Image warping/morphing

Digital Visual Effects, Spring 2009
Yung-Yu Chuang
2009/3/12

with slides by Richard Szeliski, Steve Seitz, Tom Funkhonser and Alexei Efros

Image warping

- Digi
Image formation =

Illumination (energy)

,7/%

et
N
0\ 4

g Output (digitized) image
Imaging systen? A

oooao oooao

(Internal)imageplan o oooo
oo o

Scene element

»

=]

oo

Sampling and quantization

Digi

What is an image

e We can think of an image as a function, f: R?>R:
- f(x, y) gives the intensity at position (X, y)
- defined over a rectangle, with a finite range:
« f: [a,b]x[c,d] = [0,1]

= A color image r(x,y)
fF(x,y)=1]9(x,y)
b(x,y)

A digital image

« We usually operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

e If our samples are D apart, we can write this as:
f[i ,j] = Quantize{ f(i D, j D) }
 The image can now be represented as a matrix

of integer values
g

N 52 79 23 119 120 105 4 0
Zl 10 10 a9 G2 12 78 34 0
10 &8 197 48 46 4] 4] 48
176 136 [188 191 68 0 48
2 1 1 29 26 a7 o] 7
0 89 144 147 187 102 62 208
265 252 0 166 123 82 o] a1
166 G3 127 17 1 0 99 a0

Image warping

image filtering: change range of image
9(x) = h(f(x)) h(y)=0.5y+0.5

I a1

X X

image warping: change domain of image
9(x) = f(h(x))
h(y)=2y

X X

Image warping

image filtering: change range of image

9(x) = h(f(x)) h(y)=0.5y+0.5

r/’\ a

g j'-;_‘-
A
ol

S 5 e

Image warping: change domain of image

9(x) = f(h(x))
. h(x.yD=[xy/2]

h . Emi !

Parametric (global) warping

Examples of parametric warps:

aspect

cylindrical

Parametric (global) warping

p’=(x"y’)
e Transformation T is a coordinate-changing
machine: p’ = T(p)
 What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)

e Represent T as a matrix: p’ = M*p X' X
y y

Scaling

» Scaling a coordinate means multiplying each of
its components by a scalar

» Uniform scaling means this scalar is the same
for all components:

O BHRE

X 2

Scaling

e Non-uniform scaling: different scalars per

component: « v
G-l
y y

Scaling
- Scaling operation: X'= ax
y'=by
e Or, in matrix form:
X' _|a O x
y'| [0 bjy
H_J

scaling matrix S
What's inverse of S?

2-D Rotation

e This is easy to capture in matrix form:

el 28T

. 7
Y

R
e Even though sin(0) and cos(6) are nonlinear to 6,
- X' is a linear combination of x and y
- y'is a linear combination of x and y
 What is the inverse transformation?
- Rotation by —6
- For rotation matrices, det(R) =1so R™*=R"

2x2 Matrices RIEIVFX

« What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
5 B
y'=y y] [0 1]y

2D Scale around (0,0)?

X'=s,*X {x} S, O{X}
y':sy*y y' 10 S, LY

2x2 Matrices RIEIVFX

e What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=c0s@*x—sin@*y X'| |cos@ —sind| x
y'=sin@*x+cosf*y y'| |siné cosé |y

2D Shear?

X'=x+sh, *y X' 1 sh, | x
y'=sh,*x+y y'| |sh, 1|y

2x2 Matrices

e What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
v R
y'=y y' 0 1]y

2D Mirror over (0,0)?

All 2D Linear Transformations

e Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror
= Properties of linear transformations:
- Origin maps to origin
Lines map to lines
Parallel lines remain parallel

- Ratios are preserved '
X'= _x [X} _[_1 0 }[X} - Closed under composition _ a bjx
y'=-y y|7L0 -1fy y | [c d]y

2x2 Matrices

» What types of transformations can not be
represented with a 2x2 matrix?

2D Translation?
X'=X+t,
y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

Translation

e Example of translation)
Homogeneous Coordinates

¥ ¥ §

X' 1 0 t|x X+1,
Yi=|0 1 t |y|l=|y+t,
1 0 0 11 1

— o~

< x
1
=N

Affine Transformations

e Affine transformations are combinations of ...
- Linear transformations, and
- Translations

e Properties of affine transformations:
Origin does not necessarily map to origin
Lines map to lines

Parallel lines remain parallel
Ratios are preserved

Projective Transformations

* Projective transformations ...
- Affine transformations, and
- Projective warps

e Properties of projective transformations:
- Origin does not necessarily map to origin
Lines map to lines
Parallel lines do not necessarily remain parallel
Ratios are not preserved

- Closed under composition X' a b c|x - Closed under composition| x' a b cl x
- Models change of basis y'|=|d e fjly - Models change of basis | y'|=|d e f |V
w 0 0 1w W' g h ifw

Image warping

e Given a coordinate transform x’ = T(x) and a
source image 1(x), how do we compute a
transformed image I'(x’) = I(T(x))?

Forward warping

e Send each pixel I(x) to its corresponding
location x* = T(x) in I’(X’)

Forward warping Forward warping
fwarp(l, 17, T) » Send each pixel I(x) to its corresponding
{ location x” = T(X) in I’'(X’)
for (y=0; y<l.height; y++) e B N .
for (x=0: x<I.width: x++) { « What if pixel lands “between” two pixels?
<7 ,y")=TCLY) » Will be there holes?
17(x7,y))=1(X,Y); « Answer: add “contribution” to several pixels,
3} normalize later (splatting)
by | I’
e %
X < L+. L+,
I X f(x) X g)
o
CIFTVEX TOVFX

Forward warping

Inverse warping

fwarp(l, 17, T)
{
for (y=0; y<l.height; y++)
for (x=0; x<l.width; x++) {
X7,y7)=T(X,y);
Splatting(1”,x”,y”,1(X,y),kernel);
+
¥ I I’

e
X T~ /’“E
X’

e Get each pixel I’(x”) from its corresponding
location x = T-1(x”) in I(x)

Inverse warping Inverse warping
iwarp(l, 17, T) » Get each pixel I’(x’) from its corresponding
{ location x = T-1(x”) in I(X)
for (y=0; y<I’_height; y++)
for (x=0; x<I’.width; x++) {
CLY)=T1(X7,y7); » What if pixel comes from “between” two pixels?
17(x7,y))=1(X,Y); « Answer: resample color value from
} interpolated (prefiltered) source image
} I T‘l I,
] \\H m
X
X’ T—> T—>,
) O ge0)
Inverse warping Sampling
. band limited

iwarp(l, 17, T)
{
for (y=0; y<I’_height; y++)
for (x=0; x<I1”.width; x++) {
OGY)=TH(X,y7);
1”(x”,y”)=Reconstruct(l,x,y,kernel);
+
} | T‘l |’

A

EA\VAN N,

X *

4 1II(x) , 1(s)

S Y PO S

i 5
0 U

. JIVFX
Reconstruction LIEIVeX

WNAT, AMMAL

Reconstruction
f \ X filter (—‘ s

The reconstructed function is obtained by interpolating
among the samples in some manner

. JIVFX
Reconstruction LIEIVeX

e Reconstruction generates an approximation to
the original function. Error is called aliasing.
sampling reconstruction
sample value

1 / 1
0.75 0.75
0.5 0.5
L
0.25 0.25
I I | I I I T 1 I I I | I I 1
I 3 435 8 7's 1 23456 78

sample position

. JIVFX
Reconstruction LIEIVEX

e Computed weighted sum of pixel neighborhood,;
output is weighted average of input, where
weights are normalized values of filter kernel k

p:Zik(qi)qi
P aneN k@)
color=0;
/// weights=0;
o ® > for all g’s dist < width
(pC widt d = dist(p, 9);
o) *—/—o w = kernel(d);
\\ d color += w*q.color;
q o weights += w;
p.Color = color/weights;

Reconstruction (interpolation)

e Possible reconstruction filters (kernels):
nearest neighbor
bilinear
bicubic
sinc (optimal reconstruction) f -

Bilinear interpolation (triangle filter)

e A simple method for resampling images
(i, +1) (i+1,j+1)

(z,y)
b
(4,4) (i4+1,5)

a

fly) = (1—a)(1—=0b) f[ij]
+a(1-0) fli+1,4]
+ab fli+1,5+1]
+(1—a)b fli,j+1]

Non-parametric image warping

e Specify a more detailed warp function
e Splines, meshes, optical flow (per-pixel motion)

Warp G/, i 6 O O
'd ENEEEEEEE
ENEEEEEEN
EEENEAEEE

owiet

\WNarP

Non-parametric image warping

e Mappings implied by correspondences
e Inverse warping

Non-parametric image warping

P'=w,A+w,B+w.C’
P=w,A+w,B+w.C
Barycentric coordinate

Barycentric coordinates ARV Non-parametric image warping Lvex
A l_ 1 1 1
1 P =W, A+W,B+W.C P'=w,A+w;B'+w.C
Barycentric coordinate
f
AE AB
P=tA+tLA +tA
t+t,+t, =1

Digi24

Non-parametric image warping

Demo

— 2
Gaussian po(r)=e”

thin plate _ 2

1 .
AP:EZ(P JAX,

radial basis function

e http://www.colonize.com/warp/warp04-2.php

e Warping is a useful operation for mosaics, video
matching, view interpolation and so on.

Image morphing

Image morphing

e The goal is to synthesize a fluid transformation
from one image to another.

e Cross dissolving is a common transition between
cuts, but it is not good for morphing because of
the ghosting effects.

Artifacts of cross-dissolving el

http://www.salavon.com/

Image morphing

e Why ghosting?

e Morphing = warping + cross-dissolving

l

shape
(geometric)

\

color
(photometric)

Image morphing ALy Morphing sequence ALy
image #1 cross-dissolving image #2
BIFTVEX BIFTVEX

Face averaging by morphing

average faces

Image morphing

create a morphing sequence: for each time t

1. Create an intermediate warping field (by
interpolation)

2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped

images
t=0 t=0.33 t=1

An ideal example (in 2004)

B FantaMorh
morphing

An ideal example

middle face (t=0.5)

Warp specification (mesh warping)

How can we specify the warp?

1. Specify corresponding spline control points
interpolate to a complete warping function

Warp specification e

e How can we specify the warp
2. Specify corresponding points
e interpolate to a complete warping function

easy to implement, but less expressive

1. Define a triangular mesh over the points
- Same mesh in both images!
- Now we have triangle-to-triangle correspondences
2. Warp each triangle separately from source to destination
- How do we warp a triangle?
- 3 points = affine warp!
- Just like texture mapping

Warp specification (field warping)

e How can we specify the warp?

3. Specify corresponding vectors
« interpolate to a complete warping function
e The Beier & Neely Algorithm

Beier&Neely (SIGGRAPH 1992) e

« Single line-pair PQ to P'Q’:
N

P

Pl
Destination Image Source Image

(X-P)-(@-P)
U= —

- (n
ig-piI?

y - (X =P) - Perpendicular(Q — P)
B '@ -Pi

(2)

, . . v-Perpendicular(Q’' - P’)
P + . - —
®; u (@-F)+ e —# 3

Algorithm (single line-pair)

CIFTVEX

e For each X in the destination image:
1. Find the corresponding u,v
2. Find X' in the source image for that u,v
3. destinationimage(X) = sourcelmage(X’)
e Examples: i | B i

T
o

1

I
R

1

Affine transformation

Multiple Lines ALy Full Algorithm ALy
0, WarpImage(Sourcelmage, L'[...], L[...])
' o X begin
us foreach destination pixel X do
. X XSum = (0,0)
D, =X, - X, \ WeightSum = 0
P, foreach line L[i] in destination do
X'[i]= X transformed by (L[i],L'[i])
Destination Image Source Image weight[i] = weight assigned to X'[i]
XSum = Xsum + X'[i] * weight[i]
‘ . (lengiHil?]b WeightSum += weight[i]
weightli]=| —=——— end
a+dist[i] X' = XSum/WeightSum
length = length of the line segment, DestinationImage(X) = Sourcelmage(X')
dist = distance to line segment end
The influence of a, p, b. The same as the average of X;’ 4 return Destination
en
DIFIVFX DIFIVFX

Resulting warp

Comparison to mesh morphing

e Pros: more expressive
e Cons: speed and control

Warp interpolation =

 How do we create an intermediate warp at
time t?
- linear interpolation for line end-points

- But, a line rotating 180 degrees will become 0
length in the middle

- One solution is to interpolate line mid-point and
orientation angle

. - Diai
Animation =

GenerateAnimation(Image , L [...].Image , L [...])
begin
foreach intermediate frame time t do
for i=1 to number of line-pairs do
L[i] = line t-th of the way from L [i] to L [i].

end
Warp, = WarpImage(Image , L [...], L[...])
Warp, = WarpImage(Image , L [...], L[...])

o~ Pl foreach pixel p in Finallmage do
\ ’ : Finallmage(p) = (1-t) Warp (p) + t Warp (p)
end
: end
.- o v =1 end
i Digi Digi
Animated sequences = Results =

» Specify keyframes and interpolate the lines for
the inbetween frames

» Require a lot of tweaking

Michael Jackson’s MTV “Black or White”

DigiiaN DigiY2%

Multi-source morphing Multi-source morphing

Wolb]

Wyb]

Cross-dissolve

W[b]

(9 (h)

|:ﬂ_1- WVFX
References

= Thaddeus Beier, Shawn Neely, Feature-Based Image Metamorphosis,
SIGGRAPH 1992, pp35-42.

« Detlef Ruprecht, Heinrich Muller, Image Warping with Scattered
Data Interpolation, IEEE Computer Graphics and Applications,
March 1995, pp37-43.

= Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, Image
Metamorphosis Using Snakes and Free-Form Deformations,
SIGGRAPH 1995.

= Seungyong Lee, Wolberg, G., Sung Yong Shin, Polymorph: morphing
among multiple images, IEEE Computer Graphics and Applications,
Vol. 18, No. 1, 1998, pp58-71.

« Peinsheng Gao, Thomas Sederberg, A work minimization approach
to image morphing, The Visual Computer, 1998, pp390-400.

« George Wolberg, Image morphing: a survey, The Visual Computer,
1998, pp360-372.

