Image stitching

Digital Visual Effects, Spring 2009 Yung-Yu Chuang 2009/3/26

with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac

Image stitching

• Stitching = alignment + blending

geometrical photometric registration

Applications of image stitching

- Video stabilization
- Video summarization
- Video compression
- Video matting
- · Panorama creation

Video summarization

Video compression

input video

Object removal

remove foreground

Object removal

DigiVFX

estimate background

Object removal

background estimation

Panorama creation

Why panorama?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

Why panorama?

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$

Why panorama?

Are you getting the whole picture?

- Compact Camera FOV = 50 x 35°

- Human FOV = $200 \times 135^{\circ}$

- Panoramic Mosaic = 360 x 180°

Panorama examples

- Like HDR, it is a topic of computational photography, seeking ways to build a better camera mostly in software.
- Most consumer cameras have a panorama mode
- Mars:

http://www.panoramas.dk/fullscreen3/f2_mars97.html

• Earth:

http://www.panoramas.dk/new-year-2006/taipei.html
http://www.360cities.net/

What can be globally aligned?

- In image stitching, we seek for a matrix to globally warp one image into another. Are any two images of the same scene can be aligned this way?
 - Images captured with the same center of projection
 - A planar scene or far-away scene

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Mosaic as an image reprojection

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a *synthetic wide-angle camera*

Changing camera center

Planar scene (or a faraway one)

- PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

Motion models

• Parametric models as the assumptions on the relation between two images.

2D Motion models

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I \ I \ \end{bmatrix}_{2 imes 3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$egin{bmatrix} egin{bmatrix} oldsymbol{R} oldsymbol{t} \end{bmatrix}_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	$parallelism + \cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Motion models

Translation

Affine

Perspective 3D rotation

2 unknowns 6 unknowns 8 unknowns 3 unknowns

A case study: cylindrical panorama

• What if you want a 360° field of view?

Cylindrical panoramas

- Steps
 - Reproject each image onto a cylinder
 - Blend
 - Output the resulting mosaic

Cylindrical panorama

- **Digi**VFX
- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinate
- 3. Compute pairwise alignments
- 4. Fix up the end-to-end alignment
- 5. Blending
- 6. Crop the result and import into a viewer

It is required to do radial distortion correction for better stitching results!

Taking pictures

Kaidan panoramic tripod head

Translation model

Try to align this in PaintShop Pro

Where should the synthetic camera beigivex

- The projection plan of some camera
- Onto a cylinder

Cylindrical projection

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm

Cylindrical projection

Cylindrical projection

Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm

Cylindrical projection

Cylindrical projection

Cylindrical projection

Cylindrical reprojection

Focal length – the dirty secret...

Image 384x300 f = 180 (pixels)

f = 280

f = 380

A simple method for estimating f

Or, you can use other software, such as AutoStich, to help.

Input images

Cylindrical warping

Blending

• Why blending: parallax, lens distortion, scene motion, exposure difference

Blending

Blending

Blending

Assembling the panorama

• Stitch pairs together, blend, then crop

Problem: Drift

DigiVFX

- Error accumulation
 - small errors accumulate over time

Problem: Drift

- add another copy of first image at the end
- there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n-1)$ to each image after the first
 - compute a global warp: y' = y + ax
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

End-to-end alignment and crop

Viewer: panorama

 $example: $$ \underline{$$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html} $$ $$ \underline{$$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html} $$ $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html} $$ $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html} $$ $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougz/index.html} $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougs/index.html} $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/project1/students/dougs/index.html} $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/o1wi/projects/project1/students/dougs/index.html} $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/o1wi/project1/students/dougs/index.html} $$ \underline{$$ http://www.cs.washington.edu/education/courses/cse590ss/o1wi/project1/studen$

Viewer: texture mapped model

example: http://www.panoramas.dk/

Cylindrical panorama

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinate
- 3. Compute pairwise alignments
- 4. Fix up the end-to-end alignment
- 5. Blending
- 6. Crop the result and import into a viewer

Determine pairwise alignment

- p'=Mp, where M is a transformation matrix, p and p' are feature matches
- It is possible to use more complicated models such as affine or perspective
- For example, assume M is a 2x2 matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Find M with the least square error

$$\sum_{i=1}^{n} (Mp - p')^2$$

Determine pairwise alignment?

- Feature-based methods: only use feature points to estimate parameters
- We will study the "Recognising panorama" paper published in ICCV 2003
- Run SIFT (or other feature algorithms) for each image, find feature matches.

Determine pairwise alignment

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x_1 m_{11} + y_1 m_{12} = x_1$$

$$x_1 m_{21} + y_1 m_{22} = y_1$$

Overdetermined system

$$\begin{pmatrix} x_1 & y_1 & 0 & 0 \\ 0 & 0 & x_1 & y_1 \\ x_2 & y_2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 0 & 0 \\ 0 & 0 & x_n & y_n \end{pmatrix} \begin{pmatrix} m_{11} \\ m_{12} \\ m_{21} \\ m_{22} \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ x_2 \\ \vdots \\ x_n \\ y_n \end{pmatrix}$$

Normal equation

DigiVFX

Given an overdetermined system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Why?

Normal equation

$$E(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^2$$

$$\begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$

nxm, n equations, m variables

Normal equation

$$\mathbf{A}\mathbf{x} - \mathbf{b} = \begin{bmatrix} \sum_{j=1}^{m} a_{1j} x_j \\ \vdots \\ \sum_{j=1}^{m} a_{ij} x_j \\ \vdots \\ \sum_{j=1}^{m} a_{nj} x_j \end{bmatrix} - \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{m} a_{1j} x_j \\ \vdots \\ \sum_{j=1}^{m} a_{ij} x_j \\ \vdots \\ \sum_{j=1}^{m} a_{nj} x_j \end{bmatrix} - b_i$$

$$E(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^2 = \sum_{j=1}^{n} \left[\sum_{j=1}^{m} a_{ij} x_j - b_i \right]^2$$

Normal equation

$$E(\mathbf{x}) = (\mathbf{A}\mathbf{x} - \mathbf{b})^{2} = \sum_{i=1}^{n} \left[\left(\sum_{j=1}^{m} a_{ij} x_{j} \right) - b_{i} \right]^{2}$$

$$0 = \frac{\partial E}{\partial x_{1}} = \sum_{i=1}^{n} 2 \left[\left(\sum_{j=1}^{m} a_{ij} x_{j} \right) - b_{i} \right] a_{i1}$$

$$= 2 \sum_{i=1}^{n} a_{i1} \sum_{j=1}^{m} a_{ij} x_{j} - 2 \sum_{i=1}^{n} a_{i1} b_{i}$$

$$0 = \frac{\partial E}{\partial \mathbf{x}} = 2(\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \mathbf{A}^{\mathsf{T}} \mathbf{b}) \longrightarrow \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

Normal equation

$$(\mathbf{A}\mathbf{x} - \mathbf{b})^{2}$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= ((\mathbf{A}\mathbf{x})^{T} - \mathbf{b}^{T}) (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= (\mathbf{x}^{T}\mathbf{A}^{T} - \mathbf{b}^{T}) (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - \mathbf{b}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{b} + \mathbf{b}^{T}\mathbf{b}$$

$$= \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - (\mathbf{A}^{T}\mathbf{b})^{T}\mathbf{x} - (\mathbf{A}^{T}\mathbf{b})^{T}\mathbf{x} + \mathbf{b}^{T}\mathbf{b}$$

$$\frac{\partial E}{\partial \mathbf{x}} = 2\mathbf{A}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{T}\mathbf{b}$$

Determine pairwise alignment

- p'=Mp, where M is a transformation matrix, p and p' are feature matches
- For translation model, it is easier.

$$E = \sum_{i=1}^{n} \left[\left(m_1 + x_i - x_i \right)^2 + \left(m_2 + y_i - y_i \right)^2 \right]$$

$$0 = \frac{\partial E}{\partial m_1}$$

 What if the match is false? Avoid impact of outliers.

RANSAC

- RANSAC = Random Sample Consensus
- An algorithm for robust fitting of models in the presence of many data outliers
- Compare to robust statistics
- Given N data points x_i , assume that mjority of them are generated from a model with parameters Θ , try to recover Θ .

RANSAC algorithm

Run k times: \longrightarrow How many times?

- (1) draw(n samples) randomly How big?
 Smaller is better
- (2) fit parameters Θ with these n samples
- (3) for each of other N-n points, calculate its distance to the fitted model, count the number of inlier points c

Output Θ with the largest c

How to define? Depends on the problem.

How to determine k

DigiVFX

p: probability of real inliers

P: probability of success after k trials

$$P=1-(1-p^n)^k$$

n samples are all inliers

a failure

failure after k trials

$$k = \frac{\log(1-P)}{\log(1-p^n)}$$

n	p	k
3	0.5	35
6	0.6	97
6	0.5	293

Example: line fitting

Example: line fitting

n=2

RANSAC for Homography

RANSAC for Homography

Applications of panorama in VFX

- Background plates
- Image-based lighting

Troy (image-based lighting)

http://www.cgnetworks.com/story_custom.php?story_id=2195&page=4

Spiderman 2 (background plate)

