Matting and Compositing

Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/4/29

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Photomontage

The Two Ways of Life, 1857, Oscar Gustav Rejlander Printed from the original 32 wet collodion negatives.

Photographic compositions

Lang Ching-shan

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Optical compositing

King Kong (1933) Stop-motion + optical compositing

Digital matting and compositing

The lost world (1925)

The lost world (1997)

Miniature, stop-motion

Computer-generated images

Digital matting and composting

King Kong (1933)

Optical compositing

Jurassic Park III (2001)

Blue-screen matting, digital composition, digital matte painting

Matting and Compositing

Matting and Compositing

Digital matting: bluescreen matting

Forrest Gump (1994)

- The most common approach for films.
- Expensive, studio setup.
- Not a simple one-step process.

Color difference method (Ultimatte)

Blue-screen photograph

Spill suppression if B>G then B=G demo with Paint Shop Pro (B=min(B,G))

Matte creation $\overline{\alpha}$ =B-max(G,R)

Problems with color difference

Background color is usually not perfect! (lighting, shadowing...)

Chroma-keying (Primatte)

Chroma-keying (Primatte)

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

$$\arg \max_{F,B,\alpha} L(C \mid F, B, \alpha) + L(F) + L(B)$$

$$\arg \max_{F,B,\alpha} - \|C - \alpha F - (1 - \alpha)B\|^2 / \sigma_C^2$$

$$- (F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$$

$$- (B - \overline{B})^T \Sigma_B^{-1} (B - \overline{B}) / 2$$

Bayesian matting

repeat
1. fix alpha

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I(1-\alpha)^2/\sigma_C^2 \end{bmatrix} \begin{bmatrix} F \\ B \end{bmatrix}$$

$$= \begin{bmatrix} \Sigma_F^{-1}\overline{F} + C\alpha/\sigma_C^2 \\ \Sigma_B^{-1}\overline{B} + C(1-\alpha)/\sigma_C^2 \end{bmatrix}$$
2. fix F and B

$$\alpha = \frac{(C-B) \cdot (F-B)}{\|F-B\|^2}$$
until converge
Optimization

Bayesian image matting

Demo

Comparisons

input video

Video matting

input video

input key trimaps

Video matting

Sample composite

Garbage mattes

Garbage mattes

Background estimation

Background estimation

Alpha matte

comparison

<image>

Problems with Bayesian matting

- It requires fine trimaps for good results
- It is tedious to generate fine trimaps
- Its performance rapidly degrades when foreground and background patterns become complex
- There is no direct and local control to the resulted mattes

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Motivation

$$E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$
$$E_1(x_i = 1) = 0 \qquad E_1(x_i = 0) = \infty \quad \forall i \in \mathcal{F}$$
$$E_1(x_i = 1) = \infty \qquad E_1(x_i = 0) = 0 \quad \forall i \in \mathcal{B}$$
$$E_1(x_i = 1) = \frac{d_i^{\mathcal{F}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} \qquad E_1(x_i = 0) = \frac{d_i^{\mathcal{B}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} \quad \forall i \in \mathcal{U}$$

LazySnapping

$$E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$
$$E_2(x_i, x_j) = |x_i - x_j| \cdot g(C_{ij})$$
$$C_{ij} = ||C(i) - C(j)||^2$$
$$g(\varepsilon) = \frac{1}{\varepsilon + 1}$$

Matting approaches

- Sampling approaches: solve for each alpha separately by utilizing local fg/bg samples, e.g. Ruzon/Tomasi, Knockout and Bayesian matting.
- Propagation approaches: solve the whole matte together by optimizing, e.g. Poisson, BP, random walker, closed-form and robust matting.

$$\begin{aligned} &Poisson \ matting\\ &I = \alpha F + (1 - \alpha)B\\ &\nabla I = (F - B)\nabla\alpha + \alpha\nabla F + (1 - \alpha)\nabla B\\ &\nabla \alpha \approx \frac{1}{F - B}\nabla I\\ &\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega} ||\nabla \alpha_p - \frac{1}{F_p - B_p}\nabla I_p||^2 dp \end{aligned}$$

Poisson matting

Robust matting

 Jue Wang and Michael Cohen, CVPR 2007

Robust matting

 Instead of fitting models, a nonparametric approach is used

Robust matting

Bj

C

 F^{i}

• We must evaluate hypothesized foreground/background pairs

$$\hat{\alpha} = \frac{(C - B^j)(F^i - B^j)}{\|F^i - B^j\|^2}$$

 $R_d($

$$F^{i}, B^{j}) = \frac{\parallel C - (\hat{\alpha}F^{i} + (1 - \hat{\alpha})B^{j}) \parallel}{\parallel F^{i} - B^{j} \parallel}$$

Robust matting

• To encourage pure fg/bg pixels, add weights

Robust matting

• Combine them together. Pick up the best 3 pairs and average them

confidence

$$f(F^{i}, B^{j}) = exp\left\{-\frac{R_{d}(F^{i}, B^{j})^{2} \cdot w(F^{i}) \cdot w(B^{j})}{\sigma^{2}}\right\}$$

Robust matting

Robust matting

matte

Matte optimization

data constraints

$$\frac{W(i,F) = \gamma \cdot [\hat{f}_i \hat{\alpha}_i + (1 - \hat{f}_i) \delta(\hat{\alpha}_i > 0.5)]}{W(i,B) = \gamma \cdot [\hat{f}_i (1 - \hat{\alpha}_i) + (1 - \hat{f}_i) \delta(\hat{\alpha}_i < 0.5)]}$$

neighborhood constraints

$$W_{ij} = \sum_{k}^{(i,j)\in w_k} \frac{1}{9} (1 + (C_i - \mu_k)(\Sigma_k + \frac{\epsilon}{9}I)^{-1}(C_j - \mu_k))$$

Demo (EZ Mask)

Evaluation

- 8 images collected in 3 different ways
- Each has a "ground truth" matte

Evaluation

- Mean square error is used as the accuracy metric
- Try 8 trimaps with different accuracy for testing robustness
- 7 methods are tested: Bayesian, Belief propagation, Poisson, Random Walk, KnockOut2, Closed-Form and Robust matting

Quantitative evaluation

<section-header>

Ranks of these algorithms

	accuracy	robustness
Poisson	6.9	6.8
Random walk	6.0	4.4
Knockout2	4.5	4.5
Bayesian	3.9	6.0
Belief Propagation	3.3	3.1
Close-form	2.6	2.0
Robust matting	1.0	1.3

Summary

- Propagation-based methods are more robust
- Sampling-based methods often generate more accurate mattes than propagation-based ones with fine trimaps
- Robust matting combines strengths of both

Soft scissor

- Jue Wang et. al., SIGGRAPH 2007
- Users interact in a similar way to intelligent scissors

Flowchart

Matte Solver

Flowchart

Foreground Color Solver

New Background

Composite

Soft scissor

Demo (Power Mask)

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Invisible lights (Infared)

Matting with multiple observations

- Invisible lights
 - Polarized lights
 - Infrared
- Thermo-key
- Depth Keying (ZCam)
- Flash matting

Invisible lights (Infared)

Invisible lights (Polarized)

Invisible lights (Polarized)

Thermo-Key

Thermo-Key

ZCam

Defocus matting

Matting with camera arrays

Flash matting

Foreground flash matting equation

$$I' = I^f - I = \alpha(F^f - F) = \alpha F'$$

Generate a trimap and directly apply Bayesian matting.

arg max
$$L(\alpha, F'|I')$$

= arg max $\{L(I'|\alpha, F') + L(F') + L(\alpha)\}$
 $L(I'|\alpha, F') = -||I' - \alpha F'||/\sigma_{I'}^2$
 $L(F') = -(F' - \overline{F'})^T \Sigma_{F'}^{-1}(F' - \overline{F'})$
Flash matting

$$I = \alpha F + (1 - \alpha)B,$$

$$I^{f} = \alpha F^{f} + (1 - \alpha)B^{f},$$

Background is much further than foreground and receives almost no flash light $B^f \approx B$

$$I^f = \alpha F^f + (1 - \alpha)B$$

Flash matting

Foreground flash matting

$$\begin{bmatrix}
I = \alpha F + (1 - \alpha)B \\
I' = \alpha F' \\
arg_{\alpha,F,B,F'} L(\alpha, F, B, F'|I, I') \\
= arg_{\alpha,F,B,F'} L(x, F, B) + L(I'|\alpha, F') + \\
L(F) + L(B) + L(F') + L(\alpha) \\
\end{bmatrix}
\begin{bmatrix}
\sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & \ln(1 - \alpha)\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & 0 \\
\end{bmatrix}
\begin{bmatrix}
F \\ B \\ F' \end{bmatrix} \\
= \begin{bmatrix}
\sum_{p}^{T}F + I\alpha/\sigma_{1}^{2} & 0 \\
\sum_{p}^{-1}F + I\alpha/\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{-1} + \ln^{2}/\sigma_{1}^{2} & 0 \\
\end{bmatrix}$$

$$\begin{bmatrix}
\sum_{p}^{T}F + I\alpha/\sigma_{1}^{2} & 0 \\
\sum_{p}^{T}F + I\alpha/\sigma_{1}^{2} & 0 \\
\sum_{p}^{T}F + I\alpha/\sigma_{1}^{2} & 0 \\
0 & 0 & \sum_{p}^{T}F + I\alpha/\sigma_{1}^{2} & 0 \\
\end{bmatrix}$$

$$\begin{bmatrix}
fiash & no flash \\
fiash matting & forter flash matting \\
\hline
forter ground \\
flash matting & forter flash matting \\
\hline
forter ground \\
flash matting & forter flash matting \\
\hline
forter ground \\
flash matting & forter flash matting \\
\hline
forter ground \\
flash matting & forter flash matting \\
\hline
forter ground \\
flash matting & forter flash flas$$

Flash matting

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Conclusions

- Matting algorithms improves a lot in these 10 years
- In production, it is still always preferable to shoot against uniform backgrounds
- Algorithms for more complex backgrounds
- Devices or algorithms for automatic matting