3D photography

Digital Visual Effects, Spring 2008
Yung-Yu Chuang
2008/5/13
with slides by Syymon Rusinkiewicz, Richard Szeliski, Steve Seitz and Brian Curless

- Project \#3 is due on 5/ 19. Two videos. Send us links only.
- We may have final proj ect proposal presentation on $5 / 27$. Please send me your team members and topic by $5 / 26$.
- Final project demo day will be 1:30pm on 6/ 25 (Wed). Room to be announced.

3D photography

Range image

Range acquisition taxonomy

Range acquisition taxonomy

Outline

- Passive approaches
- Stereo
- Multiview approach
- Active approaches
- Triangulation
- Shadow scanning
- Active variants of passive approaches
- Photometric stereo
- Example-based photometric stereo

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

- One distinguishable point being observed
- The preimage can be found at the intersection of the rays from the focal points to the image points

Components of stereo vision systems

- Camera calibration
- Image rectification: simplifies the search for correspondences
- Correspondence: which item in the left image corresponds to which item in the right image
- Reconstruction: recovers 3-D information from the 2-D correspondences
- Epipolar constraint: corresponding points must lie on conjugate epipolar lines
- Search for correspondences becomes a 1-D problem

- Warp images such that conj ugate epipolar lines become collinear and parallel to U axis

Disparity

- With rectified images, disparity is just (horizontal) displacement of corresponding features in the two images
- Disparity $=0$ for distant points
- Larger disparity for closer points
- Depth of point proportional to 1 / disparity

Reconstruction

- Geometric
- Construct the line segment perpendicular to R and R^{\prime} that intersects both rays and take its mid-point

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Basic stereo algorithm

- For each pixel
- For each disparity
- For each pixel in window
- Compute difference
- Find disparity with minimum SSD

Reverse order of loops

Incremental computation

- For each pixel
- For each pixel in window
- Compute difference
- Find disparity with minimum SSD at each pixel
- Given SSD of a window, at some disparity

- Want: SSD at next location

- Subtract contributions from leftmost column, add contributions from rightmost column

Image 1

Image 2

Selecting window size

- Small window: more detail, but more noise
- Large window: more robustness, less detail
- Example:

3 pixel window

20 pixel window

- Compromise: have a large window, but higher weight near the center
- Example: Gaussian
- Example: Shifted windows

- Order of matching features usually the same in both images
- But not always: occlusion

Dynamic programming

- Treat feature correspondence as graph problem

Right image features

Dynamic programming

- Find min-cost path through graph

Right image features

Left image
features

- Another approach to improve quality of correspondences
- Assumption: disparities vary (mostly) smoothly
- Minimize energy function:

$$
\mathrm{E}_{\text {data }}+\lambda \mathrm{E}_{\text {smoothness }}
$$

- $E_{\text {data }}$: how well does disparity match data
- $\mathrm{E}_{\text {smoothness }}$: how well does disparity match that of neighbors - regularization
- If data and energy terms are nice (continuous, smooth, etc.) can try to minimize via gradient descent, etc.
- In practice, disparities only piecewise smooth
- Design smoothness function that doesn't penalize large jumps too much
- Example: $\mathrm{V}(\alpha, \beta)=\min (|\alpha-\beta|, \mathrm{K})$

Stereo as energy minimization

- Matching Cost Formulated as Energy
- "data" term penalizing bad matches

$$
D(x, y, d)=|\mathbf{I}(x, y)-\mathbf{J}(x+d, y)|
$$

- "neighborhood term" encouraging spatial smoothness

$$
V\left(d_{1}, d_{2}\right)=\text { cost of adjacent pixels with labels } \mathrm{d} 1 \text { and } \mathrm{d} 2
$$

$$
=\left|d_{1}-d_{2}\right| \quad \text { (or something similar) }
$$

$$
E=\sum_{(x, y)} D\left(x, y, d_{x, y}\right)+\sum_{\text {neighbors }}^{(x 1, y 1),(x 2, y 2)} \boldsymbol{V}\left(d_{x 1, y 1}, d_{x 2, y 2}\right)
$$

Energy minimization

- Hard to find global minima of non-smooth functions
- Many local minima
- Provably NP-hard
- Practical algorithms look for approximate minima (e.g., simulated annealing)

- Graph Cost
- Matching cost between images
- Neighborhood matching term
- Goal: figure out which labels are connected to which pixels

Energy minimization via graph cuts

- Graph Cut
- Delete enough edges so that
- each pixel is (transitively) connected to exactly one label node
- Cost of a cut: sum of deleted edge weights
- Finding min cost cut equivalent to finding global minimum of energy function

Computing a multiway cut

- With 2 labels: classical min-cut problem
- Solvable by standard flow algorithms
- polynomial time in theory, nearly linear in practice
- More than 2 terminals: NP-hard
[Dahl haus et al., STOC '92]
- Efficient approximation algorithms exist
- Within a factor of 2 of optimal
- Computes local minimum in a strong sense
- even very large moves will not improve the energy
- Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

1. Start with an arbitrary labeling
2. Cycle through every label pair (A, B) in some order 2.1 Find the lowest E labeling within a single AB-swap
2.2 Go there if E is lower than the current labeling
3. If E did not decrease in the cycle, we're done

Otherwise, go to step 2

Original graph

$A B$ subgraph (run min-cut on this graph)

The expansion move algorithm

1. Start with an arbitrary labeling
2. Cycle through every label A in some order 2.1 Find the lowest Elabeling within a single A-expansion 2.2 Go there if it E is lower than the current labeling
3. If E did not decrease in the cycle, we're done Otherwise, go to step 2

Stereo results

- Data from University of Tsukuba

http:// cat. middlebury.edu/ stereo/

normalized correlation (best window size)

graph cuts
ground truth (Potts model E, expansion move algorithm)

Stereo-best algorithms

vision.middlebury.edu
 stereo - mview • MRF • flow

Stereo Evaluation • Datasets • Code • Submit
Daniel Scharstein - Richard Szeliski
Welcome to the Middlebury Stereo Vision Page, formerly located at
Ww.comiddlebury.edul/stereo. This website accompanies our taxonomy and comparison of two-frame stereo correspondence algorithms [1]] It contains:

- An on-line evaluation of current algorithms
- Many stereo datasets with groundd-tuth disparities

Our stereo correspondence software
An on-line submission script that allo
An on-line submission script that allows you to evaluate your stereo algorithm in
our framework
w to cite the materials on this website:
How to cite the materials on this website:
We grant permission to use and publish all images and numerical results on this
website If you report performance results, we request that you cite our paper [1]. website. If you report performance results, we request that you cite our paper [1].
Instructions on how to cite our datasets are listed on the datasets page If you want to
cite this website, please use the URL "vision.middlebury.edu/stereol".

References:
[1] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Intemational Journal of Computer Vision, 47(1/2/3)7.7-42, April.June 2002.
Microsoft Research Technical Report MSR-TR-2001-81, November 2001.

- Goal: find a model consistent with images
- "Model-centric" (vs. image-centric)
- Typically use discretized volume (voxel grid)
- For each voxel, compute occupied / free (for some algorithms, also color, etc.)
- Result: not necessarily the correct scene
- Many scenes produce the same images

Silhouette carving

- Find silhouettes in all images
- Exact version:
- Back-project all silhouettes, find intersection

Silhouette carving

- Limit of silhouette carving is visual hull or line hull
- Complement of lines that don't intersect object
- In general not the same as object
- Can't recover "pits" in object
- Not the same as convex hull
- Discrete version:
- Loop over all voxels in some volume
- If projection into images lies inside all silhouettes, mark as occupied
- Else mark as free

Voxel coloring

- Seitz and Dyer, 1997
- In addition to free / occupied, store color at each voxel
- Explicitly accounts for occlusion
- Basic idea: sweep through a voxel grid
- Project each voxel into each image in which it is visible
- If colors in images agree, mark voxel with color
- Else, mark voxel as empty
- Agreement of colors based on comparing standard deviation of colors to threshold
- Problem: which voxels are visible?
- Solution: constrain camera views
- When a voxel is considered, necessary occlusion information must be available
- Sweep occluders before occludees
- Constrain camera positions to allow this sweep

Inward-looking
Cameras above scene

Outward-looking
Cameras inside scene

-Calibrated Turntable
-360 rotation (21 images)

Dinosaur Reconstruction 72 K voxels colored 7.6 M voxels tested 7 min . to compute on a 250 MHz SGI

$?$
Flower Reconstruction 70 K voxels colored 7.6 M voxels tested 7 min . to compute on a 250 MHz SGI

Initialize to a volume V containing the true scene Choose a voxel on the current surface
Project to visible input images
Carve if not photo-consistent
Repeat until convergence

- Faster alternative:
- Sweep plane in each of 6 principal directions
- Consider cameras on only one side of plane
- Repeat until convergence

True Scene

Reconstruction

Space canving results: African violet
DigivFX
Space carving results: hand

Reconstruction

Input image
(1 of 100)

- Basic idea: send out pulse of light (usually
laser), time how long it takes to return

Active approaches

Laser scanning (triangulation)

Cyberware

face and hand
full body

Basic idea

- Calibration issues:
- where's the camera wrt. ground plane?
- where's the shadow plane?
- depends on light source position, shadow edge

- Advantages
- don't need to pre-calibrate the light source
- shadow plane determined from two shadow edges

accuracy: 0.1 mm over $10 \mathrm{~cm} \longrightarrow \sim 0.1 \% e r r o r$

Textured objects

Scanning with the sun

Scanning with the sun

Active variants of passive approaches

- The Bidirectional Reflection Distribution Function

$$
\text { - Given an incoming ray }\left(\theta_{i}, \phi_{i}\right) \text { and outgoing ray }\left(\theta_{e}, \phi_{e}\right)
$$ what proportion of the incoming light is reflected along outgoing ray?

$$
\begin{aligned}
& \rho(l, v)=k_{d} \longleftarrow \text { albedo } \\
& I=k_{d} \mathbf{N} \cdot \mathbf{L}
\end{aligned}
$$

Assuming that light strength is 1.

$$
\begin{aligned}
{\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] } & =\underbrace{}_{\mathbf{I}_{\mathbf{I}}^{\left[\begin{array}{l}
\mathbf{L} \\
\mathbf{L}_{3}
\end{array}\right]} \underbrace{\left[\begin{array}{l}
\mathbf{L}_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right.}_{\mathbf{G}} k_{k_{d} \mathbf{N}}} \\
\mathbf{G} & =\mathbf{L}^{-1} \mathbf{I} \\
k_{d} & =\|\mathbf{G}\| \\
\mathbf{N} & =\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

- Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{\mathbf{1}} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

- Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

- Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
- Weight each equation by the pixel brightness:

$$
I_{i}\left(I_{i}\right)=I_{i}\left[k_{d} \mathbf{N} \cdot \mathbf{L}_{\mathbf{i}}\right]
$$

- Gives weighted least-squares matrix equation:

$$
\left[\begin{array}{c}
I_{1}^{2} \\
\vdots \\
I_{n}^{2}
\end{array}\right]=\left[\begin{array}{c}
I_{1} \mathbf{L}_{1}^{T} \\
\vdots \\
I_{n} \mathbf{L}_{\mathbf{n}}^{T}
\end{array}\right] k_{d} \mathbf{N}
$$

- Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before

Procedure

- Calibrate camera
- Calibrate light directions/ intensities
- Photographing objects (HDR recommended)
- Estimate normals
- Estimate depth
- Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is
- Use a ruler

Normalize light intensities

Estimate normals

$\left(n_{x}, n_{y}, n_{z}\right)=\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y},-1\right)=(p, q,-1)$ $E=E_{\text {data }}+E_{\text {smooth }}+E_{\text {cons }}$ $=\sum_{i, j} w_{\text {data }} *\left[\left(\frac{\partial z(i, j)}{\partial x}-p_{i j}\right)^{2}+\left(\frac{\partial z(i, j)}{\partial y}-q_{i j}\right)^{2}\right]$ $+\sum_{i, j} w_{\text {smooth }} *\left[\left(\frac{\partial^{2} z(i, j)}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} z(i, j)}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} z(i, j)}{\partial y^{2}}\right)^{2}\right]$ $+\sum_{(i, j) \in C o n s} w_{\text {cons }} *\left(z(i, j)-c_{i j}\right)^{2}$ $E=\frac{1}{2} z^{T} A z-b^{T} z+c \quad \equiv \quad A z=b$

Limitations

- Big problems
- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections
- Smaller problems
- calibration requirements
- measure light source directions, intensities
- camera response function

Example-based photometric stereo

DigivFX

- Estimate 3D shape by varying illumination, fixed camera
- Operating conditions
- any opaque material
- distant camera, lighting
- reference object available
- no shadows, interreflections, transparency

Virtual views

Active stereo with structured lightivi

- Project "structured" light patterns onto the object
- simplifies the correspondence problem

3D Model Acquisition Pipeline
http://grail.cs.washington.edu/projects/stfaces/

Range image

Tesellation

Range surface

The Digital Michelangelo Project

- Goal: scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Stanford University, Ied by Marc Levoy

Systems, projects and applications

height of gantry:
7.5 meters weight of gantry:

800 kilograms

- steps

1. manual initial alignment
2. ICP to one existing scan
3. automatic ICP of all overlapping pairs
4. global relaxation to spread out error
5. merging using volumetric method

Statistics about the scan

Comparison

photograph

1.0 mm computer model

Scanner

- Cyrax range scanner by Cyra Technologies
- Laser pulse time-of-flight
- Accuracy: 4 mm
- Range: 100 m

The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage
- Institute of Industrial Science, University of Tokyo, led by Katsushi Ikeuchi

Processing

- 20 range images (a few million points)
- Simultaneous all-to-all ICP
- Variant of volumetric merging (parallelized)

- 3D scanning
- Hybrid camera for IMAX
- View interpolation

3D scanning

- 6K resolution, 42 linear bits per pixel
- For CG, it typically takes 6 hours for a frame
- 45-minute IMAX 3D CG film requires a 100-CPU rendering farm full-time for about a year just for rendering
- For live-action, camera is bulky (like a refrigerator)

Hybrid input

Hybrid input

Combine multiple hires to lores

Results

Bullet time video

High-quality video view interpolation

- Assigned: 5/ 14
- Due: 6/ 25 Wednesday
- Proposal and midterm report on 5/ 27

Final project

Final project

- Research (1-2 people)
- System (1-3 people)
- Film (3-4 people)

Research

- Define a problem and try to solve it
- You don't need to solve it all, but have to make a reasonable progress, for example, solve a simplified version.
- Find inspirations from SIGGRAPH/ CVPR/ ICCV papers

System

- Implement existing algorithm into a useful system such as implementing SIGGRAPH 2006/ 2007/ 2008 or CVPR/ ICCV 2006/ 2007/ 2008 papers
- It must be an "effect" film.
- You can use any tools as you want. But, I assume that you have to write some on your OWn.
- Find inspirations from

Gatech's vfx course
http:/ / www.cc. gatech. edu/ classes/ AY2004/ cs4480_spring/ independent film makers
http:// www. peerlessproductions.com/ ADs/ films/ YouTube

- Submit two videos, final and making-of.

