Computational Photography (I)

Digital Visual Effects, Spring 2008
Yung-Yu Cbuang
2008/5/20
with slides by Fredo Durand, Ramesh Raskar, Sylvain Paris, Soonmin Bae, Amit Agrawal, Ramesh Raskar

Computational photography

wikipedia:

Computational photography refers broadly to computational imaging techniques that enhance or extend the capabilities of digital photography. The output of these techniques is an ordinary photograph, but one that could not have been taken by a traditional camera.

What is computational photography

- Convergence of image processing, computer vision, computer graphics and photography
- Digital photography:
- Simply mimics traditional sensors and recording by digital technology
- Involves only simple image processing
- Computational photography
- More elaborate image manipulation, more computation
- New types of media (panorama, 3D, etc.)
- Camera design that take computation into account

Computational photography

- One of the most exciting fields.
- Symposium on Computational Photography and Video, 2005
- Full-semester courses in MIT, CMU, Stanford, GaTech, University of Delaware
- A new book by Raskar and Tumblin in SIGGRAPH 2007.

Siggraph 2006 Papers (16/86=18.6\%)

```
Hybrid Images
Drag-and-Drop Pasting
Two-scale Tone Management for Photographic Look
Interactive Local Adjustment of Tonal Values
Image-Based Material Editing
Flash Matting
Natural Video Matting using Camera Arrays
Removing Camera Shake From a Single Photograph
Coded Exposure Photography: Motion Deblurring
Photo Tourism: Exploring Photo Collections in 3D
AutoCollage
Photographing Long Scenes With Multi-Viewpoint Panoramas
Projection Defocus Analysis for Scene Capture and Image Display
Multiview Radial Catadioptric Imaging for Scene Capture
Light Field Microscopy
Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination
```


Siggraph 2007 Papers (23/108=21.3\%)

```
Image Deblurring with Blurred/ Noisy Image Pairs
Photo Clip Art
Scene Completion Using Millions of Photographs
Soft Scissors: An Interactive Tool for Realtime High Quality Matting
Seam Carving for Content-Aware Image Resizing
Detail-Preserving Shape Deformation in Image Editing
Veiling Glare in High Dynamic Range Imaging
Do HDR Displays Support LDR content? A Psychophysical Evaluation
Ldr2hdr: On-the-fly Reverse Tone Mapping of Legacy Video and Photographs
Rendering for an Interactive 360-Degree Light Field Display
Multiscale Shape and Detail Enhancement from Multi-light Image Collections
Post-Production Facial Performance Relighting Using Reflectance Transfer
Active Refocusing of Images and Videos
Multi-aperture Photography
Dappled Photography: Mask-Enhanced Cameras for Heterodyned Light Fields and Coded
Aperture Refocusing
Image and Depth from a Conventional Camera with a Coded Aperture
Capturing and Viewing Gigapixel Images
Efficient Gradient-Domain Compositing Using Quadtrees
Image Upsampling via Imposed Edges Statistics
J oint Bilateral Upsampling
Factored Time-Lapse Video
Computational Time-Lapse Video
Real-Time Edge-Aware Image Processing With the Bilateral Grid
```


Scope

- We can't yet set its precise definition. The following are scopes of what researchers are exploring in this field.
- Record a richer visual experience
- Overcome long-standing limitations of conventional cameras
- Enable new classes of visual signal
- Enable synthesis impossible photos

Scope

- Image formation
- Color and color perception

Scope

DigjvFX

- Panoramic imaging

- Image and video registration

- Spatial warping operations

Scope

- High Dynamic Range Imaging
- Bilateral filtering and HDR display
- Matting

Scope

- Active flash methods
- Lens technology
- Depth and defocus

Aspherical lens

Removing Photography Artifacts using Gradient:x Projection and Flash-Exposure Sampling

Flash

Result

Continuous flash

Flash $=0.0$

Flash $=0.3$

Flash $=0.7$

Flash $=1.0$

Flash $=1.4$

Flash matting

Depth Edge Detection and Stylized DigivFx Rendering Using a Multi-Flash Camera

Motion-Based Motion Deblurring

Removing Camera Shake from a Single Photograph

Heavy-tailed distribution on image gradients

Motion Deblurring using Fluttered Shutteigive

\qquad

Scope

DigjVFX

- Future cameras
- Plenoptic function and light fields

Scope

DigivFX

- Gradient image manipulation

cloning

sources/destinations

Scope

- Taking great pictures

Art Wolfe

Ansel Adams

Scope

- Non-parametric image synthesis, inpainting, analogies

input images

quilting results

Figure 1 An image analogy. Our problem is to compute a new "analogous" image B^{\prime} that relates to B in "the same way" as A^{\prime} relates to A. Here, A, A^{\prime}, and B are inputs to our algorithm, and B^{\prime} is the output. The full-size images are shown in Figures 10 and 11.

Scope

Image Inpainting

Object Removal by
 Exemplar-Based Inpainting

Image Completion with Structure Propagation

Lazy snapping

Grab Cut - Interactive ForegroundijivFx Extraction using Iterated Graph Cuts

Image Tools

- Graph cuts,
- Segmentation and mosaicing
- Gradient domain operations,
- Tone mapping, fusion and matting
- Bilateral and Trilateral filters,
- Denoising, image enhancement

Graph cut

Graph cut

- Interactive image segmentation using graph cut
- Binary label: foreground vs. background
- User labels some pixels
- similar to trimap, usually sparser
- Exploit

- Statistics of known Fg \& Bg
- Smoothness of Iabel
- Turn into discrete graph optimization F \quad F \quad B F B B
- Graph cut (min cut / max flow)

Energy function

- Labeling: one value per pixel, F or B
- Energy(labeling) =data +smoothness
- Very general situation
- Will be minimized
- Data: for each pixel

One labeling
(ok, not best)

- Probability that this color belongs to F (resp. B)
- Similar in spirit to Bayesian matting
- Smoothness (aka regularization): per neighboring pixel pair
- Penalty for having different label
- Penalty is downweighted if the two pixel colors are very different
- Similar in spirit to bilateral filter

Data term

- A.k.a regional term (because integrated over full region)
- $\mathrm{D}(\mathrm{L})=\mathrm{\Sigma}_{\mathrm{i}}-\log \mathrm{h}\left[\mathrm{L}_{\mathrm{i}}\right]\left(\mathrm{C}_{\mathrm{i}}\right)$
- Where i is a pixel L_{i} is the label at i (F or B),
C_{i} is the pixel value $h\left[\mathrm{~L}_{\mathrm{i}}\right]$ is the histogram of the observed Fg (resp Bg)
- Note the minus sign

Hard constraints

- The user has provided some labels
- The quick and dirty way to include constraints into optimization is to replace the data term by a huge penalty if not respected.
- $D\left(L _i\right)=0$ if respected
- $D\left(L_{-} i\right)=K$ if not respected
- e.g. $K=$ \#pixels

Smoothness term

- a.k.a boundary term, a.k.a. regularization
- $S(L)=\sum_{\{j, i\} \text { in } N} B\left(C_{i}, C_{j}\right) \delta\left(L_{i}-L_{j}\right)$
- Where i,j are neighbors
- e.g. 8-neighborhood (but I show 4 for simplicity)

\mathbf{F}	\mathbf{B}	\mathbf{B}
\mathbf{F}	\mathbf{B}	\mathbf{B}
\mathbf{F}	\mathbf{B}	\mathbf{B}

- $\delta\left(L_{i}-L_{j}\right)$ is 0 if $L_{i} \exists_{j}, 1$ otherwise
- $B\left(C_{i}, C_{j}\right)$ is high when C_{i} and C_{j} are similar, low if there is a discontinuity between those two pixels
- e.g. $\exp \left(-\left|\left|C_{i}-C_{j}\right|\right|^{2} / 2 \sigma^{2}\right)$
- where σ can be a constant or the local variance
- Note positive sign

Optimization

- $E(L)=D(L)+\lambda S(L)$
- λ is a black-magic constant
- Find the labeling that minimizes E
- In this case, how many possibilities?
-2^{9} (512)
- We can try them all!
- What about megapixel images?

Labeling as a graph problem

- Each pixel = node
- Add two nodes F \& B
- Labeling: link each pixel to either F or B

F	F
F	B
F	B

Data term

- Put one edge between each pixel and F \& G
- Weight of edge = minus data term
- Don't forget huge weight for hard constraints
- Careful with sign

Smoothness term

- Add an edge between each neighbor pair
- Weight = smoothness term

Min cut

- Energy optimization equivalent to min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight

Min cut \Longrightarrow labeling

- In order to be a cut:
- For each pixel, either the F or G edge has to be cut
- In order to be minimal
- Only one edge label per pixel can be cut (otherwise could be added)

Computing a multiway cut

- With 2 labels: classical min-cut problem
- Solvable by standard flow algorithms
- polynomial time in theory, nearly linear in practice
- More than 2 terminals: NP-hard
[Dahlhaus et al., STOC ‘92]
- Efficient approximation algorithms exist
- Within a factor of 2 of optimal
- Computes local minimum in a strong sense
- even very large moves will not improve the energy
- Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Move examples
Red-blue swap move

GrabCut
 Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother
Vladimir Kolmogorov Andrew Blake

Microsoft Research Cambridge-UK

Demo

DigivFX

- video

Interactive Digital Photomontage DigjvFX

- Combining multiple photos
- Find seams using graph cuts
- Combine gradients and integrate

set ofotigginals

pleoteinedtage

Brush strokes

Interactive Digital Photomontage

- Extended depth of field

Interactive Digital Photomontage

- Relighting

Interactive Digital Photomontage

Interactive Digital Photomontage

Demo

DigivFX

- video

Gradient domain operators

cloning

seamless cloning

Gradient Domain Manipulations

DigjVFX

Image Intensity Gradients in 2D

Intensity Gradient Manipulation

A Common Pipeline

1. Gradient manipulation
2. Reconstruction from gradients

Example Applications

Removing Glass Reflections

Original

PhotoshopGrey

Color2Gray

Color to Gray Conversion

High Dynamic Range Compression

Edge Suppression under Significant Illumination Variations

Fusion of day and night images

Intensity Gradient Manipulation

A Common Pipeline

Intensity Gradient in 1D

Gradient at x ,

$$
\begin{aligned}
G(x)= & I(x+1)-I(x) \\
& \text { Forward Difference }
\end{aligned}
$$

Reconstruction from Gradients

For n intensity values, about n gradients

Reconstruction from Gradients

1D Integration

$$
I(x)=I(x-1)+G(x)
$$

Cumulative sum

1D case with constraints

Just add a linear function so that the boundary condition is respected

Discrete 1D example: minimization ${ }^{\text {Iigvex }}$

- Copy

- $\operatorname{Min}\left(\left(f_{2}-f_{1}\right)-1\right)^{2}$

- $\operatorname{Min}\left(\left(f_{3}-f_{2}\right)-(-1)\right)^{2}$
- $\operatorname{Min}\left(\left(f_{4}-f_{3}\right)-2\right)^{2}$

With

- $\operatorname{Min}\left(\left(f_{5}-f_{4}\right)-(-1)\right)^{2} \quad f_{1}=6$
- $\operatorname{Min}\left(\left(f_{6}-f_{5}\right)-(-1)\right)^{2} \quad f_{6}=1$

1D example: minimization

- Copy

- $\operatorname{Min}\left(\left(f_{2}-6\right)-1\right)^{2}$
$\Longrightarrow f_{2}{ }^{2}+49-14 f_{2}$
- $\operatorname{Min}\left(\left(f_{3}-f_{2}\right)-(-1)\right)^{2} \Longrightarrow f_{3}{ }^{2}+f_{2}{ }^{2}+1-2 f_{3} f_{2}+2 f_{3}-2 f_{2}$
- $\operatorname{Min}\left(\left(f_{4}-f_{3}\right)-2\right)^{2} \quad \Longrightarrow f_{4}{ }^{2} f_{3}{ }^{2}+4-2 f_{3} f_{4}-4 f_{4}+4 f_{3}$
- $\operatorname{Min}\left(\left(f_{5}-f_{4}\right)-(-1)\right)^{2} \Longrightarrow f_{5}{ }^{2}+f_{4}{ }^{2}+1-2 f_{5} f_{4}+2 f_{5}-2 f_{4}$
- $\operatorname{Min}\left(\left(1-f_{5}\right)-(-1)\right)^{2} \Longrightarrow f_{5}{ }^{2}+4-4 f_{5}$

1D example: big quadratic

- Copy

- $\operatorname{Min}\left(f_{2}{ }^{2}+49-14 f_{2}\right.$
$+f_{3}{ }^{2}+f_{2}{ }^{2}+1-2 f_{3} f_{2}+2 f_{3}-2 f_{2}$
$+f_{4}{ }^{2}+f_{3}{ }^{2}+4-2 f_{3} f_{4}-4 f_{4}+4 f_{3}$
$+f_{5}{ }^{2}+f_{4}{ }^{2}+1-2 f_{5} f_{4}+2 f_{5}-2 f_{4}$
$+f_{5}{ }^{2}+4-4 f_{5}$)
Denote it Q

1D example: derivatives

- Copy

$\operatorname{Min}\left(f_{2}{ }^{2}+49-14 f_{2}\right.$

$$
+\mathbf{f}_{3}{ }^{2}+\mathbf{f}_{2}{ }^{2}+\mathbf{1}-\mathbf{2} \mathbf{f}_{\mathbf{3}} \mathbf{f}_{\mathbf{2}}+\mathbf{2} \mathbf{f}_{3}-\mathbf{2} \mathbf{f}_{\mathbf{2}} \quad \overline{d f_{2}}
$$

$$
\begin{aligned}
& +\mathbf{f}_{3}{ }^{2}+\mathbf{t}_{2}{ }^{2}+\mathbf{1}-2 \mathbf{t}_{3} \mathbf{t}_{\mathbf{2}}+2 \mathbf{t}_{3}-2 \mathbf{t}_{2} \\
& +\mathbf{f}_{4}{ }^{2} \mathbf{f}_{3}{ }^{2}+\mathbf{4}-\mathbf{2} \mathbf{f}_{3} \mathbf{f}_{4}-4 \mathbf{f}_{4}+\mathbf{4} \mathbf{f}_{3} \quad \frac{d Q}{d f_{3}}=2 f_{3}-2 f_{2}+4
\end{aligned}
$$

$$
\begin{array}{ll}
+\mathbf{f}_{5}{ }^{2}+\mathbf{f}_{4}{ }^{2}+\mathbf{1}-2 \mathbf{f}_{5} \mathbf{f}_{4}+2 \mathbf{f}_{5}-\mathbf{2} \mathbf{f}_{4} & \frac{d Q}{d f_{4}}=2 f_{4}-2 f_{3}-4+2 f_{4}-2 f_{5}-2 \\
\left.+\mathbf{f}_{5}{ }^{2}+\mathbf{4}-\mathbf{- 4} \mathbf{f}_{5}\right)
\end{array}
$$

Denote it \mathbf{Q}

$$
\frac{d Q}{d f_{5}}=2 f_{5}-2 f_{4}+2+2 f_{5}-4
$$

1D example: set derivatives to zerio

- Copy

$$
\begin{aligned}
& \frac{d Q}{d f_{2}}=2 f_{2}+2 f_{2}-2 f_{3}-16 \\
& \frac{d Q}{d f_{3}}=2 f_{3}-2 f_{2}+2+2 f_{3}-2 f_{4}+4 \\
& \frac{d Q}{d f_{4}}=2 f_{4}-2 f_{3}-4+2 f_{4}-2 f_{5}-2 \\
& \frac{d Q}{d f_{5}}=2 f_{5}-2 f_{4}+2+2 f_{5}-4
\end{aligned}
$$

$$
=\Rightarrow\left(\begin{array}{cccc}
4 & -2 & 0 & 0 \\
-2 & 4 & -2 & 0 \\
0 & -2 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right)\left(\begin{array}{c}
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right)=\left(\begin{array}{c}
16 \\
-6 \\
6 \\
2
\end{array}\right)
$$

1D example

$$
\left(\begin{array}{cccc}
4 & -2 & 0 & 0 \\
-2 & 4 & -2 & 0 \\
0 & -2 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right)\left(\begin{array}{c}
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right)=\left(\begin{array}{c}
16 \\
-6 \\
6 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
5 \\
3
\end{array}\right)
$$

1D example: remarks

- Matrix is sparse
- Matrix is symmetric
- Everything is a multiple of 2
- because square and derivative of square
- Matrix is a convolution (kernel -2 4-2)
- Matrix is independent of gradient field. Only RHS is
- Matrix is a second derivative

Basics

- Images as scalar fields

$$
-R^{2}->R
$$

Gradients

- Vector field (gradient field)
- Derivative of a scalar field
- Direction
- Maximum rate of change of scalar field
- Magnitude
- Rate of change

Gradient Field

- Components of gradient
- Partial derivatives of scalar field

$$
I(x, y)
$$

$$
\nabla I=\left\{\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right\}
$$

$$
I(x, y, t)
$$

$$
\nabla I=\left\{\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}, \frac{\partial I}{\partial t}\right\}
$$

Example

Image
I(x, y)

I_{x}

I_{y}

Gradient at x, y as Forward Differences

$$
\begin{aligned}
G_{x}(x, y) & =I(x+1, y)-I(x, y) \\
G_{y}(x, y) & =I(x, y+1)-I(x, y) \\
G(x, y) & =\left(G_{x}, G_{y}\right)
\end{aligned}
$$

Reconstruction from Gradients

Sanity Check: Recovering Original Image

Reconstruction from Gradients

Given

$$
G(x, y)=\left(G_{x}, G_{y}\right)
$$

How to compute $I(x, y)$ for the image ?
For n^{2} image pixels, $2 n^{2}$ gradients!

2D Integration is non-trivial

Reconstruction depends on chosen path

Reconstruction from Gradient Fielidex

- Look for image I with gradient closest to G in the least squares sense.
- I minimizes the integral: $\iint F(\nabla I, G) d x d y$

$$
F(\nabla I, G)=\|\nabla I-G\|^{2}=\left(\frac{\partial I}{\partial x}-G_{x}\right)^{2}+\left(\frac{\partial I}{\partial y}-G_{y}\right)^{2}
$$

Poisson Equation

$$
\nabla^{2} I=\operatorname{div}\left(G_{x}, G_{y}\right)=\frac{\partial G_{x}}{\partial x}+\frac{\partial G_{y}}{\partial x}
$$

Second order PDE

Boundary Conditions

- Dirichlet: Function values at boundary are known

$$
I(x, y)=I_{0}(x, y) \forall(x, y) \in \partial \Omega
$$

- Neumann: Derivative normal to boundary $=0$

$$
\nabla I(x, y) \bullet n(x, y)=0, \forall(x, y) \in \partial \Omega
$$

Numerical Solution

- Discretize Laplacian

$$
\begin{aligned}
& \nabla^{2} \longrightarrow\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& \nabla^{2} I=\operatorname{div}\left(G_{x}, G_{y}\right)=u(x, y) \\
& -4 I(x, y)+I(x, y+1)+I(x, y-1)+I(x+1, y)+I(x-1, y)=h^{2} u(x, y) \\
& \mathrm{h}=\text { grid size }
\end{aligned}
$$

Linear System

$-4 I(x, y)+I(x, y+1)+I(x, y-1)+I(x+1, y)+I(x-1, y)=u(x, y)$

A
x
b

Sparse Linear system

$\left[\begin{array}{ccccccccccccc} & & 1 & -4 & 1 & & & & 1 & & & & \\ & & & 1 & -4 & 1 & & & & 1 & & & \\ 1 & & & & 1 & -4 & 1 & & & & 1 & & \\ & 1 & & & & 1 & -4 & 1 & & & & 1 & \\ & 1 & & & & 1 & -4 & 1 & & & & 1 \\ & & & 1 & & & & 1 & -4 & 1 & & & \\ & & & 1 & & & & 1 & -4 & 1 & & \end{array}\right]$

A matrix

Solving Linear System

- Image size $\mathrm{N}^{*} \mathrm{~N}$
- Size of $A \sim N^{2}$ by N^{2}
- Impractical to form and store A
- Direct Solvers
- Basis Functions
- Multigrid
- Conj ugate Gradients

Approximate Solution for Large Scale Digivex
 Problems

- Resolution is increasing in digital cameras
- Stitching, Alignment requires solving large linear system

Gradient-domain compositing

$$
\begin{gathered}
I_{i, j}-I_{i+1, j}=\nabla_{x} \text { Composite } \\
I_{i, j}-I_{i, j+1}=\nabla_{y} \text { Composite } \\
\end{gathered}
$$

Scalability problem

Scalability problem

50 million element vectors!

Approximate Solution

- Reduce size of linear system
- Handle high resolution images
- Part of Photoshop CS3

Aseem Agarwala. "Efficient gradient-domain compositing using quadtrees," ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007)

The key insight

Desired
solution X

Initial
Solution X_{0}

Difference
x_{δ}

DigivFX

Quadtree decomposition

- Maximally subdivide quadtree along seams
- Variables placed at node corners
- Restricted quadtree
- Bi-linear interpolation reconstructs full solution
- Square nodes

Reduced space

$$
\begin{gathered}
\mathrm{X} \\
n \text { variables }
\end{gathered}
$$

$\underset{m \text { variables }}{\mathrm{y}}$

$$
m \ll n
$$

Reduced space

$$
\begin{gathered}
\mathrm{X} \\
n \text { variables }
\end{gathered}
$$

$\underset{m \text { variables }}{\mathrm{y}}$
x = Sy

Performance

\square Quadtree [Agarwala 07]
Hierarchical basis preconditioning [Szeliski 90]
Locally-adapted hierarchical basis preconditioning [Szeliski 06]

Cut-and-paste

Cut-and-paste

Intensity Gradient Manipulation

A Common Pipeline

Gradient Domain Manipulations: Overview

(A) Per pixel
(B) Corresponding gradients in two images
(C) Corresponding gradients in multiple images
(D) Combining gradients along seams

Gradient Domain Manipulations: over|igivx

(A) Per pixel

- Non-linear operations (HDR compression, local illumination change)
- Set to zero (shadow removal, intrinsic images, texture de-emphasis)
- Poisson Matting
(B) Corresponding gradients in two images
- Vector operations (gradient projection)
- Combining flash/ no-flash images, Reflection removal
- Projection Tensors
- Reflection removal, Shadow removal
- Max operator
- Day/ Night fusion, Visible/ IR fusion, Extending DoF
- Binary, choose from first or second, copying
- Image editing, seamless cloning

Gradient Domain Manipulations

DigjVFX
(C) Corresponding gradients in multiple images

- Median operator
- Specularity reduction
- Intrinsic images
- Max operation
- Extended DOF
(D) Combining gradients along seams
- Weighted averaging
- Optimal seam using graph cut
- Image stitching, Mosaics, Panoramas, Image fusion
- A usual pipeline: Graph cut to find seams + gradient domain fusion

A. Per Pixel Manipulations

- Non-linear operations
- HDR compression, local illumination change

- Set to zero
- Shadow removal, intrinsic images, texture de-emphasis
- Poisson Matting

High Dynamic Range Imaging

Images from Raanan Fattal

Gradient Domain Compression

Local Illumination Change

Original Image: \mathfrak{f}

$$
\mathbf{v}=\alpha^{\beta}\left|\nabla f^{*}\right|^{-\beta} \nabla f^{*}
$$

Illumination Invariant Image

Original Image

Illumination invariant image

- Assumptions
- Sensor response = delta functions R, G, B in wavelength spectrum
- Illumination restricted to Outdoor Illumination
G. D. Finlayson, S.D. Hordley \& M.S. Drew, Removing Shadows From Images, ECCV 2002

Shadow Removal Using Illumination Invariant Image

Illumination invariant image

[^0]
Intrinsic Image

- Photo =Illumination Image * Intrinsic Image
- Retinex [Land \& McCann 1971, Horn 1974]
- Illumination is smoothly varying
- Reflectance, piece-wise constant, has strong edges
- Keep strong image gradients, integrate to obtain reflectance low-frequency high-frequency attenuate more attenuate less

Poisson Matting

Trimap: User specified

Poisson Matting

$$
I=\alpha F+(1-\alpha) B
$$

$$
\nabla I=(F-B) \nabla \alpha+\alpha \nabla F+(1-\alpha) \nabla B
$$

Approximate: Assume F and B are smooth

$$
\begin{aligned}
& \nabla I=(F-B) \nabla \alpha \\
& \nabla \alpha \approx \frac{1}{F-B} \nabla I
\end{aligned}
$$

$$
\Delta \alpha=\operatorname{div}\left(\frac{\nabla I}{F-B}\right)
$$

F and B in tri-map using nearest pixels

Poisson Equation

Poisson Matting

- Steps
- Approximate F and B in trimap Ω
- Solve for $\alpha \quad \Delta \alpha=\operatorname{div}\left(\frac{\nabla I}{F-B}\right)$
- Refine F and B using α
- Iterate

Gradient Domain Manipulations: Overview

(A) Per pixel
(B) Corresponding gradients in two images
(C) Corresponding gradients in multiple images
(D) Combining gradients along seams

Self-Reflections and Flash Hotspot

Ambient
Flash

Result
Reflection Layer

Flash

Intensity Gradient Vectors in Flash and Ambient Imaceas
Same gradient vector direction

Flash Gradient Vector

No reflections

Different gradient vector direction

With reflections

Intensity Gradient Vector Projection

Image Fusion for Context Enhancement and Video Surrealism

Ramesh Raskar
Mitsubishi Electric
Research Labs, (MERL)

Adrian Ilie
Jingyi Yu

Day Image

Mask is automatically computed from scene contrast

But, Simple Pixel Blending Creates Ugly Artifacts

Nighttime image

Importance image W

Daytime image

Gradient field

Gradient field

Reconstruction from Gradient Field

- Problem: minimize error $\left|\nabla l^{\prime}-G\right|$
- Estimate I' so that

$$
\mathrm{G}=\nabla \mathrm{I}^{\prime}
$$

- Poisson equation

$$
\nabla^{2} I^{\prime}=\operatorname{div} G
$$

- Full multigrid solver

G^{Y}

Poisson Image Editing:

 Inserting Objects- Precise selection: tedious and unsatisfactory
- Alpha-Matting: powerful but involved
- Searnless cloning: loose selection but no seams?

Smooth Correction: Copying

Gradients

Conceal

Copy Background gradients (user strokes)

Digivex
 Compose: Copy gradients from Source

 Images to Target Image

Source Images

Target Image

Transparent Cloning

$$
\mathbf{v}=\frac{\nabla f^{*}+\nabla g}{*}
$$

Largest variation from source and destination at each point

Compose (transparent)

Gradient Domain Manipulations: Overview

(A) Per pixel
(B) Corresponding gradients in two images
(C) Corresponding gradients in multiple images
(D) Combining gradients along seams

Intrinsic images: Median of Gradient Digivex

operator

- $\mathrm{I}=\mathrm{L}$ * R
- $L=$ illumination image
- $\mathrm{R}=$ reflectance image

Intrinsic images

- Use multiple images under different illumination
- Assumption
- Illumination image gradients = Laplacian PDF
- Under Laplacian PDF, Median =ML estimator
- At each pixel, take Median of gradients across images
- Integrate to remove shadows

Result $=$ Illumination Image * (Label in Intrinsic Image)

Specularity Reduction in Active

Line Specularity

Point Specularity

Area Specularity

Multiple images with same viewpoint, varying illumination How do we remove highlights?

Gradient Domain Manipulations: Overview

(A) Per pixel
(B) Corresponding gradients in two images
(C) Corresponding gradients in multiple images
(D) Combining gradients along seams

Seamless Image Stitching

Input image 1_{1}

Input image I_{2}

Pasting of I_{1} and I_{2}

Stitching result

Anat Levin, Assaf Zomet, Shmuel Peleg and Yair Weiss, "Seamless Image Stitching in the Gradient Domain", ECCV 2004

[^0]: G. D. Finlayson, S.D. Hordley \& M.S. Drew, Removing Shadows From Images, ECCV 2002

