Bilateral Filters

Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/5/27

with slides by Fredo Durand, Ramesh Raskar, Sylvain Paris, Soonmin Bae

DigiVFX

Bilateral filtering

[Ben Weiss, Siggraph 2006]

Announcements

- Final project proposal
- Project #3 artifacts voting

Image Denoising

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

Smoothing an image without blurring its edges.

DigiVFX

A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
 - All have their pros and cons.
- Bilateral filter
 - not always the best result [Buades 05] but often good

DigiVFX

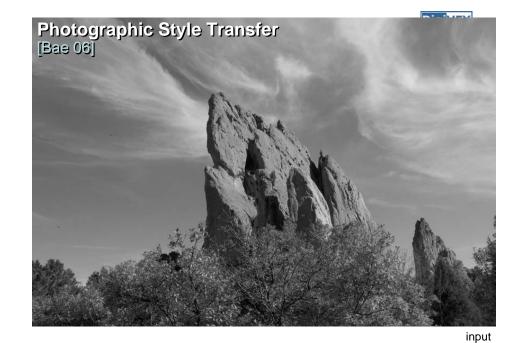
DigiVFX

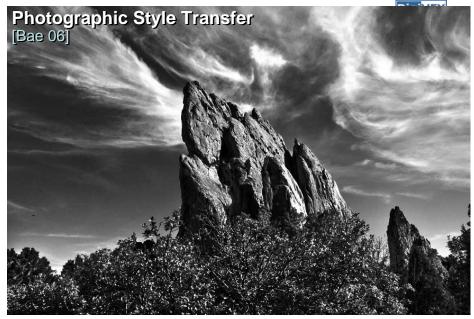
- easy to understand, adapt and set up

Basic denoising

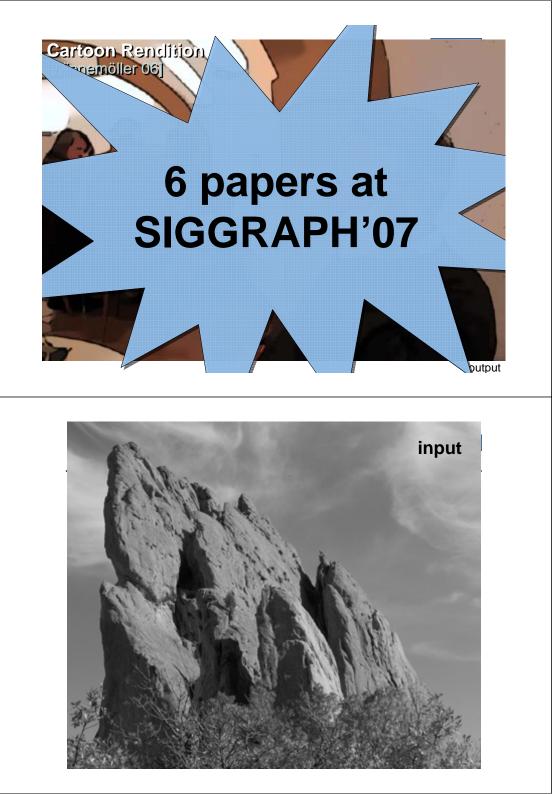
Basic denoising

output

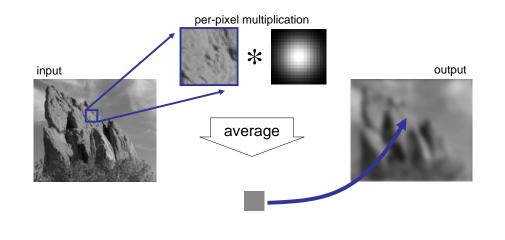


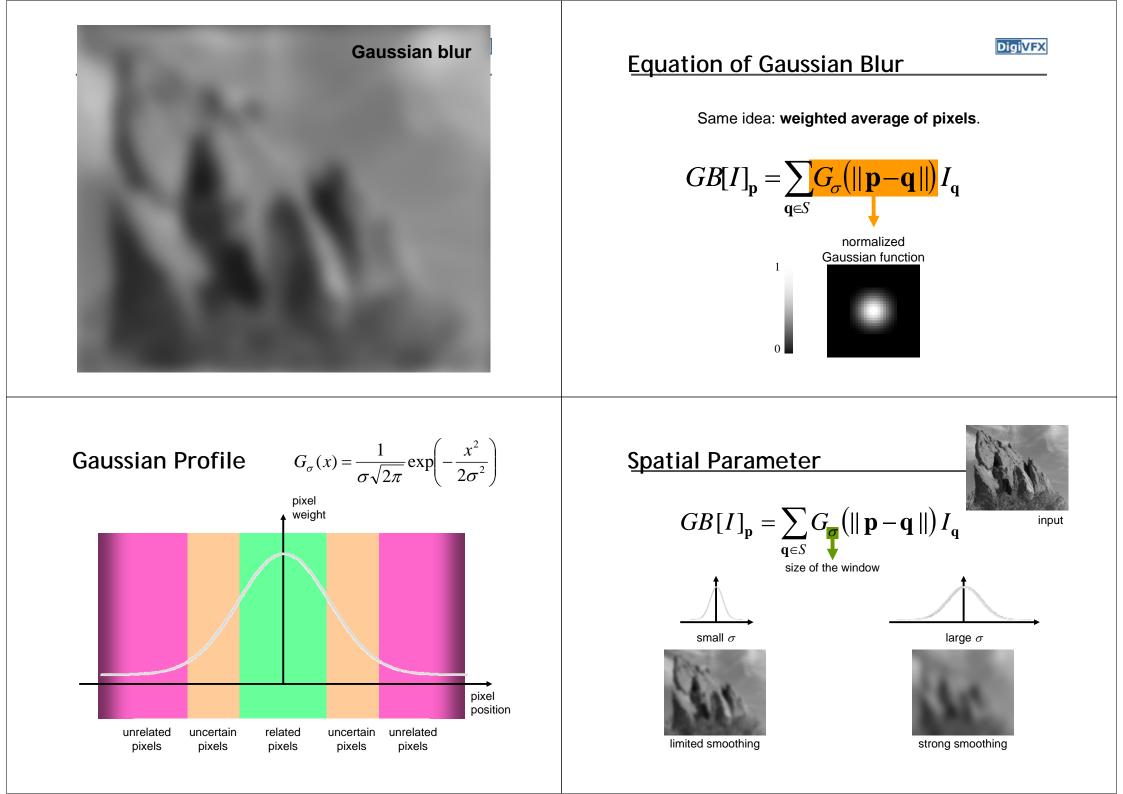


input



Gaussian Blur





How to set σ

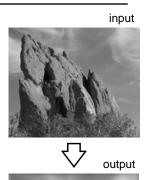
- Depends on the application.
- Common strategy: proportional to image size
 - e.g. 2% of the image diagonal
 - property: independent of image resolution

Properties of Gaussian Blur

- Weights independent of spatial location
 - linear convolution
 - well-known operation
 - efficient computation (recursive algorithm, FFT...)

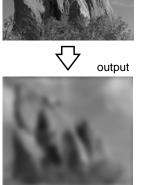
Properties of Gaussian Blur

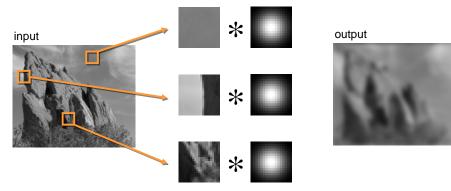
- Does smooth images
- But smoothes too much: edges are blurred.
 - Only spatial distance matters
 - No edge term



DigiVFX

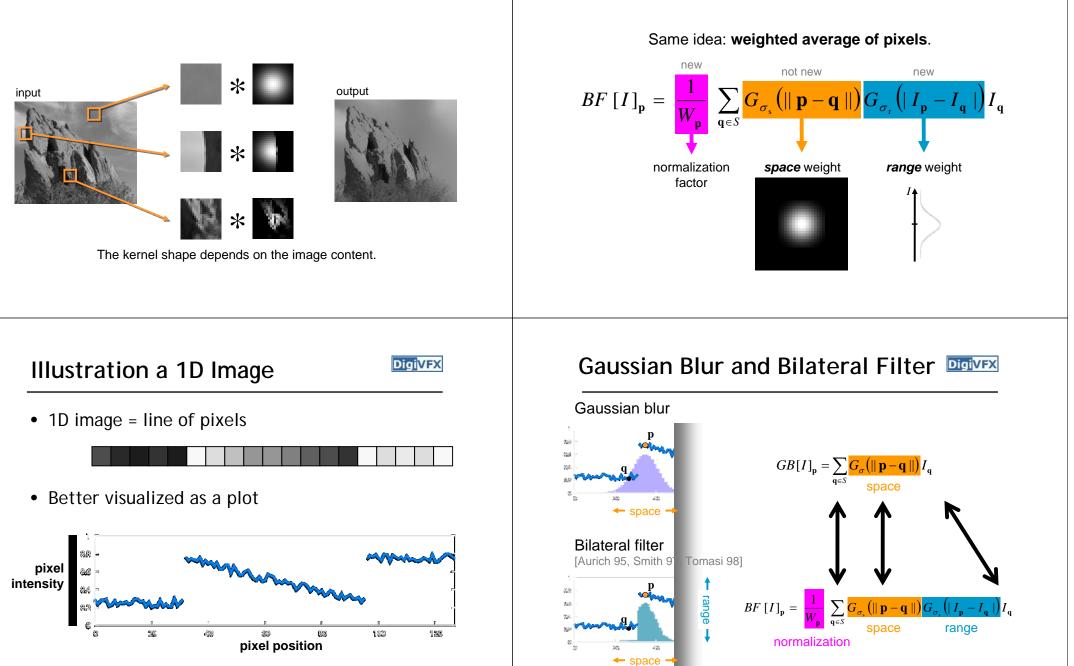
DigiVFX





Same Gaussian kernel everywhere.

Bilateral Filter No Averaging across Edges



Bilateral Filter on a Height Field

$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}}(||\mathbf{p} - \mathbf{q}||) \quad G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \quad I_{\mathbf{q}}$

Space and Range Parameters

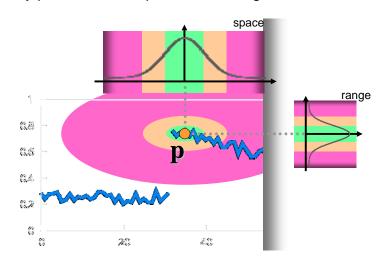
Digi<mark>VFX</mark>

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

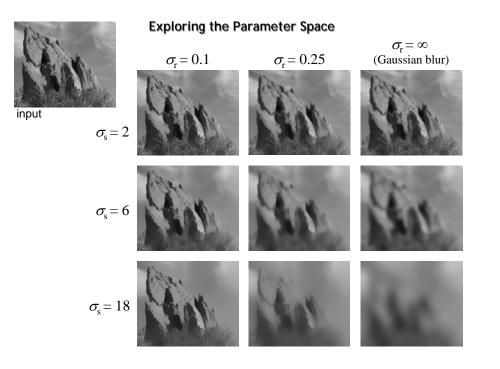
- space $\sigma_{\rm s}$: spatial extent of the kernel, size of the considered neighborhood.
- range σ_r : "minimum" amplitude of an edge

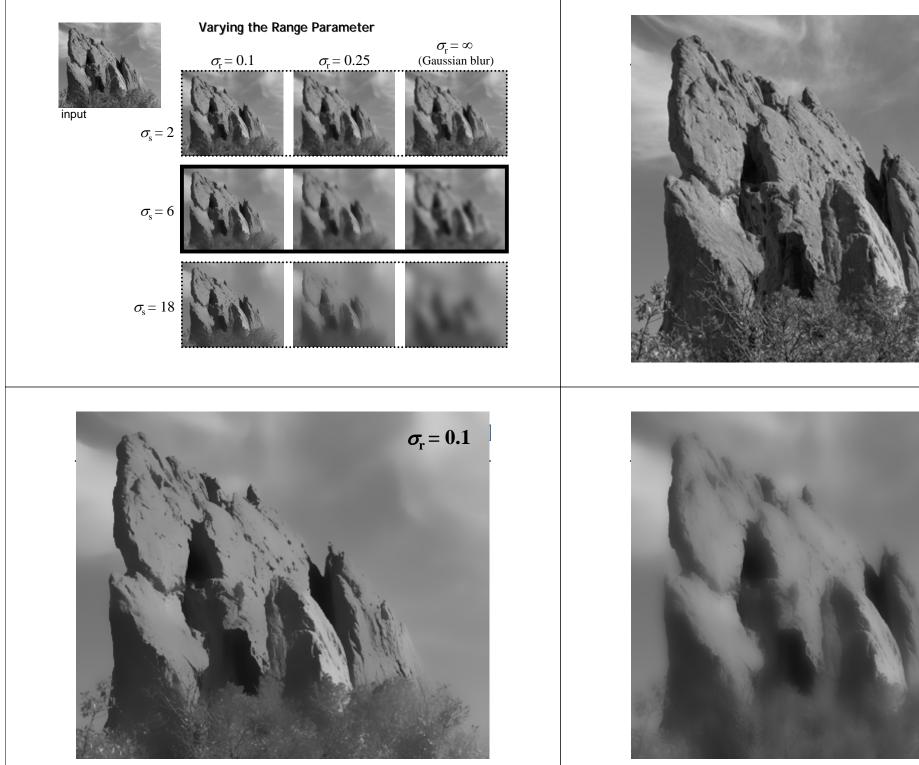
Influence of Pixels

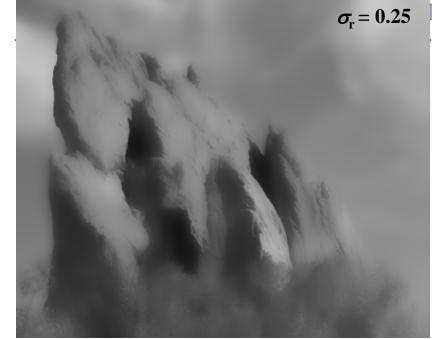
DigiVFX

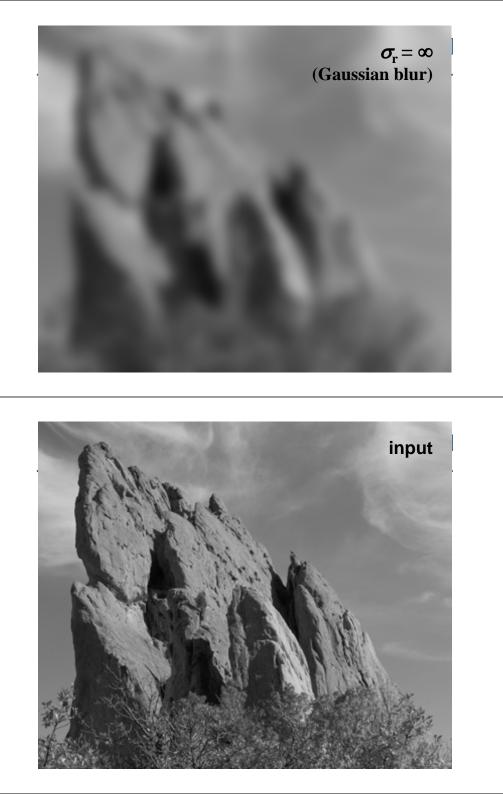


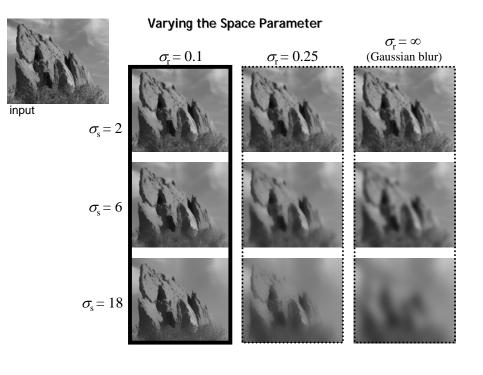
Only pixels close in space and in range are considered.











How to Set the Parameters

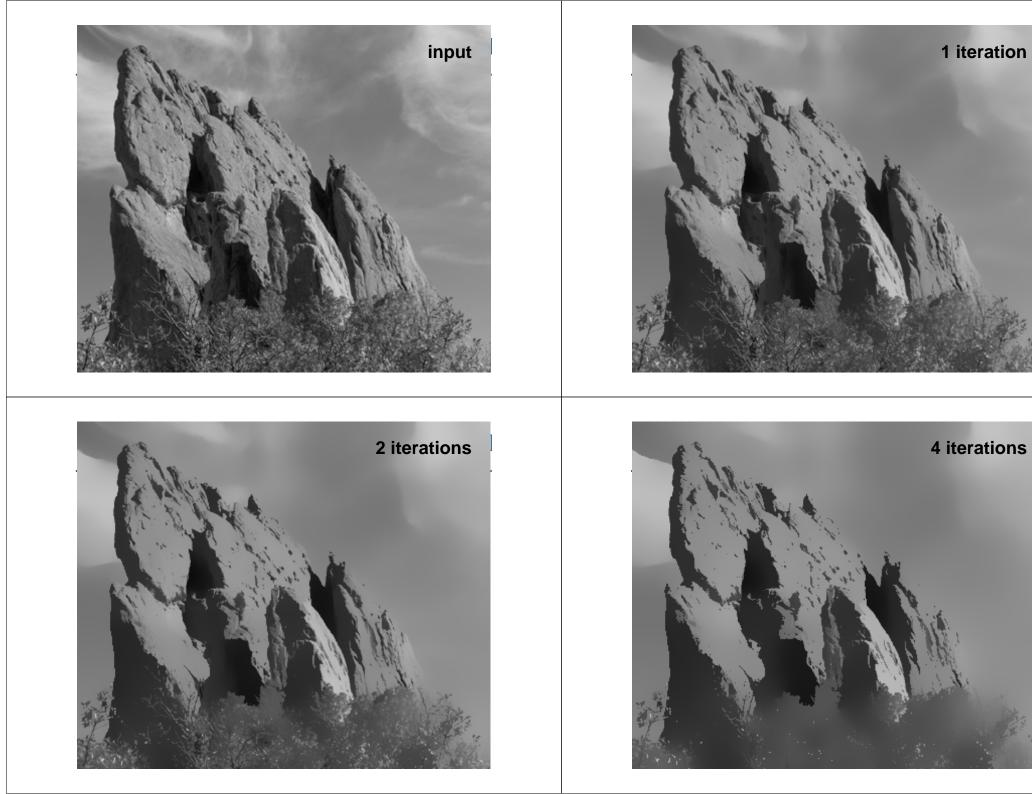
Depends on the application. For instance:

- space parameter: proportional to image size - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 e.g., mean or median of image gradients
- independent of resolution and exposure

Iterating the Bilateral Filter

$$I_{(n+1)} = BF[I_{(n)}]$$

- Generate more piecewise-flat images
- Often not needed in computational photo, but could be useful for applications such as NPR.



Advantages of Bilateral Filter

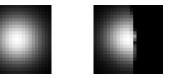
- Easy to understand
 - Weighted mean of nearby pixels
- Easy to adapt
 - Distance between pixel values
- Easy to set up
 - Non-iterative

Hard to Compute

Nonlinear



• Complex, spatially varying kernels – Cannot be precomputed, no FFT...



DigiVFX

• Brute-force implementation is slow > 10min

But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
 - [Elad 02]: Gauss-Seidel iterations
 - Only for many iterations
 - [Durand 02, Weiss 06]: fast approximation
 - No formal understanding of accuracy versus speed
 - [Weiss 06]: Only box function as spatial kernel

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights

0.8

0.6

0.4

0.2 0

0.8

0.6

0.4 0.2 σ

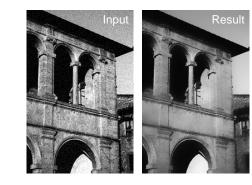
C

20

40

Q

- Gaussian on space distance
- Gaussian on range distance
- sum to 1



100

80

120

DigiVFX

$$I_{\mathbf{p}}^{\mathrm{bf}} = \frac{1}{W_{\mathbf{p}}^{\mathrm{bf}}} \sum_{\mathbf{q} \in \mathcal{S}} \frac{G_{\sigma_{\mathrm{c}}}(\|\mathbf{p} - \mathbf{q}\|)}{\mathrm{space}} \frac{G_{\sigma_{\mathrm{c}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)}{\mathrm{range}} I_{\mathbf{q}}$$

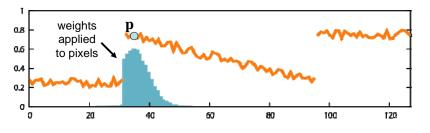
Contributions

- Link with linear filtering
- Fast and accurate approximation

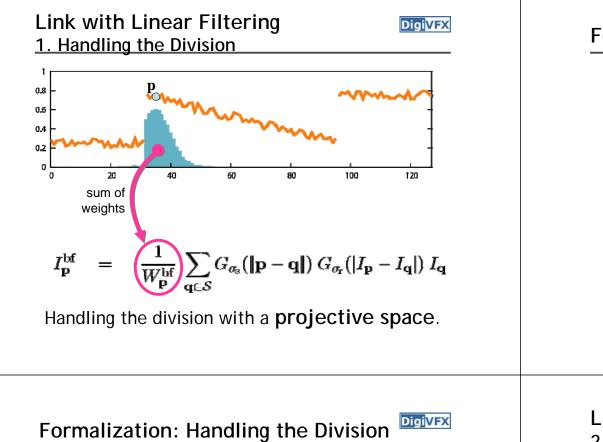
DigiVFX Intuition on 1D Signal 60 80 100 120 20 40 BF

60

Intuition on 1D Signal Weighted Average of Neighbors



- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.



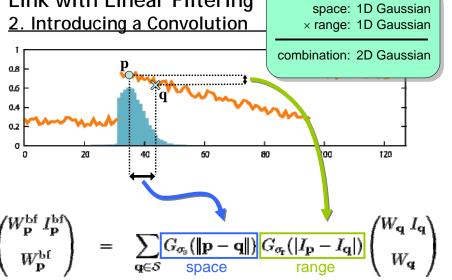
$$\begin{pmatrix} W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}} \\ W_{\mathbf{p}}^{\mathrm{bf}} \end{pmatrix} = \sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{s}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathrm{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} W_{\mathbf{q}} \ I_{\mathbf{q}} \\ W_{\mathbf{q}} \end{pmatrix} \text{ with } W_{\mathbf{q}} = 1$$

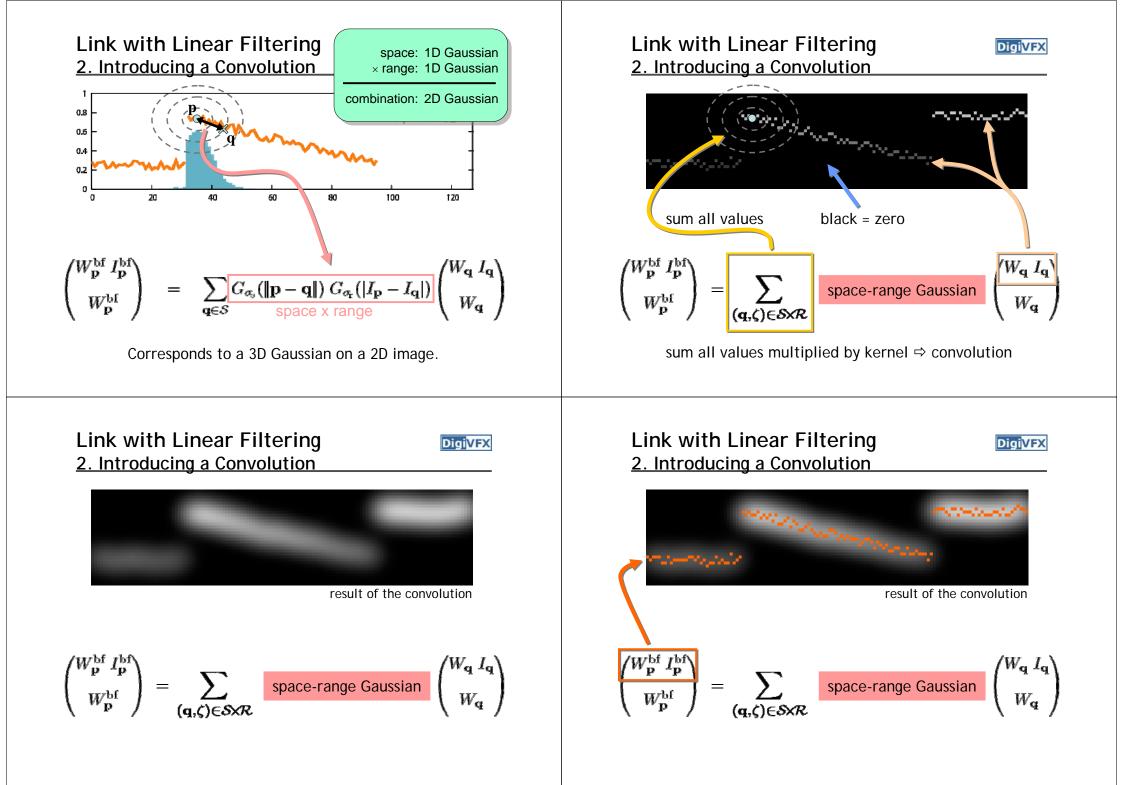
- Similar to homogeneous coordinates in projective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

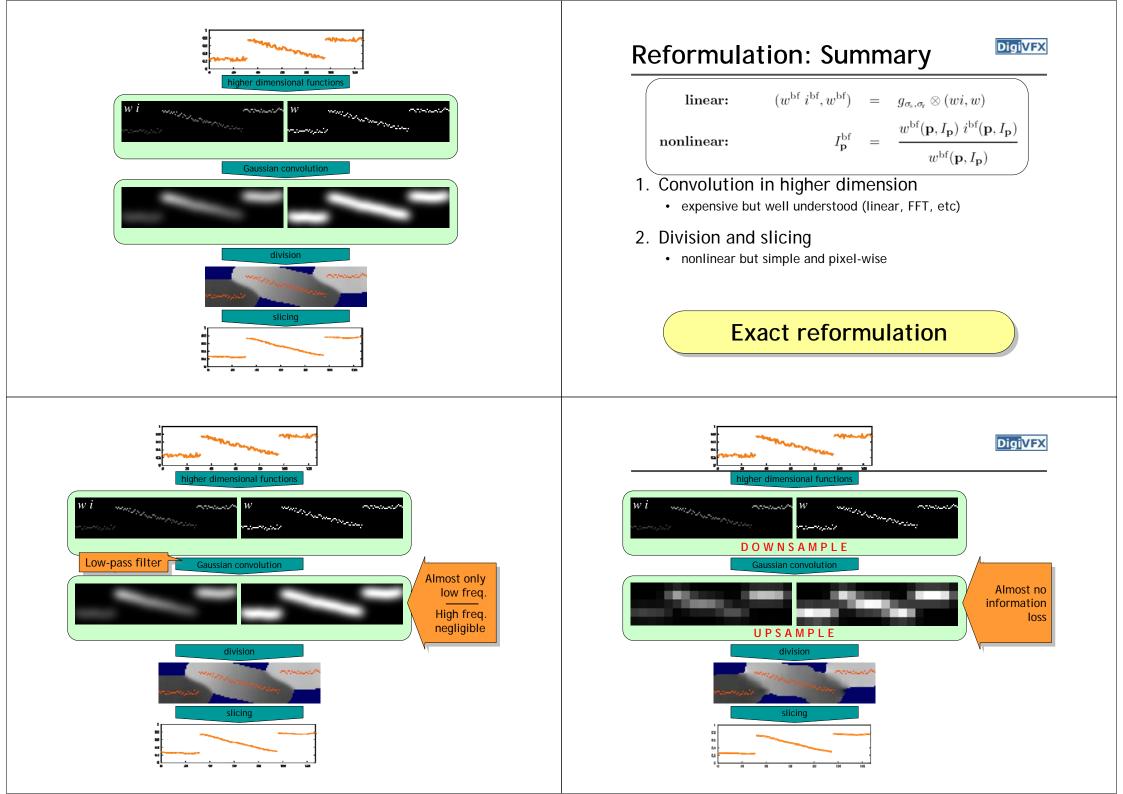
Formalization: Handling the Division

$$\begin{aligned}
\int_{\mathbf{p}}^{bf} &= \frac{1}{W_{\mathbf{p}}^{bf}} \sum_{q \in S} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}} \\
W_{\mathbf{p}}^{bf} &= \sum_{q \in S} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|)
\end{aligned}$$
• Normalizing factor as homogeneous coordinate
• Multiply both sides by $W_{\mathbf{p}}^{bf}$

$$\begin{aligned}
\begin{pmatrix} W_{\mathbf{p}}^{bf} I_{\mathbf{p}}^{bf} \\
W_{\mathbf{p}}^{bf} \end{pmatrix} &= \sum_{q \in S} G_{\sigma_{s}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) \begin{pmatrix} I_{\mathbf{q}} \\ 1 \end{pmatrix}
\end{aligned}$$
This with Linear Filtering space: 1D Gaussian × range: 1D Gaussian 1 denotes the second second







Fast Convolution by Downsampling

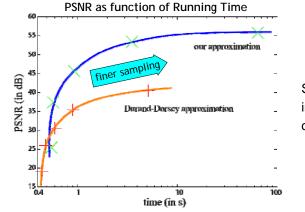
Downsampling cuts frequencies above Nyquist limit

- Less data to process
- But induces error
- Evaluation of the approximation
 - Precision versus running time
 - Visual accuracy

Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.

DigiVFX



Digital photograph 1200×1600

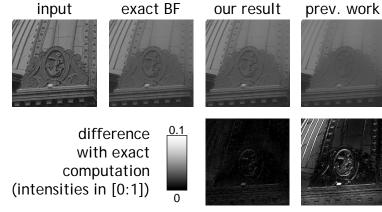
DigiVFX

Straightforward implementation is over 10 minutes.

Visual Results

Comparison with previous work [Durand 02] • - running time = 1s for both techniques

DigiVFX



Conclusions

higher dimension ⇒ "better" computation

Practical gain

- Interactive running time
- Visually similar results
- Simple to code (100 lines)

Theoretical gain

- Link with linear filters
- Separation linear/nonlinear
- Signal processing framework

DigiVFX

Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

SIGGRAPH2006

An Amateur Photographer

Ansel Adams

Ansel Adams, Clearing Winter Storm

A Variety of Looks

Goals

DigiVFX

- Control over photographic look
- Transfer "look" from a model photo

For example,

we want

with the look of

Aspects of Photographic Look

- Subject choice
- Framing and composition
- → Specified by input photos
- Tone distribution and contrast
- →Modified based on model photos

Input

Model

Tonal Aspects of Look

Ansel Adams

Kenro Izu

Tonal aspects of Look - Global Contrast

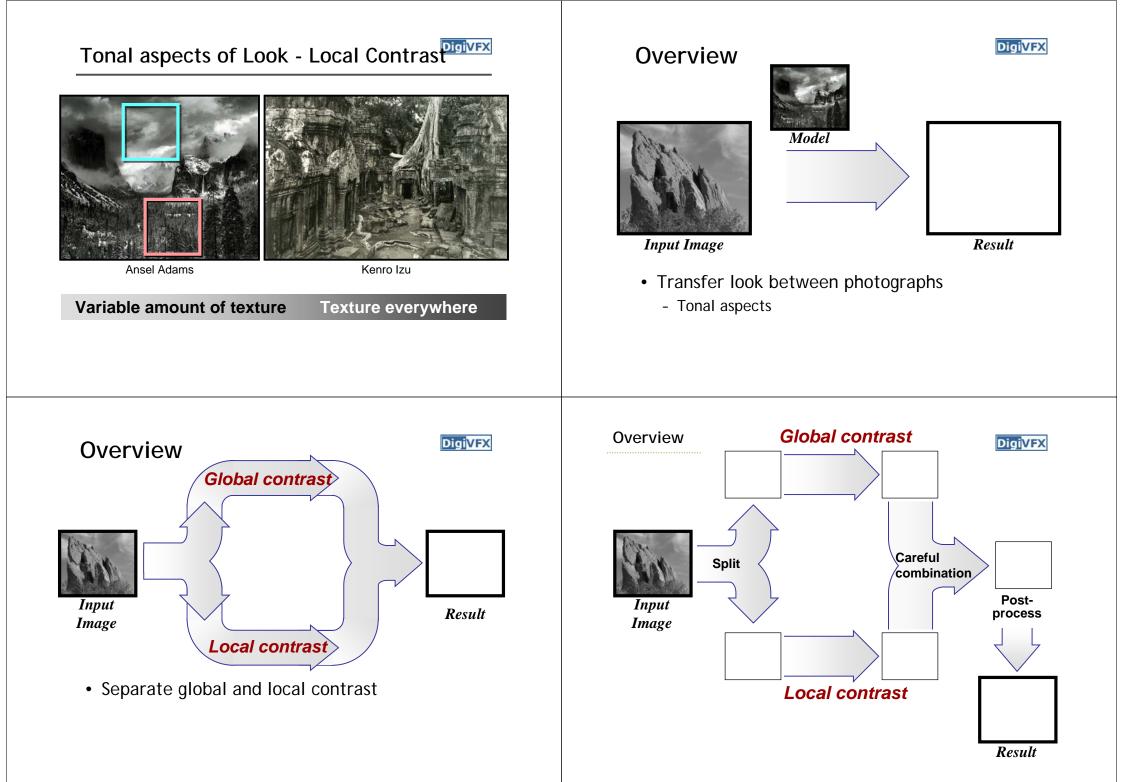


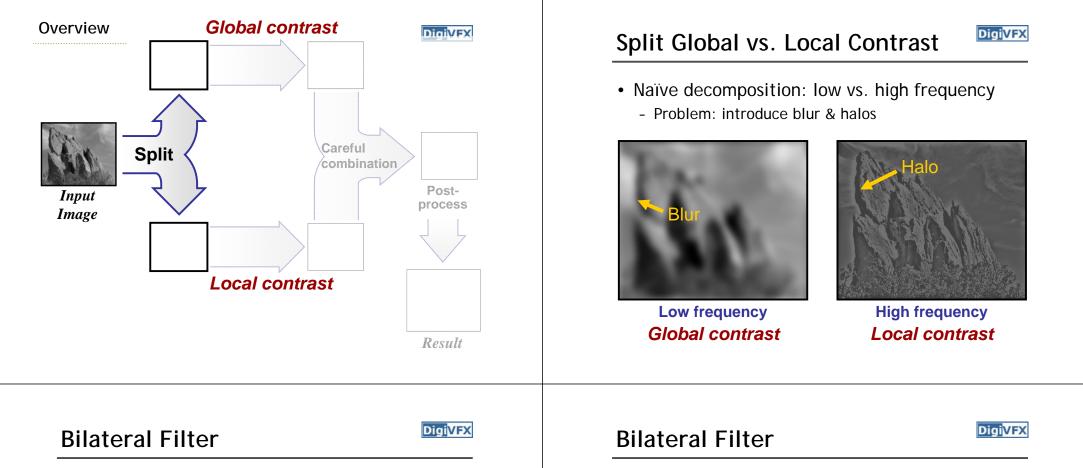
Ansel Adams

Kenro Izu

High Global Contrast

Low Global Contrast





- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

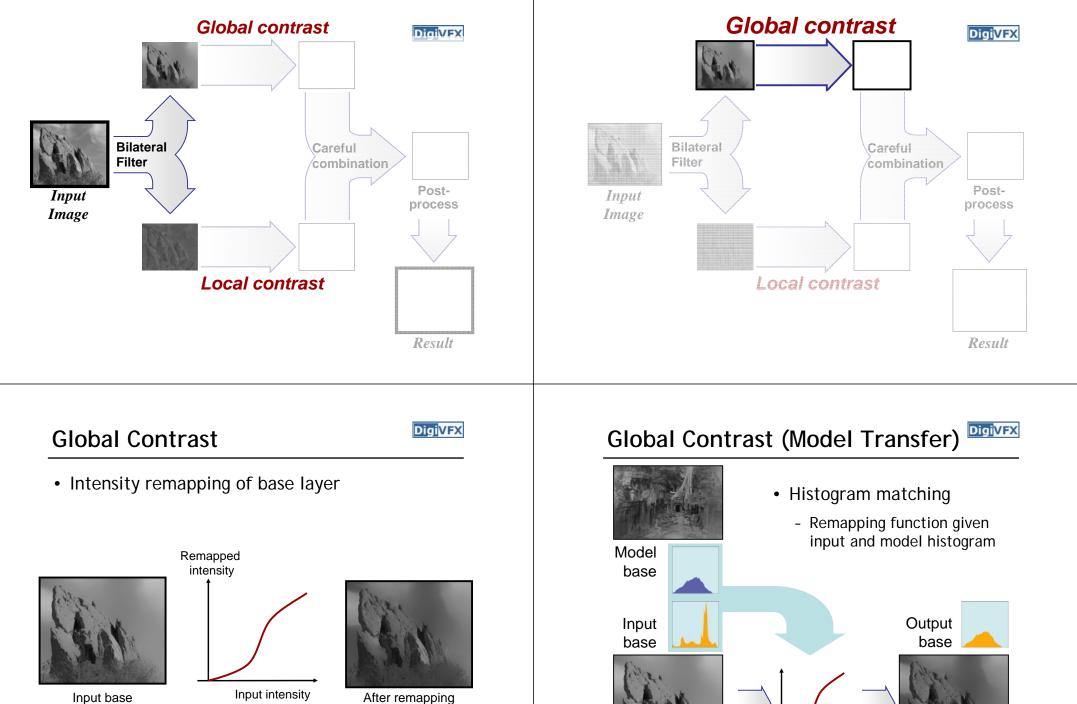
Residual after filtering Local contrast

• Edge-preserving smoothing [Tomasi 98]

• We build upon tone mapping [Durand 02]

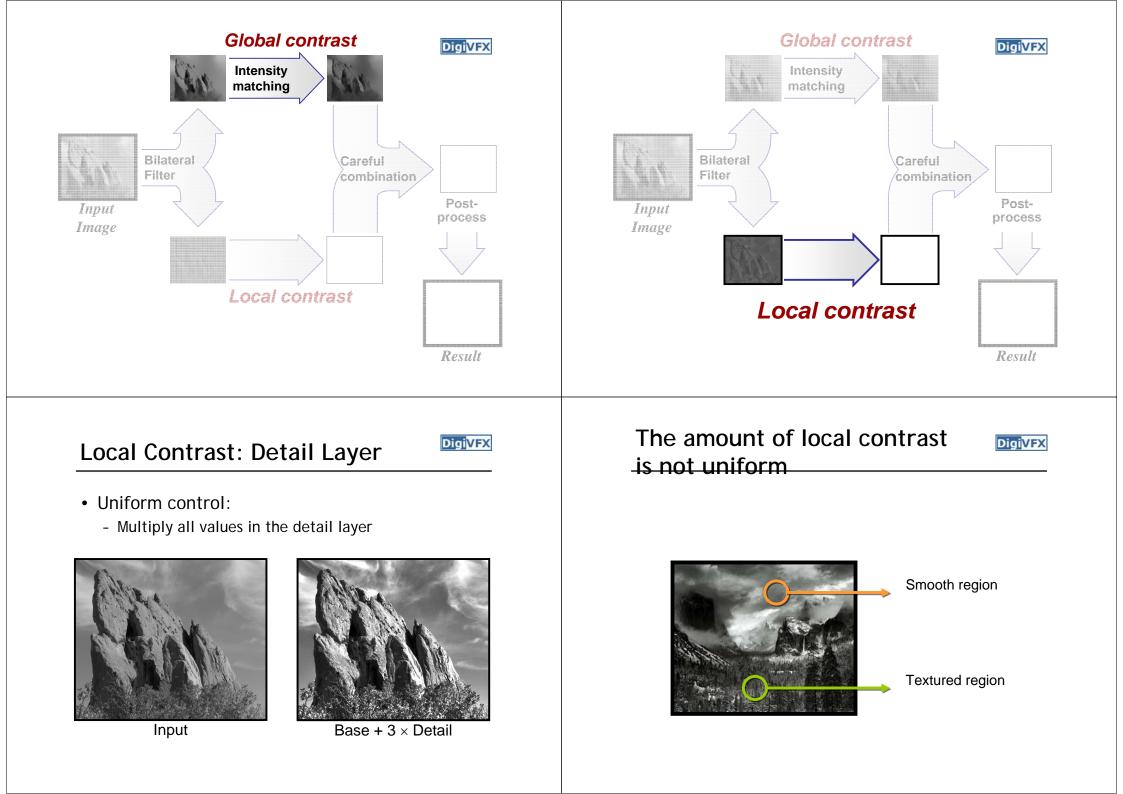
After bilateral filtering Global contrast

Residual after filtering Local contrast



Input intensity

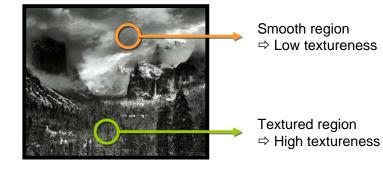
After remapping

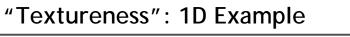


Local Contrast Variation

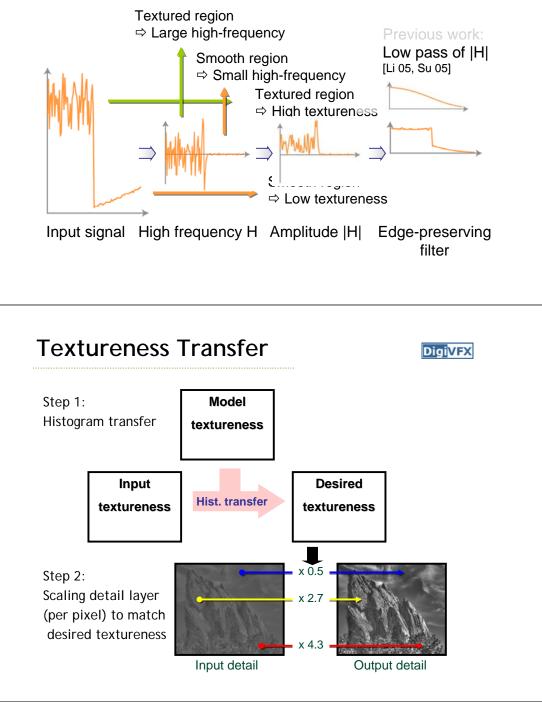
DigiVFX

- We define "textureness": amount of local contrast
 - at each pixel based on surrounding region

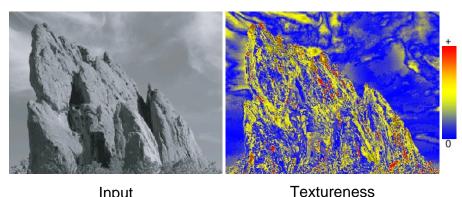


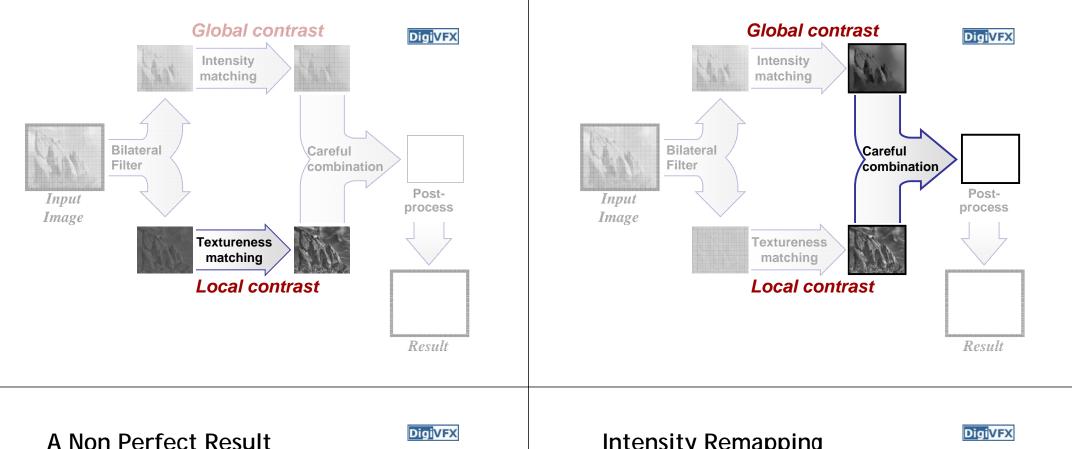


DigiVFX

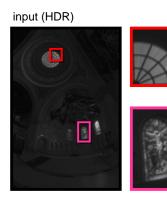


Textureness





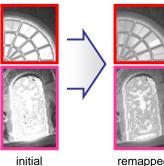
• Decoupled and large modifications (up to 6x) →Limited defects may appear





Intensity Remapping

- Some intensities may be outside displayable range.
- → Compress histogram to fit visible range.



result

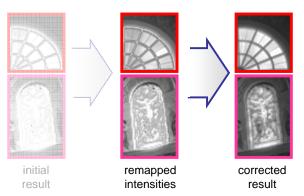
remapped intensities

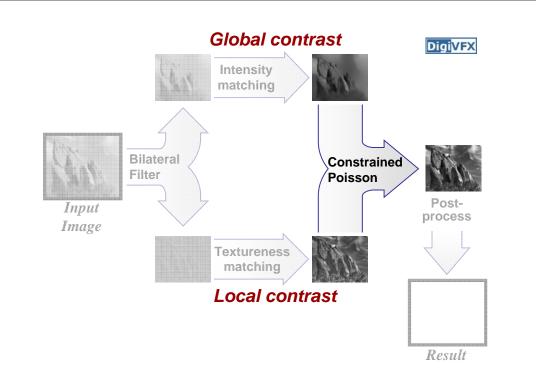
corrected result

Preserving Details

DigiVFX

- 1. In the gradient domain:
 - Compare gradient amplitudes of input and current
 - Prevent extreme reduction & extreme increase
- 2. Solve the Poisson equation.

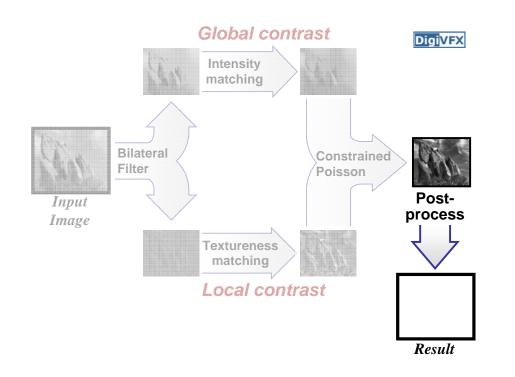




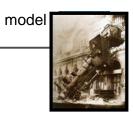
Effect of Detail Preservation

uncorrected result

corrected result



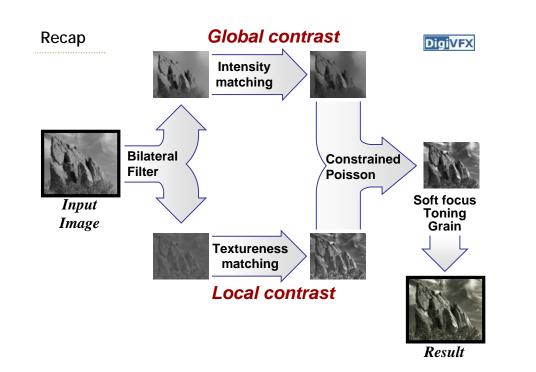
Additional Effects

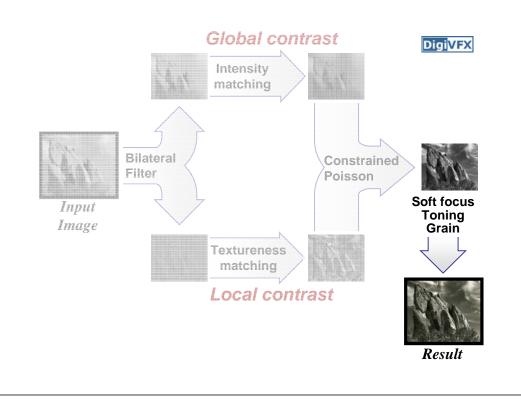


before effects

Soft focus (high frequency manipulation)
Film grain (texture synthesis [Heeger 95])
Color toning (chrominance = f (luminance))

after effects





Results

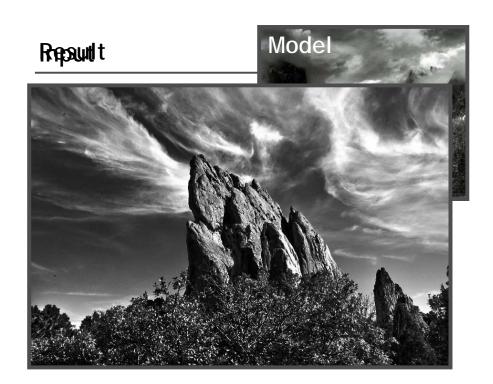
User provides input and model photographs.

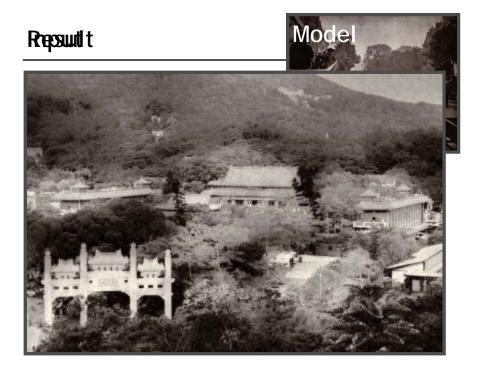
→ Our system automatically produces the result.

DigiVFX

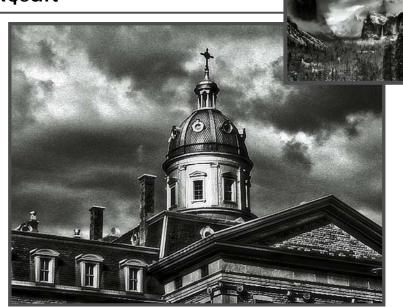
Running times:

- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

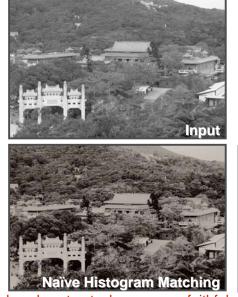




Repsult



Comparison with Naïve Histogram Matching



Comparison with Naïve Histogram Matching

Histogram Matching Local contrast too low

Limitations

DigiVFX

Clearing Winter Storm, Ansel

Our Result

 Can lead to unexpected results if the image content is too different from the model

Noise and JPEG artifacts

- amplified defects

- Portraits, in particular, can suffer

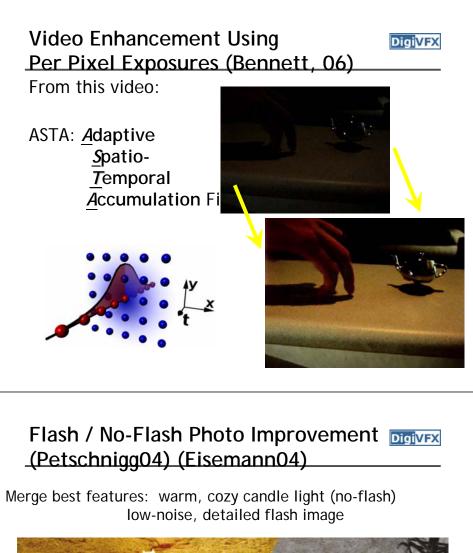
Color Images

· Lab color space: modify only luminance

Conclusions

Digi<mark>VFX</mark>

- Transfer "look" from a model photo
- Two-scale tone management
 - Global and local contrast
 - New edge-preserving textureness
 - Constrained Poisson reconstruction
 - Additional effects



Joint bilateral filtering

$$I_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p-q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p-q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

Overview

Digi<mark>VFX</mark>

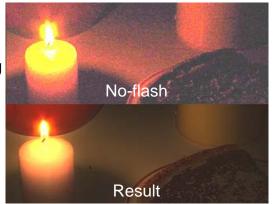
Basic approach of both flash/noflash papers

Remove noise + details from image A,

Keep as image A Lighting

Obtain noise-free details from image B,

Discard Image B Lighting



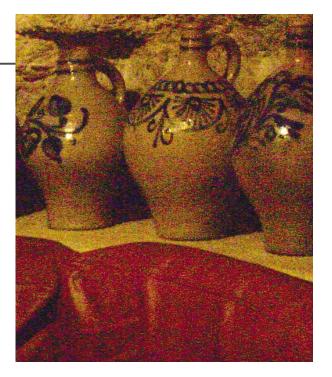
Digi<mark>VFX</mark>

Petschnigg:

• Flash

Petschnigg:

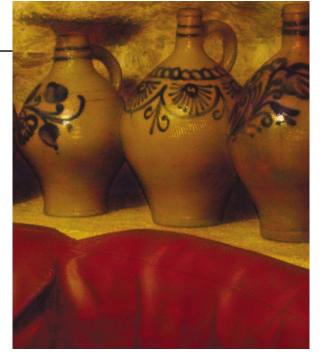
• No Flash,



DigiVFX

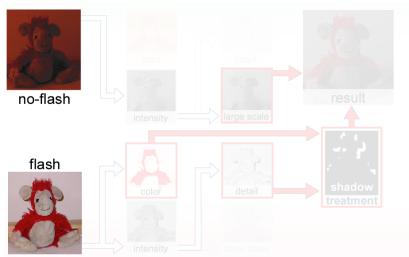
Petschnigg:

• Result



Our Approach

Registration

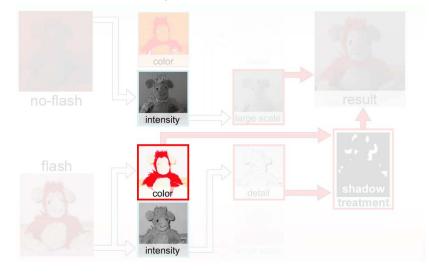


Our Approach

DigiVFX

DigiVFX

Decomposition



Our Approach

Decomposition

Decomposition

Color / Intensity:

original

intensity

color

Our Approach

Decoupling

- Lighting : Large-scale variation
- Lightinge Langels and leaveriation
- Texture : Small-scale variation

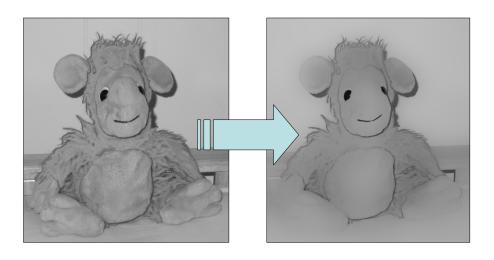
Lighting

Texture

Large-scale Layer

DigiVFX

• Bilateral filter

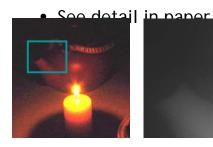


Large-scale Layer



Cross Bilateral Filter

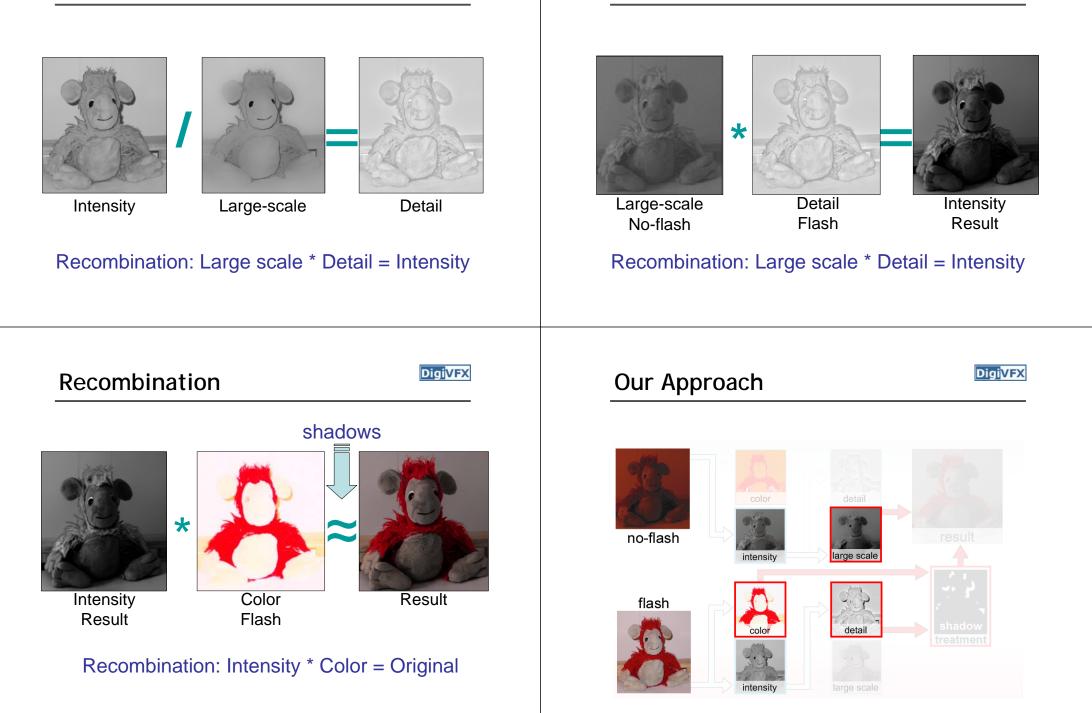
- Similar to joint bilateral filter by Petschnigg et al.
- When no-flash image is too noisy
- Borrow similarity from flash image
 - ➤ edge stopping from flash image



Detail Layer

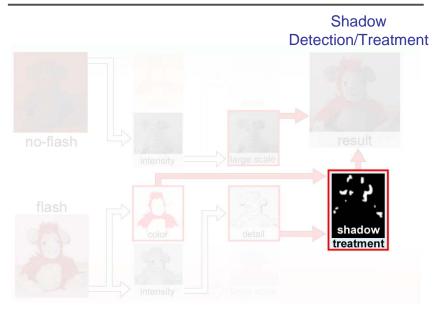
DigiVFX

Recombination



Our Approach

DigiVFX



Joint bilateral upsampling

Digi<mark>VFX</mark>

$$J_p = \frac{1}{k_p} \sum_{q \in \Omega} I_q f(||p - q||) g(||I_p - I_q||)$$

$$J_{p} = \frac{1}{k_{p}} \sum_{q \in \Omega} I_{q} f(||p-q||) g(||\tilde{I}_{p} - \tilde{I}_{q}||)$$

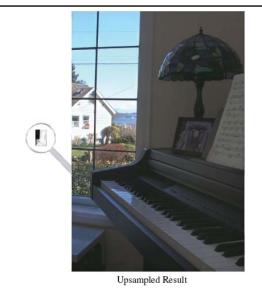
$$\tilde{S}_p = \frac{1}{k_p} \sum_{q_{\downarrow} \in \Omega} S_{q_{\downarrow}} f(||p_{\downarrow} - q_{\downarrow}||) g(||\tilde{I}_p - \tilde{I}_q||)$$

Results

No-flash

Flash

Joint bilateral upsampling



DigiVFX **Digi**VFX Joint bilateral upsampling Joint bilateral upsampling Input Nearest Neighbor Bicubic Gaussian Joint Bilateral Ground Truth Upsampled Result **DigiVFX** DigiVFX Joint bilateral upsampling Joint bilateral upsampling Nearest Neighbor Upsampling Bicubic Upsampling Downsampled Input Solution

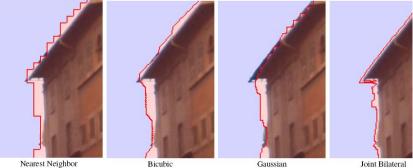
Gaussian Upsampling

Joint Bilateral Upsampling

Input Images

Joint bilateral upsampling

DigiVFX



Nearest Neighbor

Gaussian

Joint Bilateral

Joint bilateral upsampling

Upsampled Result

References

- Patrick Perez, Michel Gangnet, Andrew Blake, Poisson Image Editing, SIGGRAPH 2003.
- Dani Lischinski, Zeev Farbman, Matt Uytendaelle and Richard Szeliski. Interactive Local Adjustment of Tonal Values. SIGGRAPH 2006.
- Carsten Rother, Andrew Blake, Vladimir Kolmogorov, GrabCut -Interactive Foreground Extraction Using Iterated Graph Cuts, SIGGRAPH 2004.
- Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David H. Salesin, Michael F. Cohen, Interactive Digital Photomontage, SIGGRAPH 2004.
- Sylvain Paris and Fredo Durand. A Fast Approximation of the Bilateral Filter using a Signal Processing Approach. ECCV 2006.
- Soonmin Bae, Sylvain Paris and Fredo Durand. Two-scale Tone • Management for Photographic Look. SIGGRAPH 2006.