－Project \＃3 is extend to 5／ 16
－Project \＃2 artifact voting results
Image－based modeling

Digital Visual Effects，Spring 2008
Yung－Yu Cbuang
2008／5／6
with slides by Richard Szeliski，Steve Seitz．and Alexei Efros

Honorable mention（9）：胡傳牲 高紹航 ${ }^{\text {DigivFX }}$

Outline

－Models from multiple（sparse）images
－Structure from motion
－Facade
－Models from single images
－Tour into pictures
－Single view metrology
－Other approaches

Models from multiple images

 (Façade, Debevec et. al. 1996)- Use a sparse set of images
- Calibrated camera (intrinsic only)
- Designed specifically for modeling architecture
- Use a set of blocks to approximate architecture
- Three components:
- geometry reconstruction
- texture mapping
- model refinement

Geometric modeling

A block is a geometric primitive with a small set of parameters

- Architectural scenes are well modeled by geometric primitives.
- Blocks provide a high level abstraction, easier to manage and add constraints.
- No need to infer surfaces from discrete features; blocks essentially provide prior models for architectures.
- Hierarchical block modeling effectively reduces the number of parameters for robustness and efficiency.

Reconstruction
$E r r_{i}=\int_{0}^{l} h^{2}(s) d s=\frac{l}{3}\left(h_{1}^{2}+h_{1} h_{2}+h_{2}^{2}\right)=\mathrm{m}^{T}\left(A^{T} B A\right) \mathrm{m}$

$$
\mathbf{m}=\left(m_{x}, m_{y}, m_{z}\right)^{T} \quad \mathbf{m}=R_{j}\left(\mathbf{v} \times\left(\mathbf{d}-t_{j}\right)\right)
$$

$A=\left(\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right)$
$B=\frac{l}{3\left(m_{x}^{2}+m_{y}^{2}\right)}\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right)$

3 of 12 photographs

Texture mapping in real world

Demo movie
Michael Naimark, San Francisco Museum of Modern Art, 1984

Texture mapping

Texture mapping

$\underline{\text { View-dependent texture mapping DidivFx }}$

View-dependent texture mapping

View-dependent texture mapping

Model-based stereo

- Use stereo to refine the geometry

- Basic Principle: Triangulation
- Gives reconstruction as intersection of two rays
- Requires
- calibration
- point correspondence

Finding correspondences

- apply feature matching criterion (e.g., correlation or Lucas-Kanade) at all pixels simultaneously
- search only over epipolar lines (much fewer candidate positions)

- How do we determine correspondences?
- block matching or SSD (sum squared differences)

$$
E(x, y ; d)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in N(x, y)}\left[I_{L}\left(x^{\prime}+d, y^{\prime}\right)-I_{R}\left(x^{\prime}, y^{\prime}\right)\right]^{2}
$$

d is the disparity (horizontal motion)

- How big should the neighborhood be?
- Smaller neighborhood: more details
- Larger neighborhood: fewer isolated mistakes

Depth from disparity

input image (1 of 2)

- Steps
- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth
- What will cause errors?
- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Comparisons

VDTM, modelbased stereo

Final results

Results

- REALVIZ ImageModeler

Cinefex \#79, October 1999.
Since the bullet-time rig would be visible in shots featuring a 360-degree sweep of the characters, it was employed only for the shooting of the foreground subject - namely, the actors or their stunt doubles - necessitating a different approach for the backgrounds. Shot separately, the backgrounds used a virtual cinematography process that allowed a 360 -degree environ ment to be constructed in the computer from stills taken on set. This approach for generating the backgrounds was based on the Berkeley Tower flyover, a novel image-based rendering technique presented at Siggraph ' 97 by George Borshukov and Paul Debevec, a researcher at UC Berkeley. The technique employed twenty stills of that town's college campus to create a virtual environment through which the camera could travel. "Instead of reinventing the background in traditional CG fashion - painting textures, shooting orthographic views of the set, and then proceeding to texture replication-we generated a completely free, high-resolution camera move that would have been impossible to achieve using traditional CG," Borshukov said, "and we did it working from just a handful of stills."

- Academy Awards for Scientific and Technical achievement for 2000

To George Borshukov, Kim Libreri and Dan Piponi for the development of a system for image-based rendering allowing choreographed camera movements through computer graphic reconstructed sets.

This was used in The Matrix and Mission Impossible II; See The Matrix Disc \#2 for more details

Models from single images

- Vanishing point
- projection of a point at infinity

Vanishing points (2D)

Vanishing points

- Properties
- Any two parallel lines have the same vanishing point v
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes define different vanishing lines

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{X} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
$$

- Properties $\mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
$-\mathbf{P}_{\infty}$ is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{t} \mathbf{D}, \mathbf{P}_{1}+\mathrm{t} \mathbf{D}$ intersect at \mathbf{P}_{∞}

Tour into pictures

- Create a 3D "theatre stage" of five billboards
- Specify foreground obj ects through bounding polygons

- Use camera transformations to navigate through the scene

(h) Rendered image
- Many scenes (especially paintings), can be represented as an axis-aligned box volume (i.e. a stage)
- Key assumptions:
- All walls of volume are orthogonal
- Camera view plane is parallel to back of volume
- Camera up is normal to volume bottom
- Volume bottom is $y=0$
- Can use the vanishing point to fit the box to the particular Scene!

- User controls the inner box and the vanishing point placement (6 DOF)

Foreground Objects

- Use separate billboard for each
- For this to work, three separate images used:
- Original image.
- Mask to isolate desired foreground images.
- Background with objects removed

- Add vertical rectangles for each foreground object
- Can compute 3D coordinates PO, P1 since they are on known plane.
- P2, P3 can be computed as before (similar triangles)

Example

(a) Input image

(b) Background

(c) Foreground mask

Example

Zhang et. al. CVPR 2001

Zhang et. al. CVPR 2001

Oh et. al. SGGRAPH 2001

Oh et. al. SIGGRAPH 2001

Automatic popup

DigivFX

Input Geometric Labels Cut'n'Fold 3D Model

Geometric cues
Automatic popup

Featur Descriptions	Num	Used
Color	15	15
C1. RGB values mean	3	3
C2. HSV values conversion from mean RGB values	3	3
C3. Hue: histogram (5 bins) and entropy	6	6
C4. Saturation: histogram (3 bins) and entropy	3	3
Texture	29	13
T1. DOOG Filters mean abs response	12	3
T2. DOOG Fillers mean of variables in T1	1	0
T3. DooG Filters id of max of variables in T1	1	1
T4. DOOG Fillers (max - median) of variables in TI	1	1
TS. Textons: mean abs response	12	7
T6. Textons: max of varables in T 5	1	0
T7. Textons: (max - median) of variables in TS	1	1
L.ceation and Shape	12	
L1. Location: nomalized x and y , mean	2	2
L2. Location: norm. x and y . $10^{\text {h }}$ and $99^{\boldsymbol{h}}$ percentile	4	4
L3. Location: norm. y wrt horizon, $10^{\text {h }}$ and 99^{6} pcal	2	2
L4. Shape: number of superpixels in constellation	1	1
L5. Shape: number of sides of convex hull	1	0
L6. Shape: mum pixels/area(convex hull)	1	1
L7. Shape: whether the constellation region is contiguous	1	0
3D Geometry	${ }^{35}$	${ }^{28}$
G1. Long Liess: toal number in constellation region	1	1
G2. Long Lines: \% of nearly parallel pairs of lines	1	1
G3. Line Interection: hist. over 12 orientations, entropy	13	11
G4. Line Intersection: \% right of center	1	1
G5. Line Intersection: \%a above center	1	1
G6. Line Intersection: \% far from center at 8 orientations	8	4
G7. Line Intersetion: \% very far from center at 8 orientations	8	5
G8. Texture gradient x and y "edginess" (T2) center	2	2

Results

This approach works roughly for 35\%of images.

Labeling Errors

Foreground Objects

References

- P. Debevec, C. Taylor and J. Malik. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach, SIGGRAPH 1996
- Y. Horry, K. Anj yo and K. Arai. Tour Into the Picture: Using a Spidery Mesh Interface to Make Animation from a Single Image, SIGGRAPH 1997.
- L. Zhang, G. Dugas-Phocion, J.-S. Samson and S. Seitz. Single View Modeling of Free-Form Scenes, CVPR 2001.
- B. Oh, M. Chen, J. Dorsey and F. Durand. Image-Based Modeling and Photo Editing, SIGGRAPH 2001.
- D. Hoiem, A. Efros and M. Hebert. Automatic Photo Pop-up, SIGGRAPH 2005.

