Photographic compositions

Lang Ching-shan

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Optical compositing

King Kong (1933) Stop-motion + optical compositing
Digital matting and composting

The lost world (1925) The lost world (1997)
Miniature, stop-motion Computer-generated images

Optical compositing Blue-screen matting, digital composition, digital matte painting

Titanic background replacement
Matting and Compositing background editing
Matting and Compositing

King Kong (1933) Jurassic Park III (2001)
Digital matting: bluescreen matting

Forrest Gump (1994)

- The most common approach for films.
- Expensive, studio setup.
- Not a simple one-step process.

Color difference method (Ultimatte)

\[C = F + \alpha B \]

- Blue-screen photograph
- Spill suppression: \(\text{if } B > G \text{ then } B = G \)
- Matte creation: \(\alpha = B - \max(G, R) \)
 - demo with Paint Shop Pro (\(B = \min(B, G) \))

Problems with color difference

Background color is usually not perfect! (lighting, shadowing...)

Chroma-keying (Primatte)
Chroma-keying (Primatte)

demo

Outline

• Traditional matting and compositing
• The matting problem
• Bayesian matting and extensions
• Matting with less user inputs
• Matting with multiple observations
• Beyond the compositing equation*
• Conclusions

Compositing

\[C = \alpha F + (1 - \alpha)B \]

foreground color alpha matte background plate

\[F \]
\[\alpha \]
\[B \]

C = \alpha F + (1 - \alpha)B

compositing equation

\[\alpha = 0 \]

\[\alpha = 1 \]

Compositing
Compositing

Matting

Three approaches:
1. Reduce number of unknowns
2. Add observations
3. Add priors

Matting (reduce number of unknowns)
Matting (reduce #unknowns)

\[C = \alpha F + (1 - \alpha)B \]

Matting (add observations)

\[C = \alpha F + (1 - \alpha)B \]

Matting (add priors)

\[C = \alpha F + (1 - \alpha)B \]

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions
Bayesian framework

Parameters $z \rightarrow f(z) + \varepsilon \rightarrow y$ observed signal

$z^* = \max_z P(z \mid y)$
$= \max_z \frac{P(y \mid z) P(z)}{P(y)}$
$= \max_z L(y \mid z) + L(z)$

Bayesian framework

Example:
- super-resolution
- de-blurring
- de-blocking

$\arg \max_{F, B, \alpha} P(F, B, \alpha \mid C)$
$= \arg \max_{F, B, \alpha} \frac{P(C \mid F, B, \alpha) P(F) P(B) P(\alpha)}{P(C)}$

$L(C \mid F, B, \alpha) = -\|C - \alpha F - (1 - \alpha) B\|^2 / 2 \sigma_C^2$

Bayesian framework

Priors

$F = \frac{1}{W} \sum_{i \in I} w_i F_i$
$\Sigma_F = \frac{1}{W} \sum_{i \in I} w_i (F_i - \overline{F})(F_i - \overline{F})^T$

$L(F) = -(F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$
Bayesian matting

\begin{align*}
&\arg \max_{F,B,\alpha} L(C \mid F, B, \alpha) + L(F) + L(B) \\
&\arg \max_{F,B,\alpha} -\|C - \alpha F - (1 - \alpha) B\|^2 / \sigma_C^2 \\
&\quad - (F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2 \\
&\quad - (B - \overline{B})^T \Sigma_B^{-1} (B - \overline{B}) / 2
\end{align*}

Bayesian image matting

Optimization

repeat

1. fix \(\alpha \)

\[
\begin{bmatrix}
\Sigma_F^{-1} + I \alpha^2 / \sigma_C^2 & I \alpha (1 - \alpha) / \sigma_C^2 \\
I \alpha (1 - \alpha) / \sigma_C^2 & \Sigma_B^{-1} + I (1 - \alpha)^2 / \sigma_C^2
\end{bmatrix}
\begin{bmatrix}
F \\
B
\end{bmatrix}
= \begin{bmatrix}
\Sigma_F^{-1} \overline{F} + C \alpha / \sigma_C^2 \\
\Sigma_B^{-1} \overline{B} + C (1 - \alpha) / \sigma_C^2
\end{bmatrix}
\]

2. fix \(F \) and \(B \)

\[
\alpha = \frac{(C - B) \cdot (F - B)}{\|F - B\|^2}
\]

until converge

Bayesian image matting
Comparisons

Video matting

Video matting
Video matting
optical flow
Comparison without background with background
Problems with Bayesian matting

- It requires fine trimaps for good results
- It is tedious to generate fine trimaps
- Its performance rapidly degrades when foreground and background patterns become complex
- There is no direct and local control to the resulted mattes
Outline
- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Motivation

\[
E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)
\]

\[
E_1(x_i = 1) = 0 \quad E_1(x_i = 0) = \infty \quad \forall i \in \mathcal{F}
\]

\[
E_1(x_i = 1) = \infty \quad E_1(x_i = 0) = 0 \quad \forall i \in \mathcal{B}
\]

\[
E_1(x_i = 1) = \frac{d^T}{d_x + d_y} \quad E_1(x_i = 0) = \frac{d^B}{d_x + d_y} \quad \forall i \in \mathcal{U}
\]
Matting approaches

- Sampling approaches: solve for each alpha separately by utilizing local fg/bg samples, e.g. Ruzon/Tomasi, Knockout and Bayesian matting.
- Propagation approaches: solve the whole matte together by optimizing, e.g. Poisson, BP, random walker, closed-form and robust matting.

Poisson matting

\[I = \alpha F + (1 - \alpha)B \]

\[\nabla I = (F - B)\nabla \alpha + \alpha \nabla F + (1 - \alpha) \nabla B \]

\[\nabla \alpha \approx \frac{1}{F - B} \nabla I \]

\[\alpha^* = \arg \min_{\alpha} \int \int_{p \in \Omega} \left\| \nabla \alpha_p - \frac{1}{F_p - B_p} \nabla I_p \right\|^2 dp \]
Poisson matting

Robust matting

- Jue Wang and Michael Cohen, CVPR 2007

Robust matting

- Instead of fitting models, a non-parametric approach is used

Bayesian

Robust

Robust matting

- We must evaluate hypothesized foreground/background pairs

\[
\hat{\alpha} = \frac{(C - B^j)(F^i - B^j)}{\|F^i - B^j\|^2}
\]

distance ratio

\[
R_d(F^i, B^j) = \frac{\| C - (\hat{\alpha}F^i + (1 - \hat{\alpha})B^j) \|}{\| F^i - B^j \|}
\]
Robust matting

- To encourage pure fg/bg pixels, add weights

\[w(F^i) = \exp\left\{ - \frac{\| F^i - C \|^2}{D_F} \right\}, \quad \min_i(\| F^i - C \|) \]

\[w(B^j) = \exp\left\{ - \frac{\| B^j - C \|^2}{D_B} \right\}, \quad \min_j(\| B^j - C \|) \]

- Combine them together. Pick up the best 3 pairs and average them

\[f(F^i, B^j) = \exp\left\{ - \frac{R_d(F^i, B^j)^2 \cdot w(F^i) \cdot w(B^j)}{\sigma^2} \right\} \]
Matte optimization

Solved by Random Walk Algorithm

Matte optimization

data constraints

\[
W(i, F) = \gamma \cdot \left[\hat{f}_i \hat{\alpha}_i + (1 - \hat{f}_i)\delta(\hat{\alpha}_i > 0.5) \right]
\]

\[
W(i, B) = \gamma \cdot \left[\hat{f}_i (1 - \hat{\alpha}_i) + (1 - \hat{f}_i)\delta(\hat{\alpha}_i < 0.5) \right]
\]

neighborhood constraints

\[
W_{ij} = \sum_{k}^{(i,j) \in W_k} \frac{1}{9} (1 + (C_i - \mu_k)(\Sigma_k + \frac{\epsilon}{9f})^{-1}(C_j - \mu_k))
\]

Demo (EZ Mask)

Evaluation

- 8 images collected in 3 different ways
- Each has a “ground truth” matte
Evaluation

- Mean square error is used as the accuracy metric
- Try 8 trimaps with different accuracy for testing robustness
- 7 methods are tested: Bayesian, Belief propagation, Poisson, Random Walk, KnockOut2, Closed-Form and Robust matting

Quantitative evaluation

Subjective evaluation
Subjective evaluation

Ranks of these algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>6.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Random walk</td>
<td>6.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Knockout2</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Bayesian</td>
<td>3.9</td>
<td>6.0</td>
</tr>
<tr>
<td>Belief Propagation</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Close-form</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Robust matting</td>
<td>1.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Summary

- Propagation-based methods are more robust
- Sampling-based methods often generate more accurate mattes than propagation-based ones with fine trimaps
- Robust matting combines strengths of both

Soft scissor

- Jue Wang et. al., SIGGRAPH 2007
- Users interact in a similar way to intelligent scissors
Outline
• Traditional matting and compositing
• The matting problem
• Bayesian matting and extensions
• Matting with less user inputs
• Matting with multiple observations
• Beyond the compositing equation*
• Conclusions

Matting with multiple observations
• Invisible lights
 - Polarized lights
 - Infrared
• Thermo-key
• Depth Keying (ZCam)
• Flash matting

Invisible lights (Infrared)
Invisible lights (Infared)
Invisible lights (Polarized)

Thermo-Key
ZCam

Defocus matting

Matting with camera arrays
Flash matting

Foreground flash matting equation

\[I' = I^f - I = \alpha(F^f - F) = \alpha F' \]

Generate a trimap and directly apply Bayesian matting.

\[
\begin{align*}
 L(I' | \alpha, F') &= -||I' - \alpha F'||^2 / \sigma^2_{I'} \\
 L(F') &= -(F' - \overline{F'})^T \Sigma_{F'}^{-1}(F' - \overline{F'})
\end{align*}
\]
\[I = \alpha F + (1 - \alpha)B \]
\[I' = \alpha F' \]

arg \(\max_{\alpha, F, B, F'} \) \(L(\alpha, F, B, F' | I, I') \)

\[= \arg \max_{\alpha, F, B, F'} \{ L(I | \alpha, F, B) + L(I' | \alpha, F') + \]
\[L(F) + L(B) + L(F') + L(\alpha) \} \]

Joint Bayesian flash matting

\[\alpha = \frac{\sigma_{F'}^2 (F - B)^T (I - B) + \sigma_{F'}^2 F' F'}{\sigma_{F'}^2 (F - B)^T (F - B) + \sigma_{F'}^2 F' F'} \]

\[= \begin{bmatrix}
\Sigma_{F}^{-1} + I\alpha^2 / \sigma_I^2 & I\alpha(1 - \alpha)\sigma_I^2 & 0 \\
I\alpha(1 - \alpha)\sigma_I^2 & \Sigma_B^{-1} + I\alpha^2 / \sigma_I^2 & 0 \\
0 & 0 & \Sigma_{F'}^{-1} + I\alpha^2 / \sigma_{F'}^2
\end{bmatrix}
\begin{bmatrix}
F \\
B \\
F'
\end{bmatrix} \]

Comparison

Joint Bayesian flash matting

Comparison

Joint Bayesian flash matting
Flash matting

Outline
- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation
- Conclusions

Conclusions
- Matting algorithms improve a lot in these 10 years
- In production, it is still always preferable to shoot against uniform backgrounds
- Algorithms for more complex backgrounds
- Devices or algorithms for automatic matting