- Project \#2 is due midnight next Wednesday
- 3-day extension for project \#1 artifacts voting due to some technical problems. More than 50 have votes, but around 10 can't vote due to technical problem with voting system. Please vote by the end of Sunday if you have not.

Digital Visual Effects, Spring 2009
Yung-Yu Cbuang
2009/4/16
with slides by Richard Szeliski, Steve Seitz, Fred Pighin and Marc Pollefyes

Outline

- Camera projection models
- Camera calibration
- Nonlinear least square methods

Camera projection models

illum in tabula per radios Solis, quàm in coclo contingit: hoc eft, fi in ccelo fuperior pars dehquiũ patiatur, in radiis apparebit inferior deficere, vt ratio exigit optica.

Sic nos exaAt Anno.1544. Louanii celipfim Solis obferuauimus, inuenimuśq; deficere paulò plus đ̈ dex-

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

2)

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Is this form of \mathbf{K} good enough? $\quad \mathbf{K}=\left[\begin{array}{ccc}f & 0 & x_{0} \\ 0 & f & y_{0} \\ 0 & 0 & 1\end{array}\right]$

- non-square pixels (digital video)
- skew
- radial distortion

$$
\mathbf{K}=\left[\begin{array}{ccc}
f a & s & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

Distortion DigivFX

Camera rotation and translation

No distortion

Pin cushion

Barrel

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right][\mathbf{R} \left\lvert\, \mathbf{t}\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \quad \mathbf{x} \sim \mathbf{K} \underbrace{[\mathbf{R} \mid \mathbf{t}] \mathbf{X}}_{\text {extrinsic matrix }}\right.
$$

- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation: where is the camera?

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

- Also called "parallel projection": $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow(\mathrm{x}, \mathrm{y})$

Other types of projections

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001

Camera calibration

- Estimate both intrinsic and extrinsic parameters. Two main categories:

1. Photometric calibration: uses reference objects with known geometry
2. Self calibration: only assumes static scene, e.g. structure from motion
3. linear regression (least squares)
4. nonlinear optimization

$0 \rightarrow$
$0 \rightarrow$ $0 \longrightarrow$ $\square \longrightarrow$

Camera calibration

Linear regression

$\mathbf{x} \sim \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}=\mathbf{M X}$
$\left[\begin{array}{c}u \\ v \\ 1\end{array}\right] \sim\left[\begin{array}{cccc}m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$

Linear regression

$$
\begin{aligned}
u_{i} & =\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
v_{i} & =\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1}
\end{aligned}
$$

$$
\begin{aligned}
& u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
& v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{aligned}
$$

- Directly estimate 11 unknowns in the Mmatrix using known 3D points ($\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}}$) and measured feature positions ($\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$)

Solve for Projection Matrix M using least-square techniques

Given an overdetermined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Linear regression

- Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image
- Disadvantages:
- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks
- More unknowns than true degrees of freedom

Nonlinear optimization

- A probabilistic view of least square
- Feature measurement equations

$$
\begin{aligned}
u_{i} & =f\left(\mathbf{M}, \mathbf{x}_{i}\right)+n_{i}=\widehat{u}_{i}+n_{i}, \quad n_{i} \sim N(0, \sigma) \\
v_{i} & =g\left(\mathbf{M}, \mathbf{x}_{i}\right)+m_{i}=\widehat{v}_{i}+m_{i}, \quad m_{i} \sim N(0, \sigma)
\end{aligned}
$$

- Probability of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
\begin{aligned}
P & =\prod_{i} p\left(u_{i} \mid \widehat{u}_{i}\right) p\left(v_{i} \mid \widehat{v}_{i}\right) \\
& =\prod_{i} e^{-\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma^{2}} e^{-\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma^{2}}
\end{aligned}
$$

Optimal estimation

- Likelihood of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$
$L=-\log P=\sum_{i}\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma_{i}^{2}+\left(v_{i}-\hat{v}_{i}\right)^{2} / \sigma_{i}^{2}$
- It is a least square problem (but not necessarily linear least square)
- How do we minimize L ?
- Non-linear regression (least squares), because the relations between \hat{u}_{i} and u_{i} are non-linear functions of \mathbf{M}
unknown parameters
We could have terms like $\stackrel{\downarrow}{ } \cos \stackrel{\downarrow}{\theta}$ in this

- We can use Levenberg-Marquardt method to minimize it

Least square fitting

Least Squares Problem
Find x^{*}, a local minimizer for

$$
F(\mathbf{x})=\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})\right)^{2}
$$

where $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1, \ldots, m$ are given functions, and $m \geq n$.
number of data points
number of parameters

Linear least square fitting

Linear least square fitting

$M(t ; \mathbf{x})=x_{0}+x_{1} t+x_{2} t^{3}$ is linear, too.

$$
\begin{aligned}
& \text { model } M(t ; \mathbf{x})=x_{3} e^{x_{1} t}+x_{4} e^{x_{2} t} \\
& \text { parameters } \mathbf{x}=\left[x_{1}, x_{2}, x_{4}, x_{4}\right]^{T} \\
& \text { residuals } \begin{aligned}
f_{i}(\mathbf{x}) & =y_{i}-M\left(t_{i} ; \mathbf{x}\right) \\
& =y_{i}-\left(x_{3} e^{x_{1} t}+x_{4} e^{x_{2} t}\right)
\end{aligned}
\end{aligned}
$$

Function minimization

We assume that the cost function F is differentiable and so smooth that the following Taylor expansion is valid, ${ }^{2)}$

$$
F(\mathbf{x}+\mathbf{h})=F(\mathbf{x})+\mathbf{h}^{\top} \mathbf{g}+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

where \mathbf{g} is the gradient,

$$
\mathbf{g} \equiv \mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}}(\mathbf{x}) \\
\vdots \\
\frac{\partial F}{\partial x_{n}}(\mathbf{x})
\end{array}\right]
$$

and \mathbf{H} is the Hessian,

$$
\mathbf{H} \equiv \mathbf{F}^{\prime \prime}(\mathbf{x})=\left[\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(\mathbf{x})\right]
$$

Approximate the function with a quadratic function within a small neighborhood

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x+c
$$

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right], \quad b=\left[\begin{array}{r}
2 \\
-8
\end{array}\right], \quad c=0
$$

Quadratic functions
DigivFX

A is positive definite. (a) All eigenvalues are positive. For all x, $x^{\top} A x>0$.

(b) negative definite

A is singular

A is indefinite

Function minimization

Theorem 1.5. Necessary condition for a local minimizer.
If x^{*} is a local minimizer, then

$$
\mathrm{g}^{*} \equiv \mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=0
$$

Definition 1.6. Stationary point. If

$$
\mathbf{g}_{\mathrm{s}} \equiv \mathbf{F}^{\prime}\left(\mathbf{x}_{\mathrm{s}}\right)=\mathbf{0}
$$

then x_{s} is said to be a stationary point for F.

$$
F\left(\mathbf{x}_{\mathrm{s}}+\mathbf{h}\right)=F\left(\mathbf{x}_{\mathrm{s}}\right)+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

\mathbf{H}_{s} is positive definite

a) minimum

b) maximum

c) saddle point

Theorem 1.8. Sufficient condition for a local minimizer.
Assume that x_{s} is a stationary point and that $\mathbf{F}^{\prime \prime}\left(\mathbf{x}_{\mathrm{s}}\right)$ is positive definite.
Then x_{s} is a local minimizer.

$$
\begin{array}{r}
F\left(\mathbf{x}_{\mathrm{s}}+\mathbf{h}\right)=F\left(\mathbf{x}_{\mathrm{s}}\right)+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right) \\
\text { with } \mathbf{H}_{\mathrm{s}}=\mathbf{F}^{\prime \prime}\left(\mathbf{x}_{\mathrm{s}}\right)
\end{array}
$$

If we request that \mathbf{H}_{5} is positive definite, then its eigenvalues are greater than some number $\delta>0$

$$
\mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}>\delta\|\mathbf{h}\|^{2}
$$

$\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$ for $k \rightarrow \infty$

1. Find a descent direction \mathbf{h}_{d}
2. find a step length giving a good decrease in the F-value.
```
Algorithm Descent method
begin
    \(k:=0 ; \mathbf{x}:=\mathbf{x}_{0} ;\) found \(:=\mathbf{f a l s e}\)
    while (not found) and ( \(k<k_{\text {max }}\) )
        \(\mathbf{h}_{\mathrm{d}}:=\) search direction \((\mathrm{x})\)
        if (no such \(\mathbf{h}\) exists)
            found \(:=\) true
    else
            \(\alpha:=\) step_length \(\left(\mathbf{x}, \mathbf{h}_{\mathrm{d}}\right)\)
            \(\mathrm{x}:=\mathrm{x}+\alpha \mathbf{h}_{\mathrm{d}} ; \quad k:=k+1\)
end
```

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \quad \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

Definition Descent direction.

\mathbf{h} is a descent direction for F at \mathbf{x} if $\mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})<0$.

Steepest descent method

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

$$
\frac{F(\mathbf{x})-F(\mathbf{x}+\alpha \mathbf{h})}{\alpha\|\mathbf{h}\|}=-\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})=-\left\|\mathbf{F}^{\prime}(\mathbf{x})\right\| \cos \theta
$$

the decrease of $\boldsymbol{F}(\boldsymbol{x})$ per
unit along h direction
greatest gain rate if $\theta=\pi \rightarrow \mathbf{h}_{\mathrm{Sd}}=-\mathbf{F}^{\prime}(\mathbf{x})$
$h_{s d}$ is a descent direction because $h_{s d}^{\top} F^{\prime}(x)=-F^{\prime}(x)^{2}<0$

Line search

$x_{2} \quad$ (a)

$f\left(x_{(i)}+\alpha r_{(i)}\right) \quad$ (c)

Find α so that $\varphi(\alpha)=\mathbf{F}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)$ is minumum $0=\frac{\partial \varphi(\alpha)}{\partial \alpha}=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)}{\partial \alpha}$

$$
\begin{gathered}
=\frac{\partial \mathbf{F}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \alpha}=\mathbf{h}^{\mathrm{T}} \mathbf{F}^{\prime}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right) \\
\mathbf{h}=-\mathbf{F}^{\prime}\left(\mathbf{x}_{0}\right)
\end{gathered}
$$

Line search

Steepest descent method

isocontour

gradient

Steepest descent method
DigivFX

It has good performance in the initial stage of the iterative process. Converge very stô with a linear rate.
x^{*} is a stationary point \rightarrow it satisfies $\mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=\mathbf{0}$.

$$
\begin{aligned}
& \mathbf{F}^{\prime}(\mathbf{x}+\mathbf{h})=\mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right) \\
& \simeq \mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h} \quad \text { for }\|\mathbf{h}\| \text { sufficiently small } \\
& \rightarrow \mathbf{H h}_{\mathrm{n}}=-\mathbf{F}^{\prime}(\mathbf{x}) \quad \text { with } \mathbf{H}=\mathbf{F}^{\prime \prime}(\mathbf{x}) \\
& \mathbf{x}:=\mathbf{x}+\mathbf{h}_{\mathrm{n}}
\end{aligned}
$$

Suppose that \mathbf{H} is positive definite
$\rightarrow \mathbf{u}^{\top} \mathbf{H u}>0$ for all nonzero \mathbf{u}.
$\rightarrow 0<\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{H} \mathbf{h}_{\mathrm{n}}=-\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \mathbf{h}_{\mathrm{n}}$ is a descent direction
It has good performance in the final stage of the iterative process, where x is close to x^{*}.

$$
\begin{aligned}
& \text { if } \mathbf{F}^{\prime \prime}(\mathbf{x}) \text { is positive definite } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{n}} \\
& \text { else } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{sd}} \\
& \mathbf{x}:=\mathbf{x}+\alpha \mathbf{h}
\end{aligned}
$$

This needs to calculate second-order derivative which might not be available.

Levenberg-Marquardt method

- LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Nonlinear least square

Given a set of measurements \mathbf{x}, try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon^{T} \varepsilon$ is minimal. Here, $\varepsilon=\mathbf{x}-\hat{\mathbf{x}}$, with $\hat{\mathbf{x}}=f(\mathbf{p})$.

Levenberg-Marquardt method

For a small $\left\|\delta_{\mathbf{p}}\right\|, f\left(\mathbf{p}+\delta_{\mathbf{p}}\right) \approx f(\mathbf{p})+\mathbf{J} \delta_{\mathbf{p}}$ \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$
it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$
\left\|\mathbf{x}-f\left(\mathbf{p}+\delta_{\mathbf{p}}\right)\right\| \approx\left\|\mathbf{x}-f(\mathbf{p})-\mathbf{J} \delta_{\mathbf{p}}\right\|=\left\|\epsilon-\mathbf{J} \delta_{\mathbf{p}}\right\|
$$

$$
\begin{aligned}
\mathbf{J}^{T} \mathbf{J} \delta_{\mathbf{p}} & =\mathbf{J}^{T} \boldsymbol{\epsilon} \\
\mathbf{N} \delta_{\mathbf{p}} & =\mathbf{J}^{T} \boldsymbol{\epsilon} \\
\mathbf{N}_{i i} & =\underset{\uparrow}{\mu}+\left[\mathbf{J}^{T} \mathbf{J}\right]_{i i} \\
& { }_{\uparrow}^{\text {damping term }}
\end{aligned}
$$

- $\mu=0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing μ
- Start with some small μ
- If F is not reduced, keep trying larger μ until it does
- If F is reduced, accept it and reduce μ for the next iteration

$$
z=f(x, y)=\left(1-x^{2}\right)^{2}+100\left(y-x^{2}\right)^{2}
$$

Global minimum at (1,1)

$$
\begin{gathered}
\mathbf{x}_{\mathbf{k}+1}=\mathbf{x}_{\mathbf{k}}-\alpha \mathbf{g} \\
\alpha=\frac{\mathbf{h}^{\mathrm{T}} \mathbf{h}}{\mathbf{h}^{\mathrm{T}} \mathbf{H h}}
\end{gathered}
$$

In the plane of the steepest descent direction
Steepest descent (1000 iterations)

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{H}^{-1} \mathbf{g}
$$

- With the approximate Hessian

$$
\mathbf{H} \approx \mathbf{J}^{\mathrm{T}} \mathbf{J}
$$

- No need for second derivative
- H is positive semi-definite

Levenberg-Marquardt

- Blends steepest descent and Gauss-Newton
- At each step, solve for the descent direction h

$$
\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}+\lambda \mathbf{I}\right) \mathbf{h}=-\mathbf{g}
$$

- If λ large, $\mathbf{h} \approx-\mathbf{g}$, steepest descent
- If λ small, $\mathbf{h} \approx-\left(\mathbf{J}^{\mathrm{T}} \mathbf{J}\right)^{-1} \mathbf{g}$, Gauss-Newton

A popular calibration tool

Multi-plane calibration

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!

Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/ Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
Zhengyou Zhang's web site: http://research.microsoft.com/-zhang/Calib/

Step 1: data acquisition

Step 2: specify corner order

Step 4: minimize projection error
Step 3: corner extraction

Step 5: refinement

Optimized parameters

Aspect ratio optimized (est_aspect_ratio = 1) -> hoth components of fc are estimated (DEI Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set cl skew not optinized (est_alpha=日) - (DEFAlll
Distortion not fully estimated (defined by the uariable est_dist):
Sixth order distortion not estimated (est_dist(5)=6) - (DEFAllt)
Main calibration optimization procedure - Humber of images: 20
Gradient descent iterations: 1...2...3...4....5...done Estination of uncertainties. . .done

Calibration results after optimization (with uncertainties):
Focal Length:
Principal point:
skew:
Distortion:
and teviations

Applications

- Good for recovering intrinsic parameters; It is thus useful for many vision applications
- Since it requires a calibration pattern, it is often necessary to remove or replace the pattern from the footage or utilize it in some ways...

Example of calibration

- Videos from GaTech
- DasTatoo, MakeOf
- P!NG, MakeOf
- Work, MakeOf
- LifelnPaints, MakeOf

PhotoBook

PhotoBook

