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Computational photography

wikipedia:
Computational photography refers broadly to 
computational imaging techniques that enhance 
or extend the capabilities of digital photography. 
The output of these techniques is an ordinary 
photograph, but one that could not have been 
taken by a traditional camera. 



What is computational photography

• Convergence of image processing, computer 
vision, computer graphics and photography

• Digital photography:
– Simply mimics traditional sensors and recording by 

digital technology
– Involves only simple image processing

• Computational photography
– More elaborate image manipulation, more 

computation
– New types of media (panorama, 3D, etc.)
– Camera design that take computation into account



Computational photography

• One of the most exciting fields.
• Symposium on Computational Photography and 

Video, 2005 
• Full-semester courses in MIT, CMU, Stanford, 

GaTech, University of Delaware 
• A new book by Raskar and Tumblin in SIGGRAPH 

2007.



Siggraph 2006 Papers (16/86=18.6%)
Hybrid Images
Drag-and-Drop Pasting
Two-scale Tone Management for Photographic Look
Interactive Local Adjustment of Tonal Values
Image-Based Material Editing
Flash Matting
Natural Video Matting using Camera Arrays
Removing Camera Shake From a Single Photograph
Coded Exposure Photography: Motion Deblurring
Photo Tourism: Exploring Photo Collections in 3D
AutoCollage
Photographing Long Scenes With Multi-Viewpoint Panoramas
Projection Defocus Analysis for Scene Capture and Image Display
Multiview Radial Catadioptric Imaging for Scene Capture
Light Field Microscopy
Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination



Siggraph 2007 Papers (23/108=21.3%)
Image Deblurring with Blurred/Noisy Image Pairs 
Photo Clip Art
Scene Completion Using Millions of Photographs
Soft Scissors: An Interactive Tool for Realtime High Quality Matting
Seam Carving for Content-Aware Image Resizing
Detail-Preserving Shape Deformation in Image Editing
Veiling Glare in High Dynamic Range Imaging
Do HDR Displays Support LDR content? A Psychophysical Evaluation
Ldr2hdr: On-the-fly Reverse Tone Mapping of Legacy Video and Photographs
Rendering for an Interactive 360-Degree Light Field Display
Multiscale Shape and Detail Enhancement from Multi-light Image Collections
Post-Production Facial Performance Relighting Using Reflectance Transfer
Active Refocusing of Images and Videos
Multi-aperture Photography
Dappled Photography: Mask-Enhanced Cameras for Heterodyned Light Fields and Coded 

Aperture Refocusing
Image and Depth from a Conventional Camera with a Coded Aperture
Capturing and Viewing Gigapixel Images
Efficient Gradient-Domain Compositing Using Quadtrees
Image Upsampling via Imposed Edges Statistics
Joint Bilateral Upsampling
Factored Time-Lapse Video
Computational Time-Lapse Video
Real-Time Edge-Aware Image Processing With the Bilateral Grid



Scope

• We can’t yet set its precise definition. The 
following are scopes of what researchers are 
exploring in this field.
– Record a richer visual experience
– Overcome long-standing limitations of conventional 

cameras
– Enable new classes of visual signal
– Enable synthesis impossible photos



Scope

• Image formation 

• Color and color 
perception 

• Demosaicing



Scope
• Panoramic imaging 

• Image and video registration 

• Spatial warping operations 



Scope
• High Dynamic 

Range Imaging 
• Bilateral 

filtering and 
HDR display 

• Matting 



Scope

• Active flash methods 
• Lens technology 
• Depth and defocus 

No-flash

Flash

our 
result



Removing Photography Artifacts using Gradient 
Projection and Flash-Exposure Sampling



Continuous flash

Flash = 0.0

Flash = 0.3 Flash = 0.7 Flash = 1.4

Flash = 1.0



Flash matting



Depth Edge Detection and Stylized 
Rendering Using a Multi-Flash Camera



Motion-Based Motion Deblurring



Removing Camera Shake from a 
Single Photograph



Motion Deblurring using Fluttered Shutter



Scope
• Future cameras 
• Plenoptic function and light fields 



Scope
• Gradient image manipulation 



Scope

• Taking great pictures 

Art Wolfe Ansel Adams



Scope

• Non-parametric 
image synthesis, 
inpainting, 
analogies 



Scope

Motion 
analysis 



Image Inpainting



Object Removal by 
Exemplar-Based Inpainting



Image Completion with 
Structure Propagation



Lazy snapping



Grab Cut - Interactive Foreground 
Extraction using Iterated Graph Cuts



Image Tools

• Graph cuts, 
– Segmentation and mosaicing

• Gradient domain operations, 
– Tone mapping, fusion and matting

• Bilateral and Trilateral filters, 
– Denoising, image enhancement



Graph cut



Graph cut
• Interactive image segmentation using graph cut
• Binary label: foreground vs. background
• User labels some pixels 

– similar to trimap, usually sparser

• Exploit
– Statistics of known Fg & Bg
– Smoothness of label

• Turn into discrete graph optimization
– Graph cut (min cut / max flow)

F

B

F

F F

F B

B

B



Energy function
• Labeling: one value per pixel, F or B
• Energy(labeling) = data + smoothness

– Very general situation
– Will be minimized

• Data: for each pixel
– Probability that this color belongs to F (resp. B)
– Similar in spirit to Bayesian matting

• Smoothness (aka regularization): 
per neighboring pixel pair
– Penalty for having different label
– Penalty is downweighted if the two 

pixel colors are very different
– Similar in spirit to bilateral filter

One labeling
(ok, not best)

Data

Smoothness



Data term
• A.k.a regional term 

(because integrated over full region)

• D(L)=Σi -log h[Li](Ci)
• Where i is a pixel 

Li is the label at i (F or B), 
Ci is the pixel value
h[Li] is the histogram of the observed Fg
(resp Bg)

• Note the minus sign



Hard constraints
• The user has provided some labels
• The quick and dirty way to include 

constraints into optimization is to replace the 
data term by a huge penalty if not respected. 

• D(L_i)=0 if respected
• D(L_i)=K if not respected

– e.g. K=- #pixels



Smoothness term
• a.k.a boundary term, a.k.a. regularization

• S(L)=Σ{j, i} in N B(Ci,Cj) δ(Li-Lj) 
• Where i,j are neighbors 

– e.g. 8-neighborhood 
(but I show 4 for simplicity)

• δ(Li-Lj) is 0 if Li=Lj, 1 otherwise
• B(Ci,Cj) is high when Ci and Cj are similar, low if 

there is a discontinuity between those two pixels
– e.g. exp(-||Ci-Cj||2/2σ2)
– where σ can be a constant 

or the local variance
• Note positive sign



Optimization
• E(L)=D(L)+λ S(L)
• λ is a black-magic constant
• Find the labeling that minimizes E
• In this case, how many possibilities?

– 29 (512)
– We can try them all!
– What about megapixel images?



Labeling as a graph problem
• Each pixel = node
• Add two nodes F & B
• Labeling: link each pixel to either F or B

F

B

Desired result



Data term
• Put one edge between each pixel and F & G
• Weight of edge = minus data term

– Don’t forget huge weight for hard constraints
– Careful with sign

B

F



Smoothness term
• Add an edge between each neighbor pair
• Weight = smoothness term 

B

F



Min cut
• Energy optimization equivalent to min cut
• Cut: remove edges to disconnect F from B
• Minimum: minimize sum of cut edge weight

B

F cut



Min cut <=> labeling
• In order to be a cut:

– For each pixel, either the F or G edge has to be cut

• In order to be minimal
– Only one edge label 

per pixel can be cut 
(otherwise could 
be added)

B

F cut



Computing a multiway cut

• With 2 labels:  classical min-cut problem
– Solvable by standard flow algorithms

• polynomial time in theory, nearly linear in practice

– More than 2 terminals: NP-hard 
[Dahlhaus et al., STOC ‘92]

• Efficient approximation algorithms exist
– Within a factor of 2 of optimal
– Computes local minimum in a strong sense

• even very large moves will not improve the energy
– Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy 

Minimization via Graph Cuts, International Conference on Computer 
Vision, September 1999.



Move examples

Starting point

Red-blue swap move

Green expansion move



GrabCutGrabCut
Interactive Foreground Extraction Interactive Foreground Extraction 

using Iterated Graph Cutsusing Iterated Graph Cuts

CarstenCarsten RotherRother
Vladimir Kolmogorov Vladimir Kolmogorov 

Andrew BlakeAndrew Blake

Microsoft Research CambridgeMicrosoft Research Cambridge--UKUK



Demo

• video



Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian 
Curless, David Salesin, Michael Cohen, “Interactive Digital Photomontage”, SIGGRAPH 2004

• Combining multiple photos

• Find seams using graph cuts

• Combine gradients and integrate















actual photomontageset of originals perceived



Source images Brush strokes Computed labeling

Composite



Brush strokes Computed labeling



Interactive Digital Photomontage
• Extended 

depth of 
field



Interactive Digital Photomontage
• Relighting



Interactive Digital Photomontage



Interactive Digital Photomontage

Gradient-domain fusion
Poisson image editing



Demo

• video



Gradient domain operators



Gradient Domain Manipulations

Estimation
of Gradients

Manipulation of 
Gradients

Non-Integrable
Gradient Fields

Reconstruction 
from 

Gradients

Images/Videos/
Meshes/Surfaces

Images/Videos/
Meshes/Surfaces



Grad X

Grad Y

2D 
Integration

Image Intensity Gradients in 2D

Solve 
Poisson Equation, 
2D linear system



Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline

1. Gradient manipulation

2. Reconstruction from gradients



Example Applications

Removing Glass Reflections

Seamless Image Stitching



Image Editing

Changing Local Illumination



High Dynamic Range Compression

Original PhotoshopGrey Color2Gray
Color to Gray Conversion



Edge Suppression under Significant Illumination Variations

Fusion of day and night images



Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline



Intensity Gradient in 1D

I(x)
1

105

G(x)
1

105
Intensity Gradient

Gradient at x,
G(x)    =    I(x+1)- I(x)

Forward Difference



Reconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

?
?

For  n intensity values, about  n gradients 



Reconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

1D Integration

I(x)  =  I(x-1)  +  G(x)

Cumulative sum

?



1D case with constraints

Seamlessly paste onto

Just add a linear function so that the boundary condition is respected



Discrete 1D example: minimization
• Copy to

• Min ((f2-f1)-1)2

• Min ((f3-f2)-(-1))2

• Min ((f4-f3)-2)2

• Min ((f5-f4)-(-1))2

• Min ((f6-f5)-(-1))2

0
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1 2 3 4 5 6 7
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-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

With 
f1=6
f6=1



1D example: minimization
• Copy to

• Min ((f2-6)-1)2 ==> f2
2+49-14f2

• Min ((f3-f2)-(-1))2 ==> f3
2+f2

2+1-2f3f2 +2f3-2f2

• Min ((f4-f3)-2)2 ==> f4
2+f3

2+4-2f3f4 -4f4+4f3

• Min ((f5-f4)-(-1))2 ==> f5
2+f4

2+1-2f5f4 +2f5-2f4

• Min ((1-f5)-(-1))2 ==> f5
2+4-4f5
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0
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? ? ? ?



1D example: big quadratic
• Copy to

• Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5) 

Denote it Q
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1D example: derivatives
• Copy to

0
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Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5) 

Denote it Q



1D example: set derivatives to zero
• Copy to

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7
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0
1 2 3 4 5 6 7

? ? ? ?

==>



1D example
• Copy to

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7



1D example: remarks
• Copy to

• Matrix is sparse
• Matrix is symmetric 
• Everything is a multiple of 2  

– because square and derivative of square

• Matrix is a convolution (kernel -2 4 -2)
• Matrix is independent of gradient field. Only RHS is
• Matrix is a second derivative

0
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Basics
• Images as scalar fields

– R2  -> R



Gradients
• Vector field (gradient field)

– Derivative of a scalar field

• Direction
– Maximum rate of change of scalar field

• Magnitude
– Rate of change



Gradient Field
• Components of gradient

– Partial derivatives of 
scalar field 
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Example

Image 
I(x,y) Ix Iy

Gradient at x,y as Forward Differences 
Gx(x,y)    =    I(x+1  , y)- I(x,y)
Gy(x,y)    =    I(x ,  y+1)- I(x,y)

G(x,y) = (Gx , Gy)



Ix

Iy

2D 
Integration

Reconstruction from Gradients
Sanity Check: 

Recovering Original Image

Solve 
Poisson Equation 
2D linear system

Same



Reconstruction from Gradients

Given G(x,y) = (Gx , Gy)

How to compute I(x,y) for the image ?

For n 2 image pixels,  2 n 2 gradients !

Gx

Gy

2D 
Integration



2D Integration is non-trivial

df/dx f(x)

f(x,y)

x

y

Reconstruction depends on chosen path



Reconstruction from Gradient Field G



Poisson Equation

x
G

x
G),Gdiv(GI yx

yx ∂

∂
+

∂
∂

==∇2

Second order PDE



Boundary Conditions
• Dirichlet: Function values at boundary are 

known

• Neumann: Derivative normal to boundary = 0

Ω∂

Ω∂∈∀=•∇ ),(,0),(),( yxyxnyxI

Ω∂∈∀= ),(),(),( 0 yxyxIyxI

n



Numerical Solution
• Discretize Laplacian
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h = grid size



Linear System

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

−

−

.

.

.

.

.

.

.
),(

.

.

.

.

.

.

.

.
),1(

.

.

.
)1,(

),(
)1,(

.

.

.
),1(

.

.

yxu

yxI

yxI
yxI

yxI

yxI

x,y

[ ].1...141...1. −

H

H
x,y-1

A x b

x-1,yH

W

),(),1(),1()1,()1,(),(4 yxuyxIyxIyxIyxIyxI =−+++−+++−



Sparse Linear system
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Solving Linear System
• Image size N*N

• Size of A   ~  N2 by N2

• Impractical to form and store A

• Direct Solvers
• Basis Functions
• Multigrid
• Conjugate Gradients



Approximate Solution for Large Scale 
Problems
• Resolution is increasing in digital cameras

• Stitching, Alignment requires solving large 
linear system



xR xG xB

yR yG yB

[Perez et al. 03]

Gradient-domain compositing

Sources

xComposite

yComposite



Ii, j – Ii+1, j =    xComposite

Gradient-domain compositing

Ii, j – Ii, j+1 =    yComposite

=A x b



Scalability problem

50 Megapixel Panorama

10  X  10 MP  X  50% overlap  =

=A x b



Scalability problem

50 million element vectors!

=A x b



Approximate Solution
• Reduce size of linear system
• Handle high resolution images

• Part of Photoshop CS3

Aseem Agarwala. "Efficient gradient-domain compositing using quadtrees," ACM Transactions on 
Graphics (Proceedings of SIGGRAPH 2007)



The key insight

_

=

Initial 
Solution x0

Desired 
solution x

Difference 
xδ





Quadtree decomposition



• Maximally subdivide quadtree along seams
• Variables placed at node corners
• Restricted quadtree
• Bi-linear interpolation reconstructs full solution
• Square nodes



y
m variables

Reduced space

x
n variables

m << n



y
m variables

Reduced space

x
n variables

x = Sy



x = Sy



x = Sy



x = Sy



x = Sy



Performance

Quadtree [Agarwala 07]
Hierarchical basis preconditioning [Szeliski 90]
Locally-adapted hierarchical basis preconditioning [Szeliski 06] 
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Cut-and-paste



Cut-and-paste



Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline



Gradient Domain Manipulations: Overview

(A)  Per pixel

(B) Corresponding gradients in two images

(C) Corresponding gradients in multiple images

(D) Combining gradients along seams



Gradient Domain Manipulations: Overview
(A)  Per pixel

– Non-linear operations (HDR compression, local illumination change)

– Set to zero (shadow removal, intrinsic images, texture de-emphasis)

– Poisson Matting

(B)  Corresponding gradients in two images

– Vector operations (gradient projection)
• Combining flash/no-flash images, Reflection removal

– Projection Tensors
• Reflection removal, Shadow removal

– Max operator
• Day/Night fusion, Visible/IR fusion, Extending DoF

– Binary, choose from first or second, copying
• Image editing, seamless cloning



Gradient Domain Manipulations
(C)  Corresponding gradients in multiple images

– Median operator
• Specularity reduction
• Intrinsic images

– Max operation
• Extended DOF 

(D)  Combining gradients along seams
– Weighted averaging
– Optimal seam using graph cut

• Image stitching, Mosaics, Panoramas, Image fusion
• A usual pipeline:  Graph cut to find seams + gradient domain fusion



A.  Per Pixel Manipulations
• Non-linear operations 

– HDR compression, local illumination change

• Set to zero
– Shadow removal, intrinsic images, texture de-emphasis

• Poisson Matting



High Dynamic Range Imaging

Images from Raanan Fattal



Gradient Domain Compression

HDR 
Image L Log L

Gradient Attenuation 
Function G

Multiply 2D 
Integration

Gradients 
Lx,Ly



Local Illumination Change

Original gradient field: 

Original Image: f

*f∇

Modified gradient field:  v

Perez et al. Poisson Image editing, SIGGRAPH 2003



Illumination Invariant Image

G. D. Finlayson, S.D. Hordley & M.S. Drew, Removing Shadows From Images, ECCV 2002

Original Image Illumination invariant image

• Assumptions
– Sensor response = delta functions R, G, B in wavelength spectrum
– Illumination restricted to Outdoor Illumination



Shadow Removal Using Illumination 
Invariant Image

G. D. Finlayson, S.D. Hordley & M.S. Drew, Removing Shadows From Images, ECCV 2002

Original Image

Illumination invariant image

Shadow Edge 
Locations

Edge Map
Integrate



Illumination invariant image

Detected 
Shadow 
Edges

Original
Image

Invariant
Image

Shadow 
Removed

G. D. Finlayson, S.D. Hordley & M.S. Drew, Removing Shadows From Images, ECCV 2002



Intrinsic Image
• Photo = Illumination Image * Intrinsic Image

• Retinex [Land & McCann 1971, Horn 1974]

– Illumination is smoothly varying
– Reflectance, piece-wise constant, has strong edges
– Keep strong image gradients, integrate to obtain reflectance

low-frequency
attenuate more

high-frequency
attenuate less



Poisson Matting

Trimap: User specified
Foreground F

Background B

Alpha

Jian Sun, Jiaya Jia, Chi-Keung Tang, Heung-Yeung Shum, Poisson Matting, SIGGRAPH 2004



Poisson Matting

Approximate: Assume F and B are smooth

Poisson EquationF and B in tri-map using 
nearest pixels



Poisson Matting
• Steps

– Approximate F and B in trimap

– Solve for         ,

– Refine F and B using 

– Iterate



Gradient Domain Manipulations: Overview

(A)  Per pixel

(B) Corresponding gradients in two images

(C) Corresponding gradients in multiple images

(D) Combining gradients along seams



Ambient Flash
Self-Reflections and Flash Hotspot

Hands

Face

Tripod



ResultAmbient

Flash

Reflection LayerReflection Layer

Hands

Face

Tripod



Intensity Gradient Vectors in Flash and Ambient Images

Same gradient 
vector direction Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections



Reflection Ambient Gradient 
Vector

Different gradient 
vector direction

With reflections

Ambient Flash

Flash Gradient Vector



Residual 
Gradient 
Vector

Intensity Gradient Vector Projection

Result Gradient Vector

Result Residual

Reflection Ambient Gradient 
Vector

Flash Gradient Vector

Ambient Flash



Flash
Projection =

Result      
Residual =

Reflection Layer Ambient



Flash

Ambient

Checkerboard 
outside glass window

Reflections on 
glass window



removed

2D 

Integration

Flash

Ambient

X

Y

X

Y

Forward 
Differences

Intensity Gradient 

Vector Projection

Intensity Gradient 

Vector Projection

Result X

Result Y

Result

2D Integration

Gradient 
Difference

Residual X

Residual Y

Reflection 
Layer 

Result

Checkerboard

Checkerboard



Image Fusion for 
Context Enhancement
and Video Surrealism

Adrian Adrian IlieIlie

UNC Chapel HillUNC Chapel Hill

Ramesh RaskarRamesh Raskar

Mitsubishi Electric Mitsubishi Electric 
Research Labs,Research Labs,

(MERL)(MERL)

JingyiJingyi YuYu

MITMIT





Dark Bldgs

Reflections on 
bldgs

Unknown 
shapes



‘Well-lit’ Bldgs

Reflections in 
bldgs windows

Tree, Street 
shapes



Background is captured from day-time 
scene using the same fixed camera 

Night Image 

Day Image

Context Enhanced Image 



Mask is automatically computed from 
scene contrast 



But, Simple Pixel Blending Creates 
Ugly Artifacts 



Pixel Blending



Pixel Blending

Our Method:
Integration of 

blended Gradients



Nighttime imageNighttime image

Daytime imageDaytime image Gradient fieldGradient field

Importance Importance 
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Reconstruction from Gradient Field
• Problem: minimize error |∇ I’ – G|
• Estimate I’ so that

G = ∇ I’

• Poisson equation

 ∇ 2 I’ = div G

• Full multigrid
solver

II’’

GGXX

GGYY



Poisson Image Editing: 
Inserting Objects
Poisson Image Editing: 
Inserting Objects

– Precise selection: tedious and unsatisfactory 

– Alpha-Matting: powerful but involved

– Seamless cloning: loose selection but no seams?

– Precise selection: tedious and unsatisfactory 

– Alpha-Matting: powerful but involved

– Seamless cloning: loose selection but no seams?



Smooth Correction: Copying 
Gradients
Smooth Correction: Copying 
Gradients

g f*



ConcealConceal

Copy Background gradients (user strokes)



Compose: Copy gradients from Source 
Images to Target Image
Compose: Copy gradients from Source 
Images to Target Image

Target ImageSource Images



Transparent CloningTransparent Cloning

Largest variation from source and destination at each 
point



Compose (transparent)Compose (transparent)



Gradient Domain Manipulations: Overview

(A)  Per pixel

(B) Corresponding gradients in two images

(C) Corresponding gradients in multiple images

(D) Combining gradients along seams



Intrinsic images: Median of Gradient 
operator
• I = L * R
• L = illumination image
• R = reflectance image



Intrinsic images

– Use multiple images under different illumination
– Assumption

• Illumination image gradients = Laplacian PDF
• Under Laplacian PDF, Median = ML estimator

– At each pixel, take Median of gradients across 
images

– Integrate to remove shadows

Yair Weiss, “Deriving intrinsic images from image sequences”, ICCV 2001



Result = Illumination Image * (Label in Intrinsic Image)

Shadow free 
Intrinsic Image



Specularity Reduction in Active 
Illumination

Point SpecularityLine Specularity Area Specularity

Multiple images with same viewpoint, varying illumination

How do we remove highlights?



Specularity Reduced 
Image



Gradient Domain Manipulations: Overview

(A)  Per pixel

(B) Corresponding gradients in two images

(C) Corresponding gradients in multiple images

(D) Combining gradients along seams



Seamless Image Stitching

Anat Levin, Assaf Zomet, Shmuel Peleg and Yair Weiss, “Seamless Image Stitching in the 
Gradient Domain”, ECCV 2004


