correlation, i.e. not invertible)

The fundamental matrix F



- It can be used for
 - Simplifies matching
 - Allows to detect wrong matches

• The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches **x** and **x**' in two images.

• Let $\mathbf{x} = (u, v, 1)^{\mathsf{T}}$ and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$

each match gives a linear equation

$$uu' f_{11} + vu' f_{12} + u' f_{13} + uv' f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

• In reality, instead of solving $\mathbf{A}\mathbf{f} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{A}\mathbf{f}\|$ subj. $\|\mathbf{f}\| = 1$. Find the vector corresponding to the least singular value.

- To enforce that F is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to det $\mathbf{F}' = 0$.
- It is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \Sigma' \mathbf{V}^{\mathrm{T}}$ is the solution.

% Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(npts,1)];

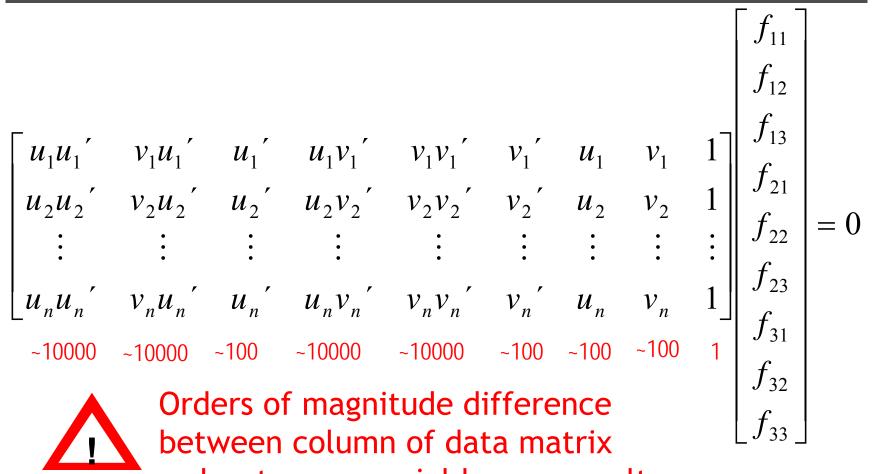
[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V % corresponding to the smallest singular value. F = reshape(V(:,9),3,3)';

```
% Enforce rank2 constraint
    [U,D,V] = svd(F);
    F = U*diag([D(1,1) D(2,2) 0])*V';
```


- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

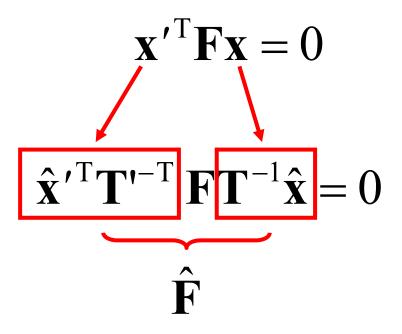
Problem with 8-point algorithm



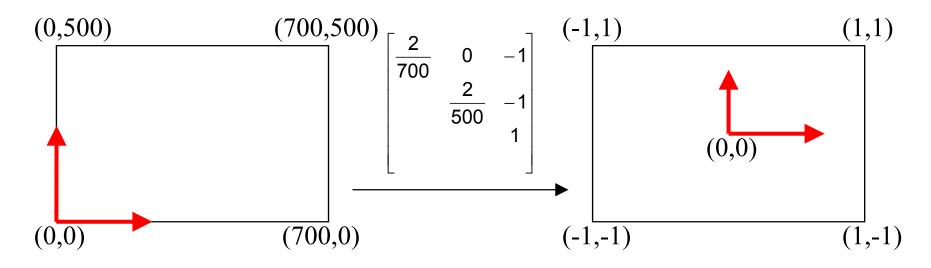
 \rightarrow least-squares yields poor results

Normalized 8-point algorithm

1. Transform input by
$$\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$$
, $\hat{\mathbf{x}}_i' = \mathbf{T}\mathbf{x}_i'$
2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
3. $\mathbf{F} = \mathbf{T}'^T \hat{\mathbf{F}} \mathbf{T}$



normalized least squares yields good results Transform image to ~[-1,1]x[-1,1]



[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise F = T2'*F*T1;

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')'; % Centroid newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid. newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

repeat

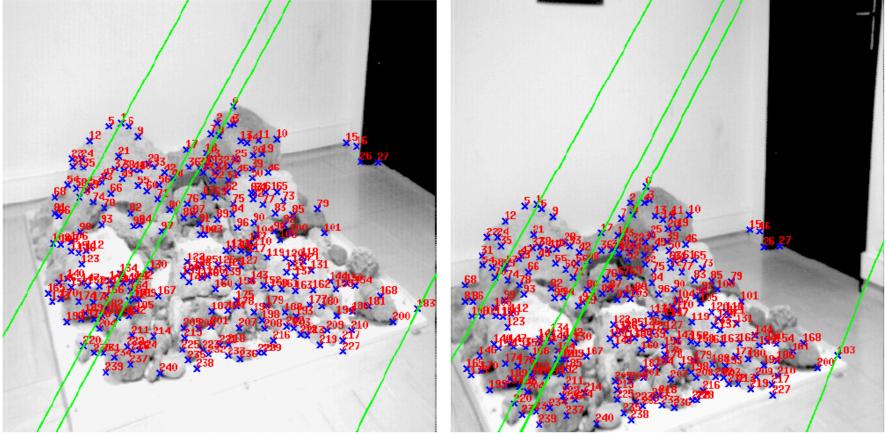
select minimal sample (8 matches)

compute solution(s) for F

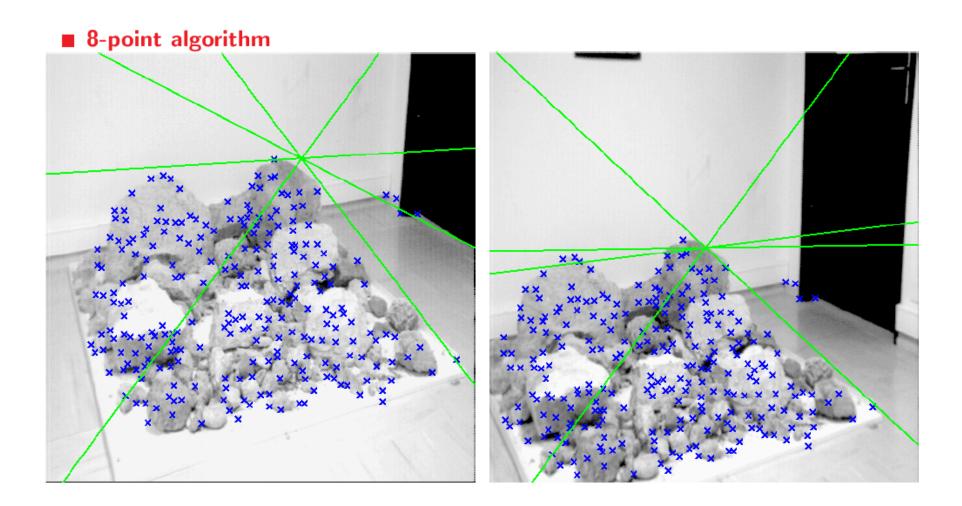
determine inliers

until Γ(#*inliers*,#*samples*)>95% or too many times

compute F based on all inliers



Results (8-point algorithm)

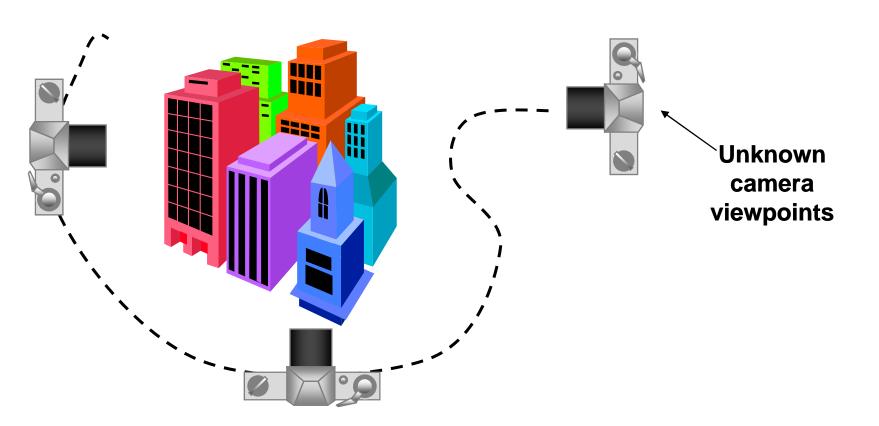


Results (normalized 8-point algorithm)

■ Normalized 8-point algorithm

Structure from motion

Structure from motion



structure for motion: automatic recovery of <u>camera motion</u> and <u>scene structure</u> from two or more images. It is a self calibration technique and called *automatic camera tracking* or *matchmoving*.

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds

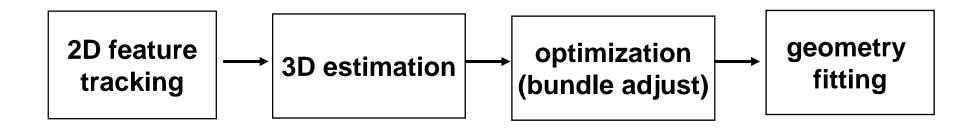
Matchmove

e #3 example #4

example #2 example #3

CCRFA

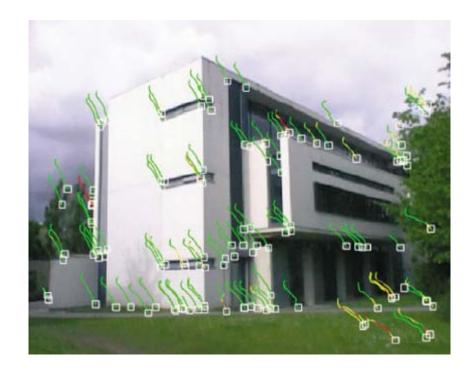
- http://www.ccrfa.com/ccrfa/
- Making of "The Disappearing Act"
- <u>2007 winner</u>



SFM pipeline

Structure from motion

- Step 1: Track Features
 - Detect good features, Shi & Tomasi, SIFT
 - Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - window-based correlation
 - SIFT matching



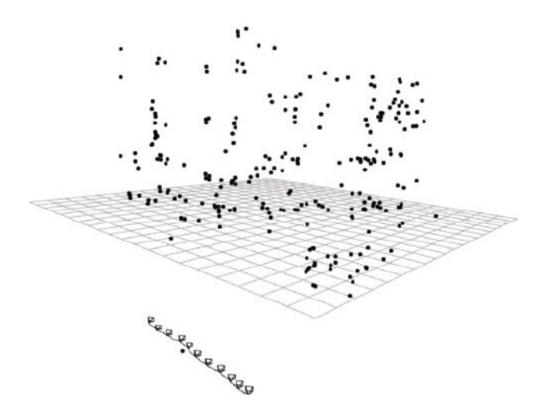
KLT tracking

http://www.ces.clemson.edu/~stb/klt/

- Step 2: Estimate Motion and Structure
 - Simplified projection model, e.g., [Tomasi 92]
 - 2 or 3 views at a time [Hartley 00]

Structure from Motion

- Step 3: Refine estimates
 - "Bundle adjustment" in photogrammetry
 - Other iterative methods

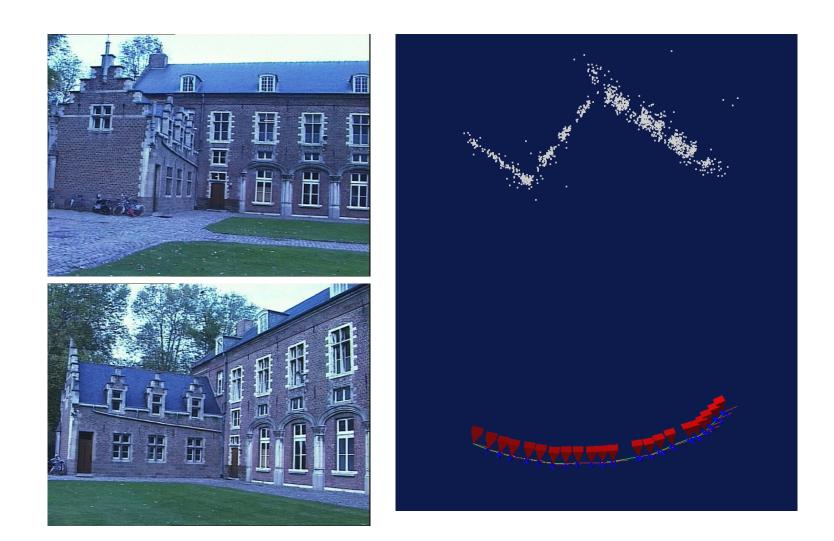


Structure from Motion

• Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)

Factorization methods

Problem statement



- *n* 3D points are seen in *m* views
- q=(u, v, 1): 2D image point
- p=(x,y,z,1): 3D scene point
- Π : projection matrix
- π : projection function
- q_{ij} is the projection of the *i*-th point on image *j*
- λ_{ij} projective depth of q_{ij}

$$\mathbf{q}_{ij} = \pi(\Pi_j \mathbf{p}_i) \qquad \pi(x, y, z) = (x / z, y / z)$$
$$\lambda_{ij} = z$$

• Estimate \prod_{i} and \mathbf{p}_{i} to minimize

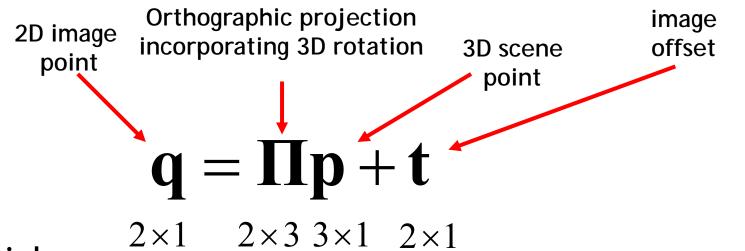
$$\mathcal{E}(\mathbf{\Pi}_{1}, \cdots, \mathbf{\Pi}_{m}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{n}) = \sum_{j=1}^{m} \sum_{i=1}^{n} w_{ij} \log P(\pi(\mathbf{\Pi}_{j} \mathbf{p}_{i}); \mathbf{q}_{ij})$$
$$w_{ij} = \begin{cases} 1 & \text{if } p_{i} \text{ is visible in view j} \\ 0 & \text{otherwise} \end{cases}$$

• Assume isotropic Gaussian noise, it is reduced to

$$\varepsilon(\mathbf{\Pi}_1,\cdots,\mathbf{\Pi}_m,\mathbf{p}_1,\cdots,\mathbf{p}_n) = \sum_{j=1}^m \sum_{i=1}^n w_{ij} \left\| \pi(\mathbf{\Pi}_j \mathbf{p}_i) - \mathbf{q}_{ij} \right\|^2$$

• Start from a simpler projection model

SFM under orthographic projection



- Trick
 - Choose scene origin to be centroid of 3D points
 - Choose image origins to be centroid of 2D points
 - Allows us to drop the camera translation:

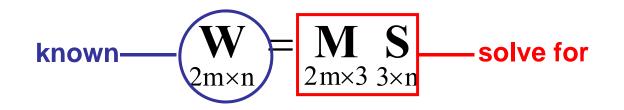
 $\mathbf{q} = \mathbf{\Pi} \mathbf{p}$

projection of *n* features in one image:

$$\begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \end{bmatrix} = \prod_{2 \times 3} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

projection of *n* features in *m* images

 $\begin{bmatrix} \mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1n} \\ \mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{m1} & \mathbf{q}_{m2} & \cdots & \mathbf{q}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{\Pi}_1 \\ \mathbf{\Pi}_2 \\ \vdots \\ \mathbf{\Pi}_m \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} \\ 3 \times n & 3 \times n \end{bmatrix}$ $\begin{bmatrix} \mathbf{W}_{measurement} & \mathbf{M}_{motion} & \mathbf{S}_{shape} \end{bmatrix}$ $\begin{bmatrix} \mathbf{W}_{measurement} & \mathbf{M}_{motion} & \mathbf{S}_{shape} \end{bmatrix}$



- Factorization Technique
 - W is at most rank 3 (assuming no noise)
 - We can use singular value decomposition to factor W:

 $\mathbf{W}_{2m \times n} = \mathbf{M}'_{2m \times 3} \mathbf{S}'_{3 \times n}$

- S' differs from S by a linear transformation A:

 $W = M'S' = (MA^{-1})(AS)$

- Solve for A by enforcing *metric* constraints on M

Metric constraints

- Orthographic Camera
 - Rows of Π are orthonormal: $\Pi \Pi^{T} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$
- Enforcing "Metric" Constraints
 - Compute A such that rows of M have these properties

$\mathbf{M}'\mathbf{A} = \mathbf{M}$

Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in **AA**^T :

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \prod \prod^{T} = \prod' \mathbf{A} (\mathbf{A} \prod')^{T} = \prod' \mathbf{G} \prod'^{T} \quad where \quad \mathbf{G} = \mathbf{A} \mathbf{A}^{T}$

- Solve for **G** first by writing equations for every Π_i in **M**
- Then $\mathbf{G} = \mathbf{A}\mathbf{A}^{\mathsf{T}}$ by SVD (since $\mathbf{U} = \mathbf{V}$)

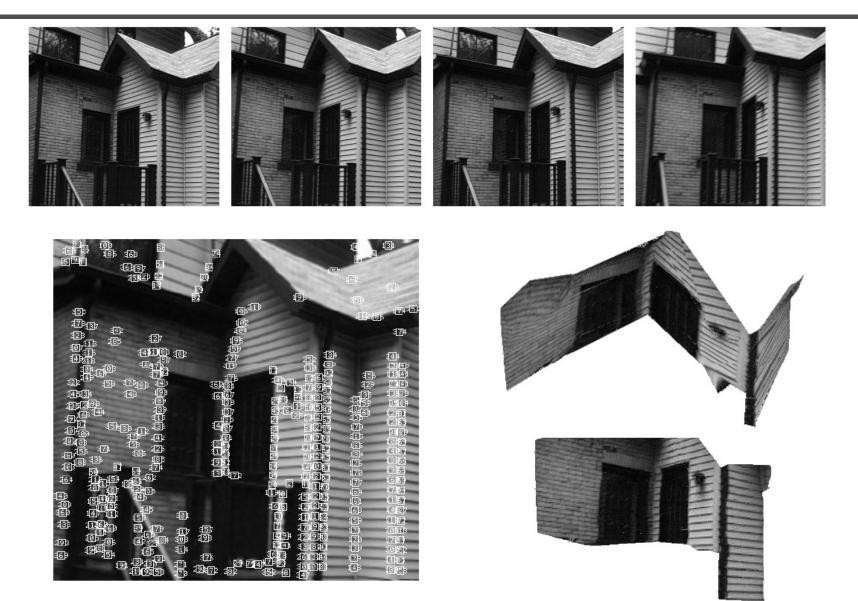
$$\mathbf{W}_{2m \times n} = \mathbf{M}_{2m \times 3} \mathbf{S}_{3 \times n} + \mathbf{E}_{2m \times n}$$

- SVD gives this solution
 - Provides optimal rank 3 approximation W' of W

$$\mathbf{W}_{2m \times n} = \mathbf{W'} + \mathbf{E}_{2m \times n}$$

- Approach
 - Estimate W', then use noise-free factorization of W' as before
 - Result minimizes the SSD between positions of image features and projection of the reconstruction

Results



Extensions to factorization methods

- Projective projection
- With missing data
- Projective projection with missing data

Bundle adjustment

 LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Given a set of measurements **x**, try to find the best parameter vector **p** so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

For a small
$$||\delta_{\mathbf{p}}||, f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$$

J is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

 $\begin{aligned} ||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| &\approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}|| \\ \mathbf{J}^T \mathbf{J}\delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N}\delta_{\mathbf{p}} &= \mathbf{J}^T \epsilon \\ \mathbf{N}_{ii} &= \mu + \left[\mathbf{J}^T \mathbf{J}\right]_{ii} \\ damping \ term \end{aligned}$

- $\mu=0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing $\boldsymbol{\mu}$
 - Start with some small $\boldsymbol{\mu}$
 - If error is not reduced, keep trying larger $\boldsymbol{\mu}$ until it does
 - If error is reduced, accept it and reduce μ for the next iteration

- Bundle adjustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.

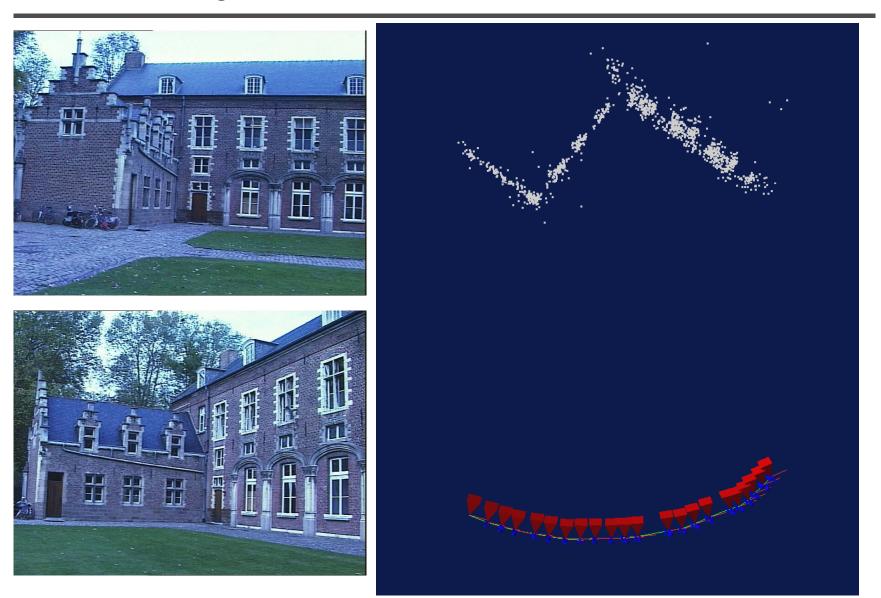
- *n* 3D points are seen in *m* views
- x_{ij} is the projection of the *i*-th point on image *j*
- a_i is the parameters for the *j*-th camera
- *b_i* is the parameters for the *i*-th point
- BA attempts to minimize the projection error

$$\min_{\mathbf{a}_{j},\mathbf{b}_{i}} \sum_{i=1}^{n} \sum_{j=1}^{m} d(\mathbf{Q}(\mathbf{a}_{j},\mathbf{b}_{i}), \mathbf{x}_{ij})^{2}$$

$$\prod_{predicted projection}^{n}$$

Euclidean distance

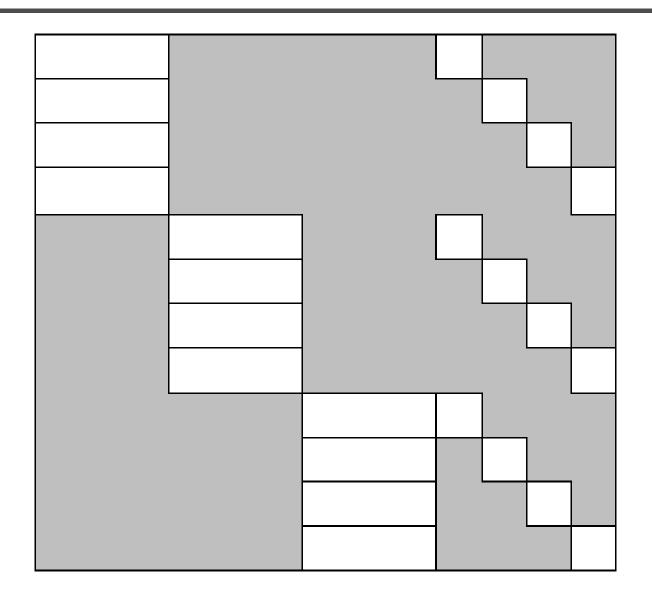
Bundle adjustment



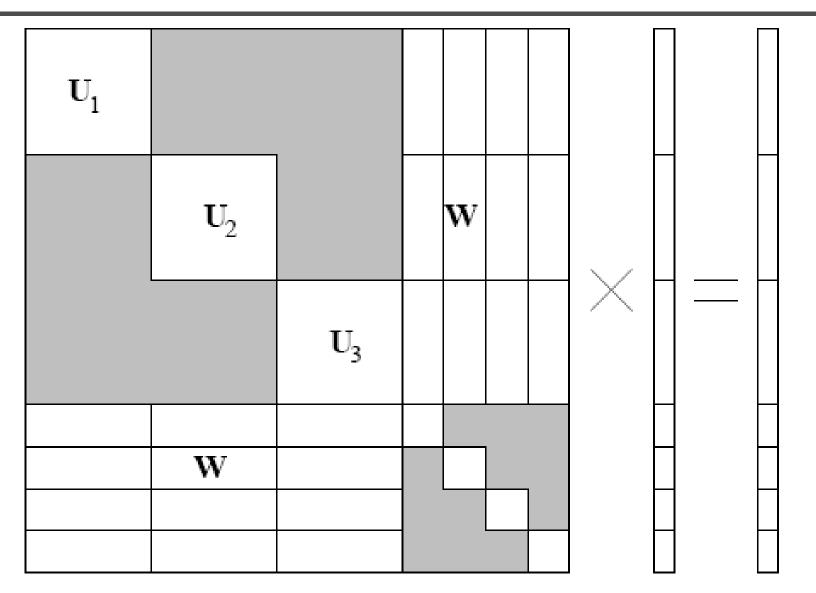
Bundle adjustment

3 views and 4 points $\mathbf{P} = (\mathbf{a}_1^T, \mathbf{a}_2^T, \mathbf{a}_3^T, \mathbf{b}_1^T, \mathbf{b}_2^T, \mathbf{b}_3^T, \mathbf{b}_4^T)^T$ $\mathbf{X} = (\mathbf{x}_{11}^{T}, \ \mathbf{x}_{12}^{T}, \ \mathbf{x}_{13}^{T}, \ \mathbf{x}_{21}^{T}, \ \mathbf{x}_{22}^{T}, \ \mathbf{x}_{23}^{T}, \ \mathbf{x}_{31}^{T}, \ \mathbf{x}_{32}^{T}, \ \mathbf{x}_{33}^{T}, \ \mathbf{x}_{41}^{T}, \ \mathbf{x}_{42}^{T}, \ \mathbf{x}_{43}^{T})^{T}$ $\frac{\partial \mathbf{X}}{\partial \mathbf{P}} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{12} & \mathbf{0} & \mathbf{B}_{12} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{13} & \mathbf{B}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{21} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{22} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{23} & \mathbf{0} & \mathbf{B}_{23} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{31} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{31} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{32} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \mathbf{0} \\ \mathbf{A}_{41} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{41} \\ \mathbf{0} & \mathbf{A}_{42} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{42} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{43} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{43} \end{pmatrix}$

Typical Jacobian



Block structure of normal equation



Bundle adjustment

$$\begin{pmatrix} \mathbf{U}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{0} & \mathbf{U}_{2} & \mathbf{0} & \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{0} & \mathbf{0} & \mathbf{U}_{3} & \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \\ \mathbf{W}_{11}^{T} & \mathbf{W}_{12}^{T} & \mathbf{W}_{13}^{T} & \mathbf{V}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{21}^{T} & \mathbf{W}_{22}^{T} & \mathbf{W}_{23}^{T} & \mathbf{0} & \mathbf{V}_{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{31}^{T} & \mathbf{W}_{32}^{T} & \mathbf{W}_{33}^{T} & \mathbf{0} & \mathbf{0} & \mathbf{V}_{3} & \mathbf{0} \\ \mathbf{W}_{41}^{T} & \mathbf{W}_{42}^{T} & \mathbf{W}_{43}^{T} & \mathbf{0} & \mathbf{0} & \mathbf{V}_{4} \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}_{1}} \\ \delta_{\mathbf{a}_{2}} \\ \delta_{\mathbf{a}_{3}} \\ \delta_{\mathbf{b}_{1}} \\ \delta_{\mathbf{b}_{2}} \\ \delta_{\mathbf{b}_{3}} \\ \delta_{\mathbf{b}_{4}} \end{pmatrix} \mathbf{U}^{*} = \begin{pmatrix} \mathbf{C}_{\mathbf{a}_{3}} \\ \mathbf{C}_{\mathbf{b}_{3}} \\ \mathbf{C}_{\mathbf{b}_{3}} \\ \mathbf{C}_{\mathbf{b}_{3}} \\ \mathbf{C}_{\mathbf{b}_{3}} \end{pmatrix} \mathbf{V}^{*} = \begin{pmatrix} \mathbf{V}_{1}^{*} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{O} & \mathbf{V}_{2}^{*} & \mathbf{0} & \mathbf{0} \\ \mathbf{O} & \mathbf{V}_{3}^{*} & \mathbf{0} \\ \mathbf{O} & \mathbf{O} & \mathbf{V}_{4} \end{pmatrix} \end{pmatrix}, \mathbf{W} = \begin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

Bundle adjustment

Multiplied by
$$\begin{pmatrix} \mathbf{I} & -\mathbf{W}\mathbf{V}^{*-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

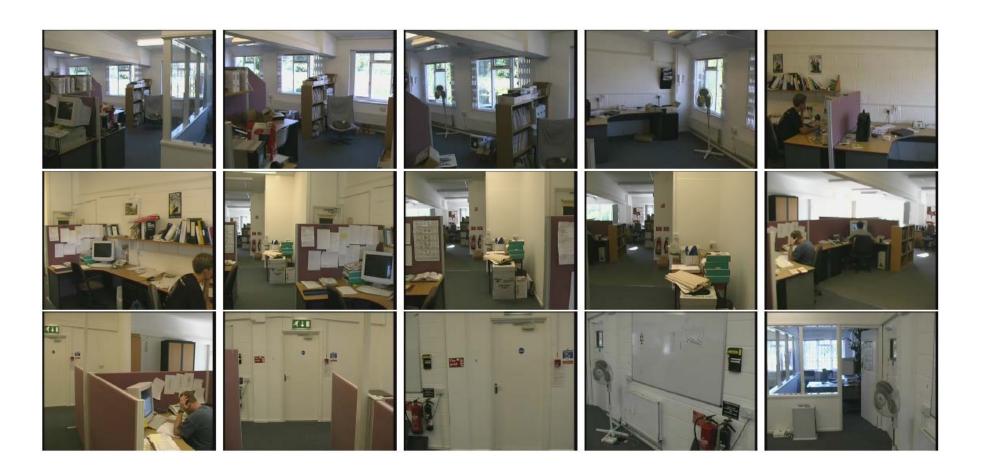
$$\begin{pmatrix} \mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T & \mathbf{0} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \ \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \ \epsilon_{\mathbf{b}}$$
$$\mathbf{V}^* \ \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \ \delta_{\mathbf{a}}$$

Issues in SFM

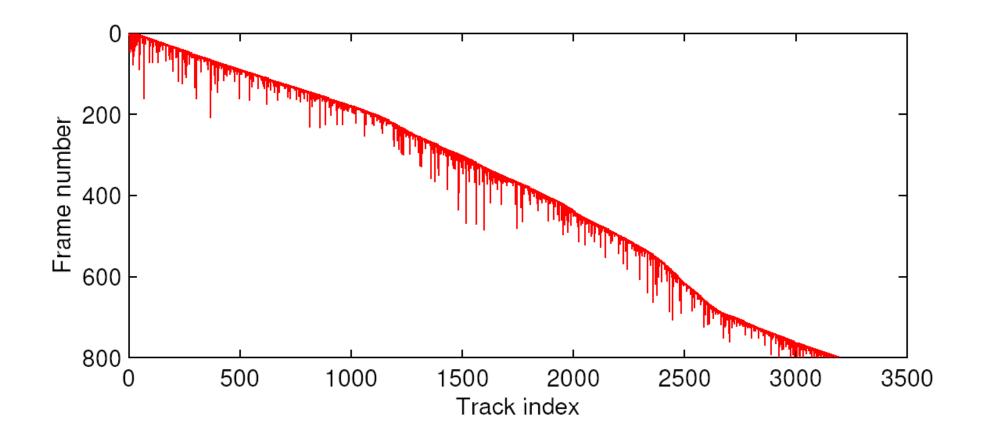
- Track lifetime
- Nonlinear lens distortion
- Degeneracy and critical surfaces
- Prior knowledge and scene constraints
- Multiple motions

Track lifetime



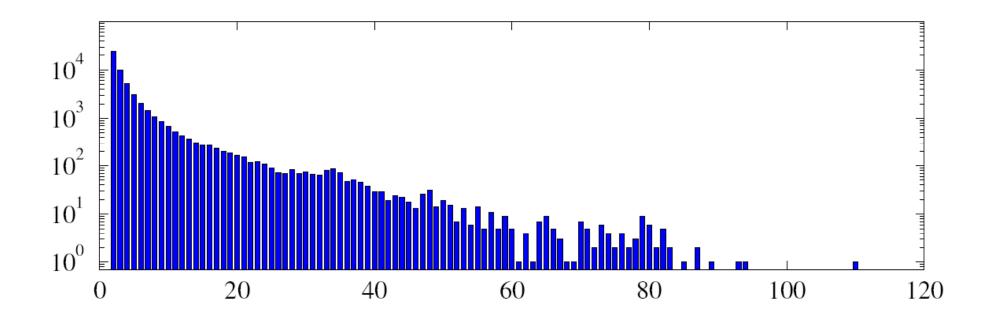
every 50th frame of a 800-frame sequence

Track lifetime

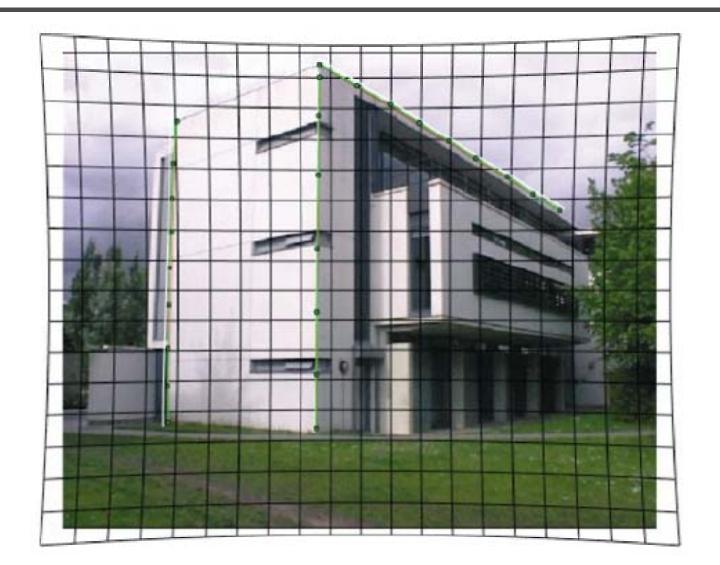


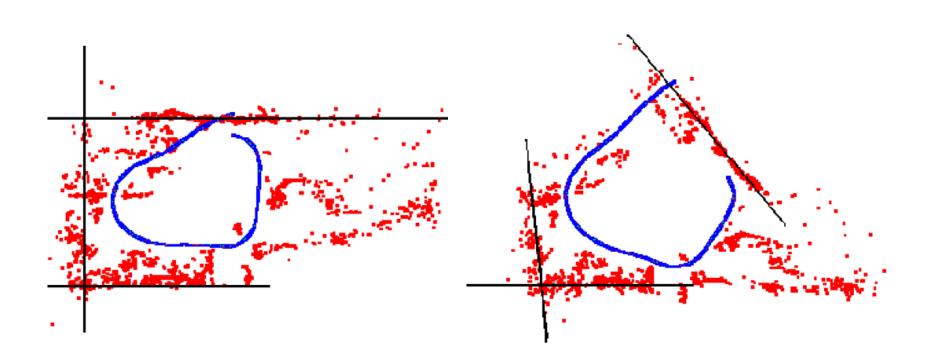
lifetime of 3192 tracks from the previous sequence

Track lifetime



track length histogram



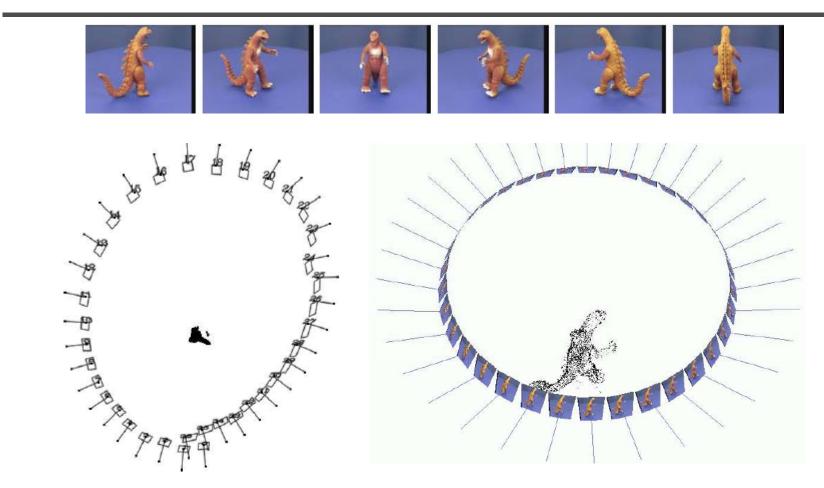


effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallel

Prior knowledge and scene constraints



add a constraint that it is a turntable sequence

Applications of matchmove

Enemy at the Gate, Double Negative

Enemy at the Gate, Double Negative

Jurassic park

Photo Tourism

VideoTrace

- It is more about using tools in this project
- You can choose either calibration or structure from motion to achieve the goal
- Calibration
- Icarus/Voodoo

References

- Richard Hartley, <u>In Defense of the 8-point Algorithm</u>, ICCV, 1995.
- Carlo Tomasi and Takeo Kanade, <u>Shape and Motion from Image</u> <u>Streams: A Factorization Method</u>, Proceedings of Natl. Acad. Sci., 1993.
- Manolis Lourakis and Antonis Argyros, <u>The Design and</u> <u>Implementation of a Generic Sparse Bundle Adjustment Software</u> <u>Package Based on the Levenberg-Marquardt Algorithm</u>, FORTH-ICS/TR-320 2004.
- N. Snavely, S. Seitz, R. Szeliski, <u>Photo Tourism: Exploring Photo</u> <u>Collections in 3D</u>, SIGGRAPH 2006.
- A. Hengel et. al., <u>VideoTrace: Rapid Interactive Scene Modelling</u> <u>from Video</u>, SIGGRAPH 2007.