Matting and Compositing

Digital Visual Effects, Spring 2008

Yung-Yu Chuang

2008/4/29

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

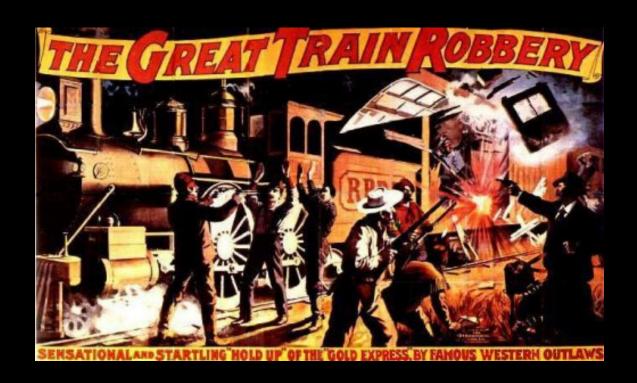
Photomontage

The Two Ways of Life, 1857, Oscar Gustav Rejlander Printed from the original 32 wet collodion negatives.

Photographic compositions

Lang Ching-shan

Use of mattes for compositing



The Great Train Robbery (1903) matte shot

Use of mattes for compositing

The Great Train Robbery (1903) matte shot

Optical compositing

King Kong (1933) Stop-motion + optical compositing

Digital matting and compositing

The lost world (1925)

The lost world (1997)

Miniature, stop-motion

Computer-generated images

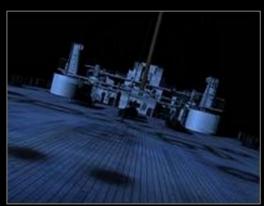
Digital matting and composting

King Kong (1933)

Jurassic Park III (2001)

Optical compositing

Blue-screen matting, digital composition, digital matte painting



Titanic

Matting and Compositing

background editing

Matting and Compositing

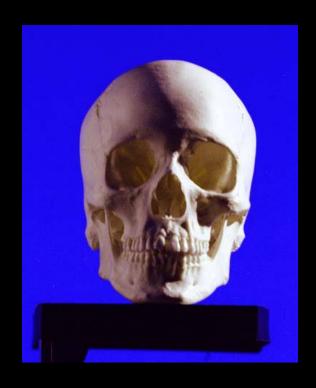
Digital matting: bluescreen matting

Forrest Gump (1994)

- The most common approach for films.
- Expensive, studio setup.
- Not a simple one-step process.

Color difference method (Ultimatte)

 $C=F+\overline{\alpha}B$





Blue-screen photograph

Spill suppression if B>G then B=G

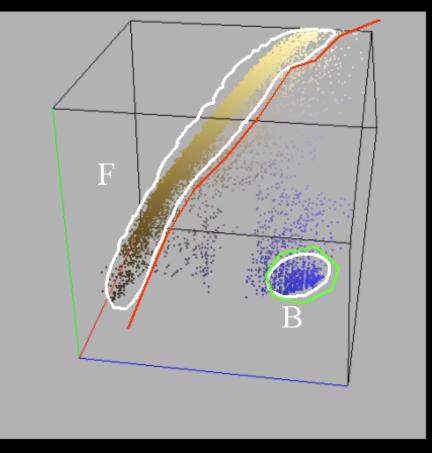
Matte creation $\bar{\alpha}$ =B-max(G,R)

demo with Paint Shop Pro (B=min(B,G))

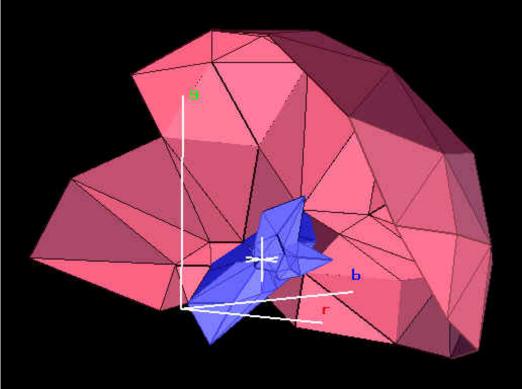
Problems with color difference

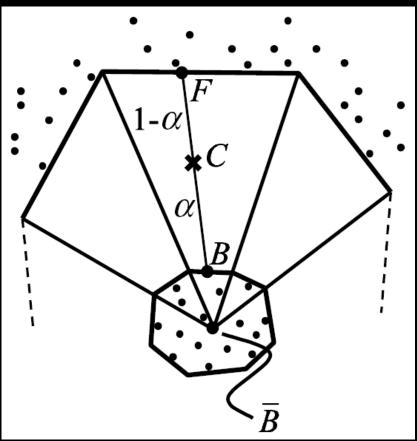
Background color is usually not perfect! (lighting, shadowing...)

Chroma-keying (Primatte)



Chroma-keying (Primatte)

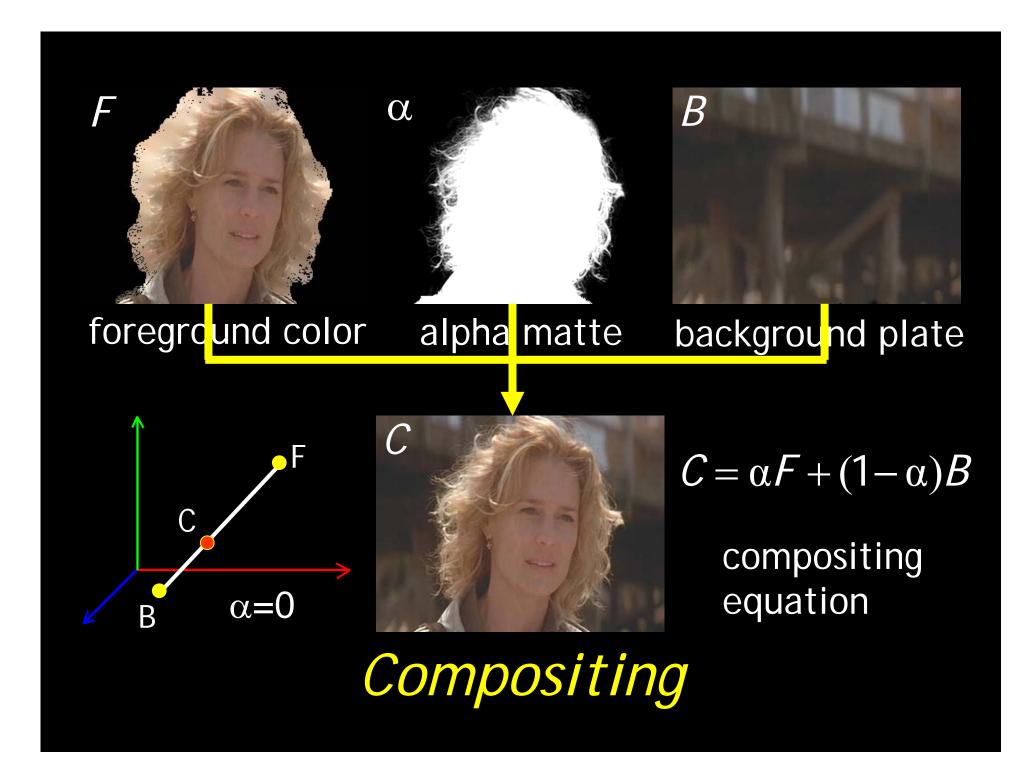


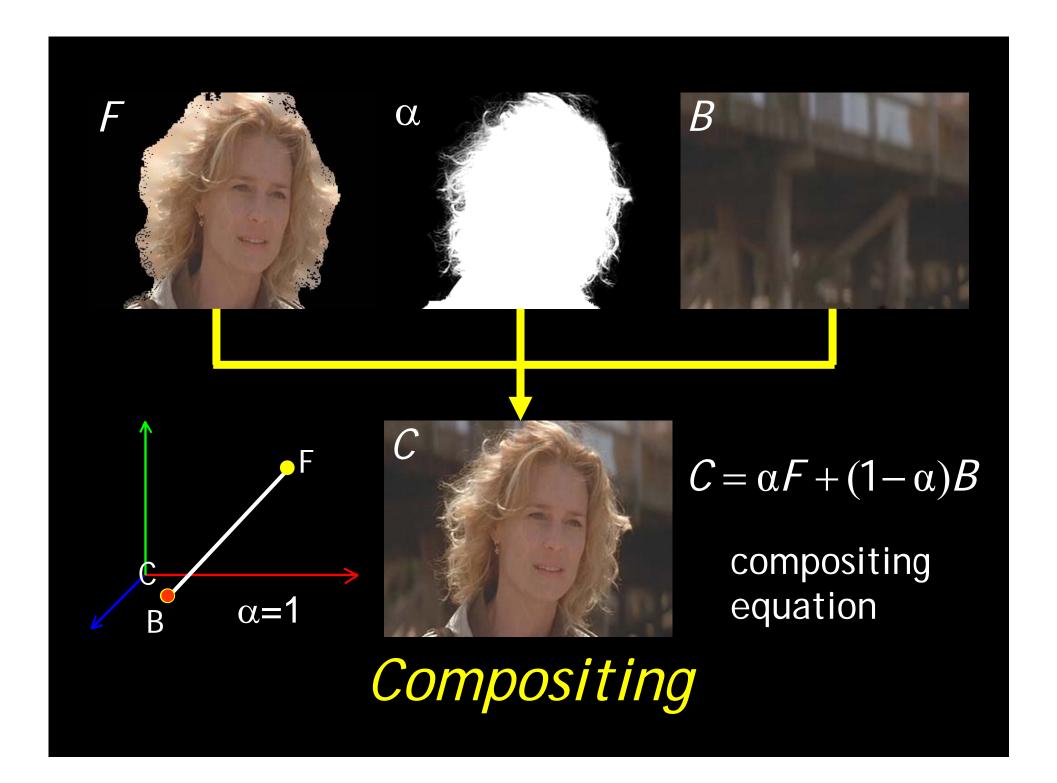


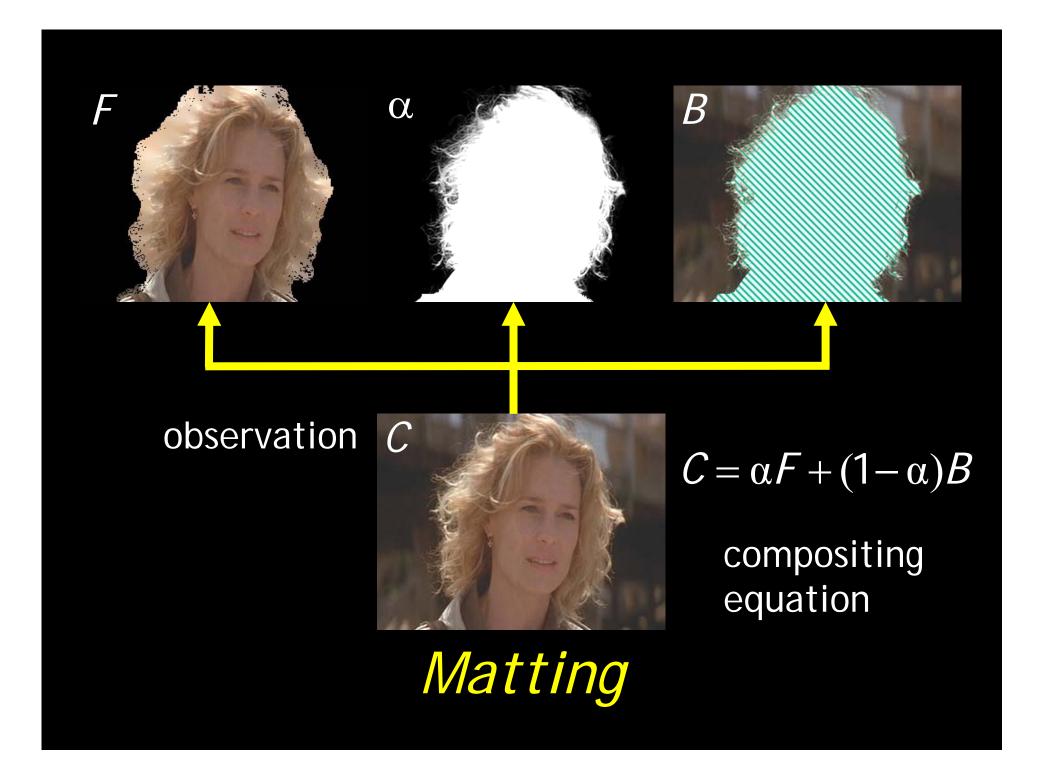
demo

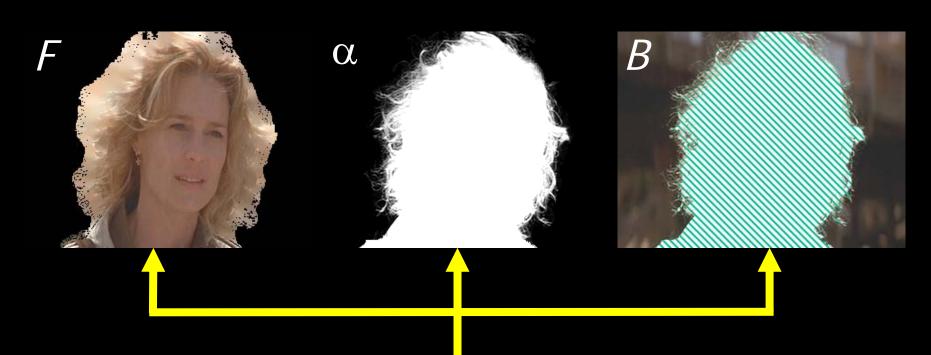
Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions









Three approaches:

1 reduce #unknowns

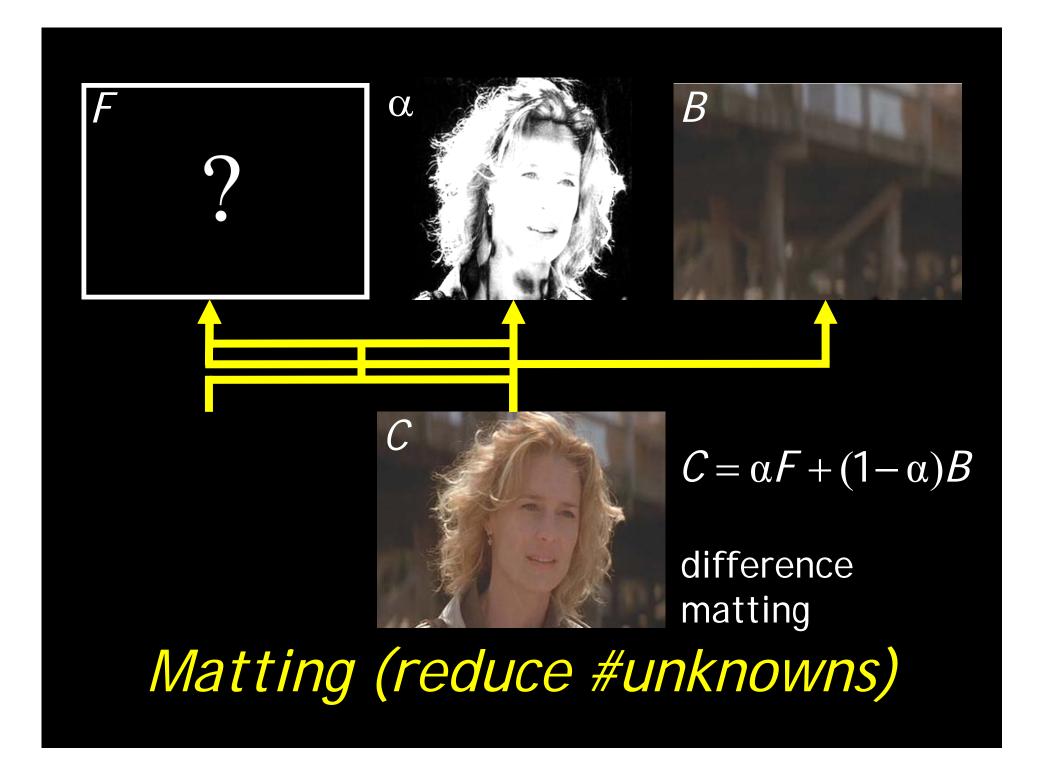
2 add observations

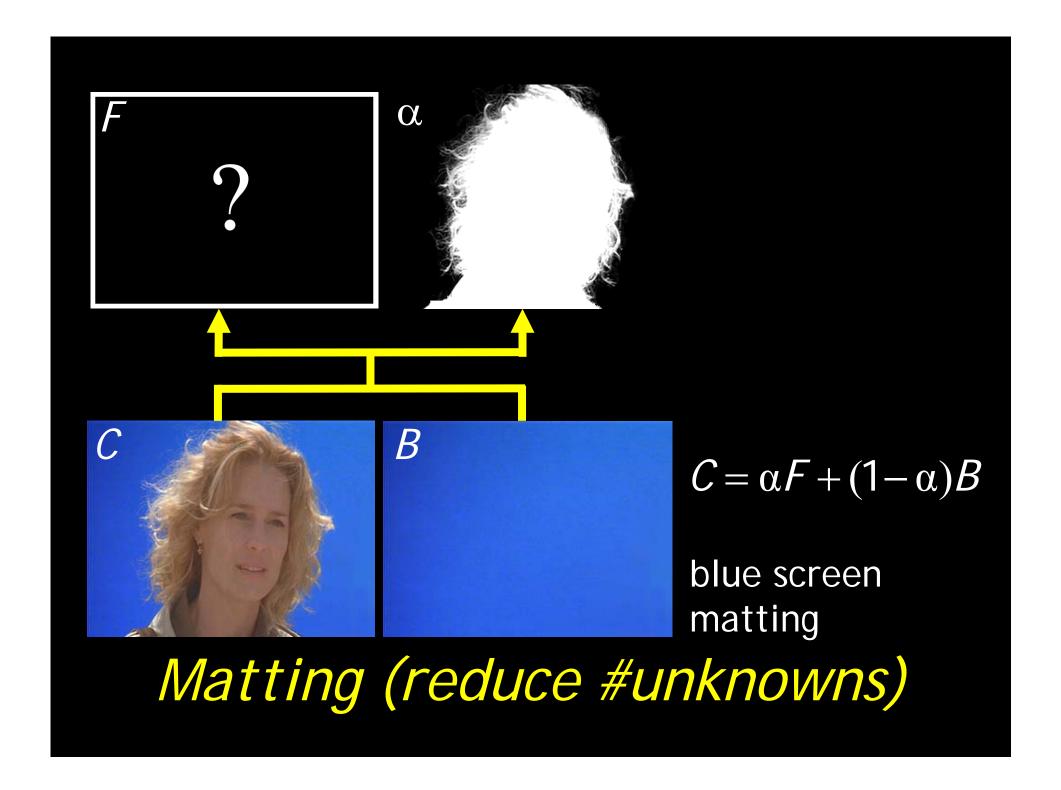
3 add priors

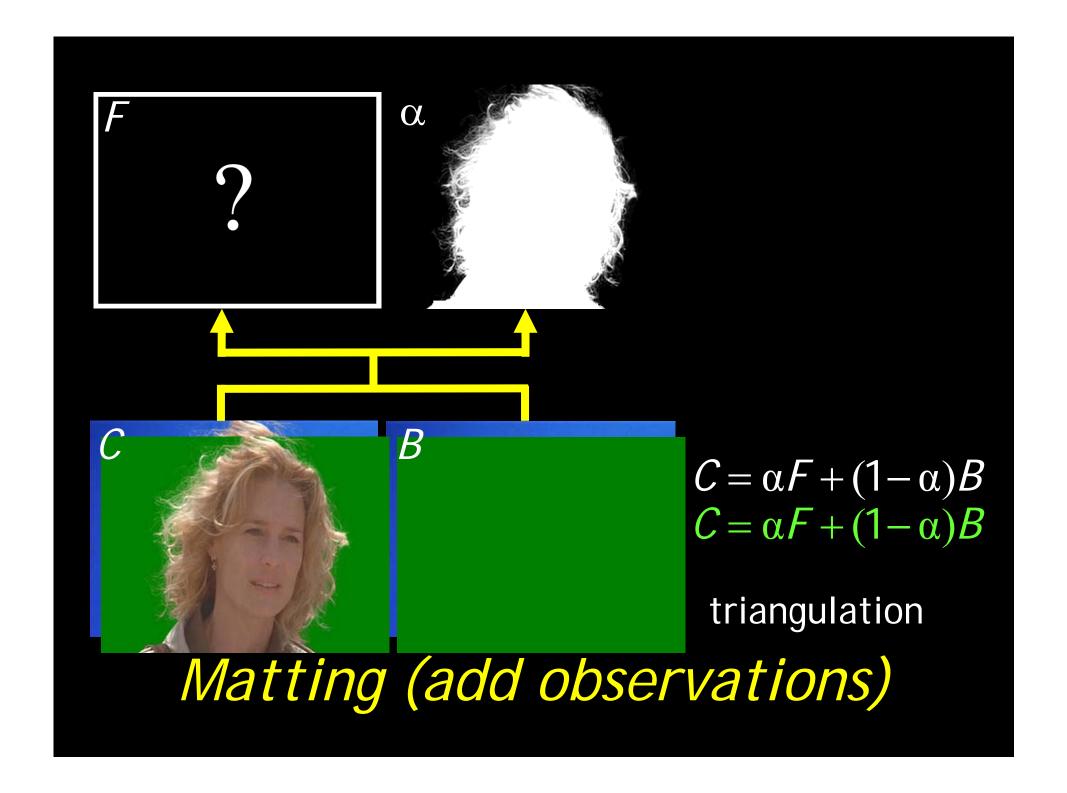
$$C = \alpha F + (1 - \alpha)B$$

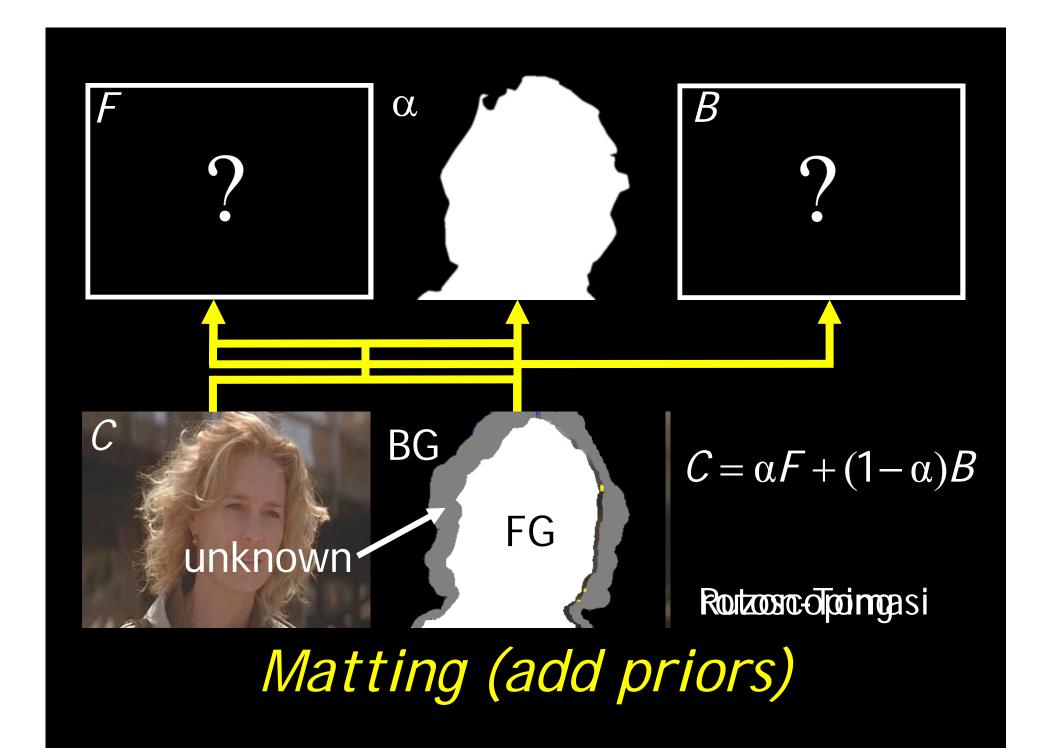
compositing equation

Matting









Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

para-
meters
$$z \longrightarrow f(z)+\epsilon \longrightarrow y$$
 observed
signal

$$z^* = \max_{z} P(z \mid y)$$

$$= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$$

 $= \max L(y \mid z) + L(z)$

Example: super-resolution de-blurring de-blocking

• • •

Bayesian framework

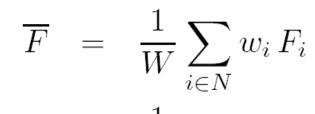
para-
meters
$$z \longrightarrow f(z)+\epsilon \longrightarrow y$$
 observed
signal

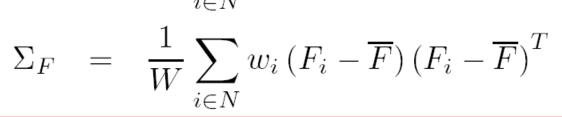
$$z^* = \max_{z} L(y \mid z) + L(z)$$
 data
$$\frac{\|y - f(z)\|^2}{\sigma^2} \quad \text{a-priori}$$
 evidence
$$\sigma^2 \quad \text{knowledge}$$

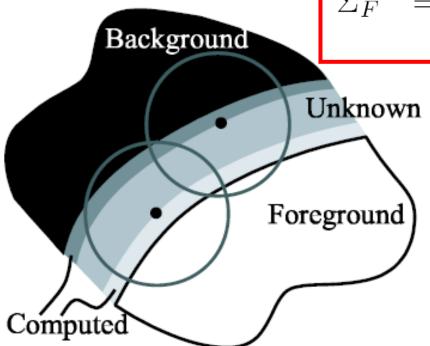
Bayesian framework

$$L(C | F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^2 / 2\sigma_C^2$$

Bayesian framework







$$L(F) = -(F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$$

Priors

$$\arg \max_{F,B,\alpha} L(C \mid F,B,\alpha) + L(F) + L(B)$$

$$\arg \max_{F,B,\alpha} -\|C - \alpha F - (1 - \alpha)B\|^2 / \sigma_C^2$$

$$-(F - \overline{F})^T \Sigma_F^{-1} (F - \overline{F}) / 2$$

$$-(B - \overline{B})^T \Sigma_B^{-1} (B - \overline{B}) / 2$$

Bayesian matting

repeat

1. fix alpha

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I(1-\alpha)^2/\sigma_C^2 \end{bmatrix} \begin{bmatrix} F \\ B \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\Sigma_F^{-1}\overline{F} + C\alpha/\sigma_C^2}{\Sigma_B^{-1}\overline{B} + C(1-\alpha)/\sigma_C^2} \end{bmatrix}$$

2. fix F and B

$$\alpha = \frac{(C-B) \cdot (F-B)}{\|F-B\|^2}$$

until converge

Optimization

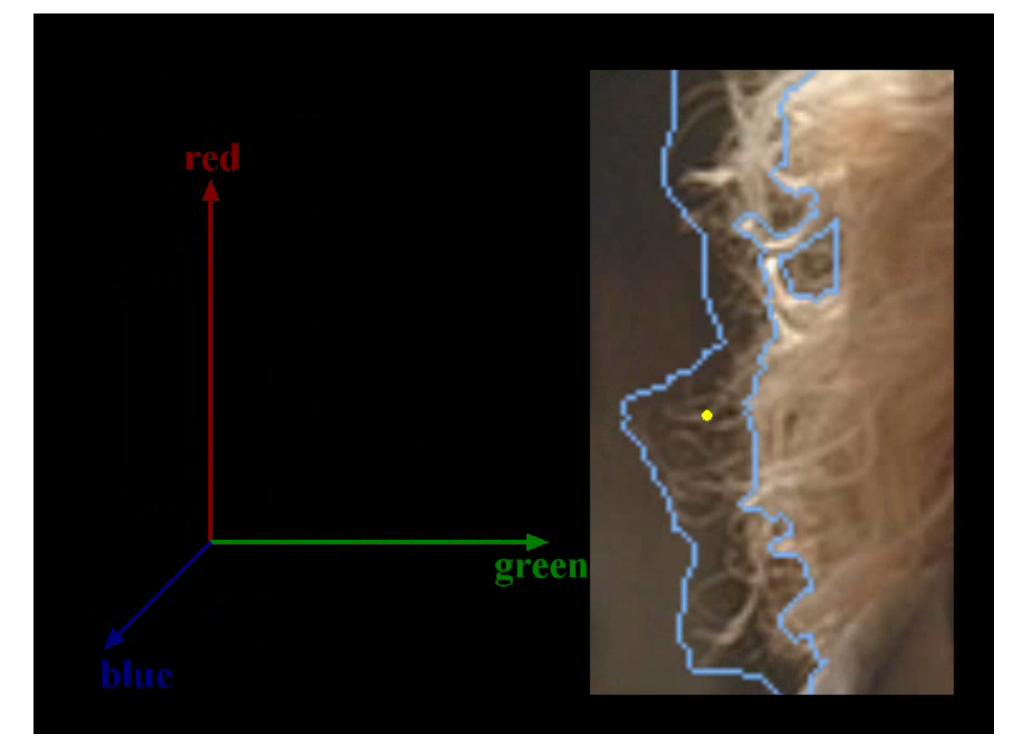
Bayesian image matting

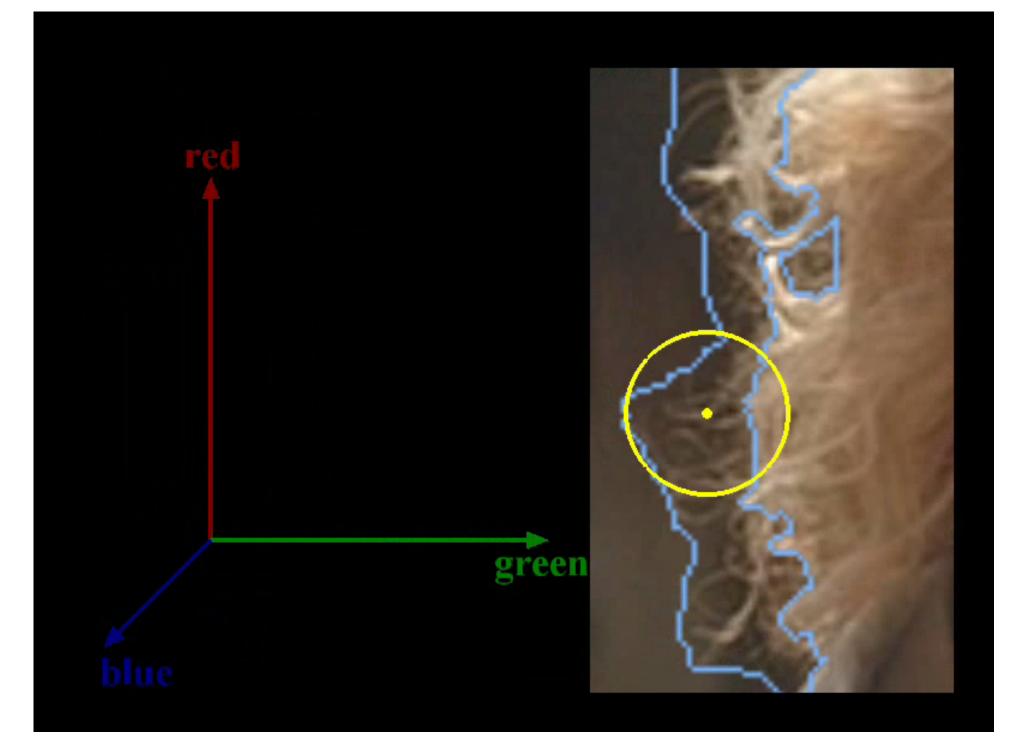
Bayesian image matting

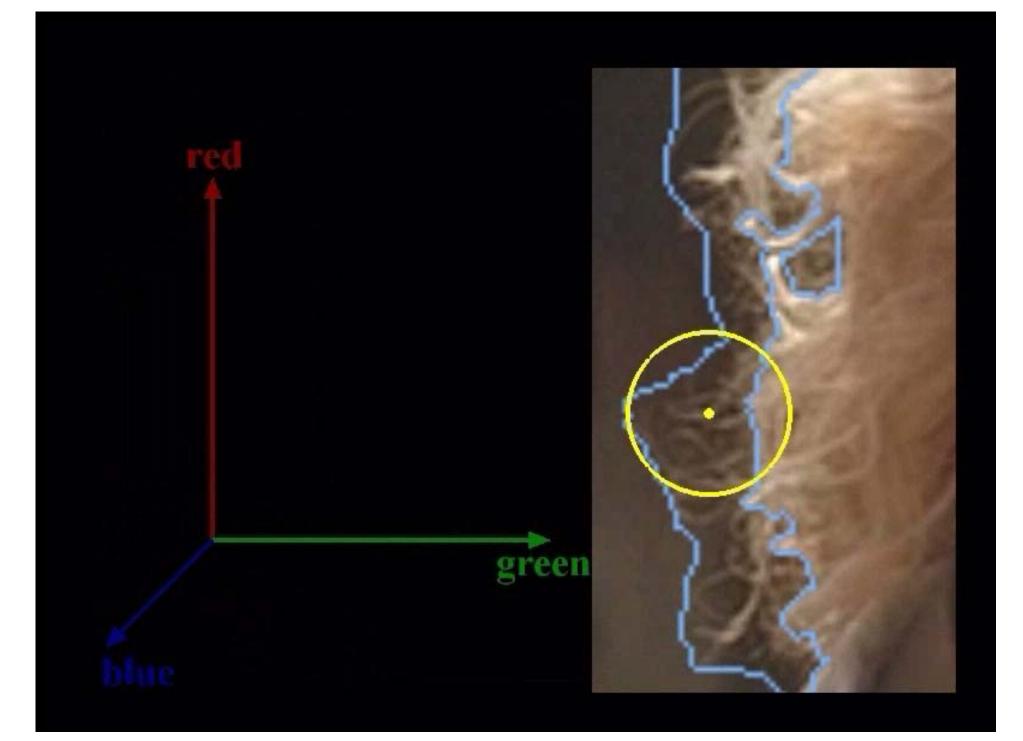
Bayesian image matting

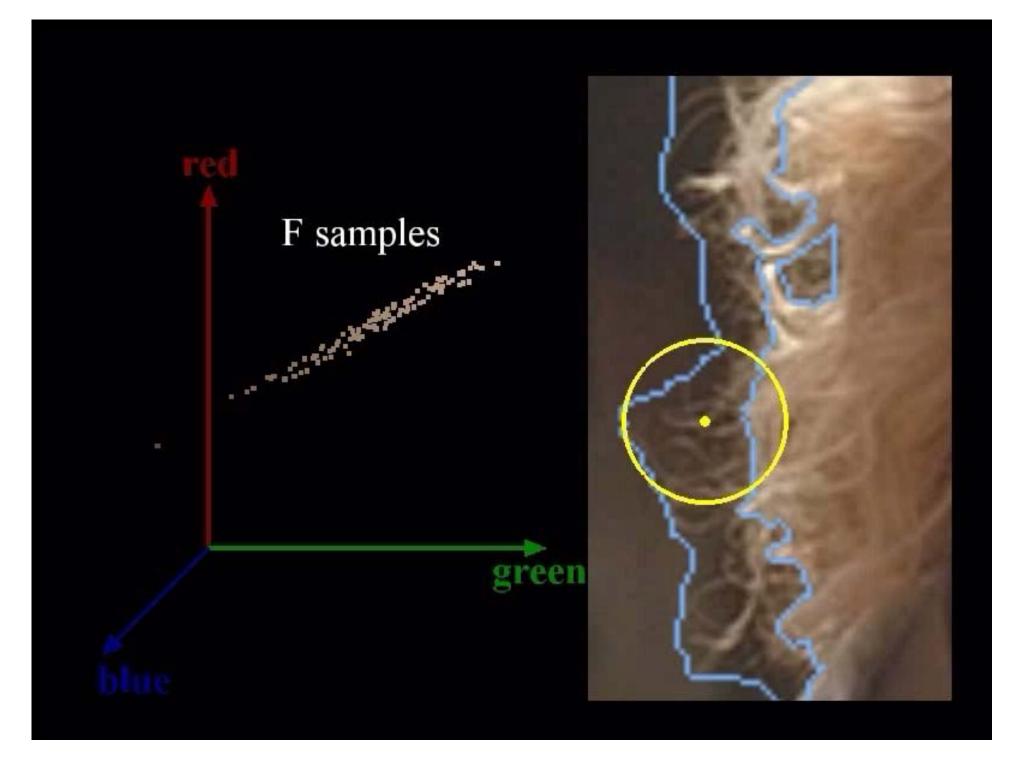
Bayesian image matting

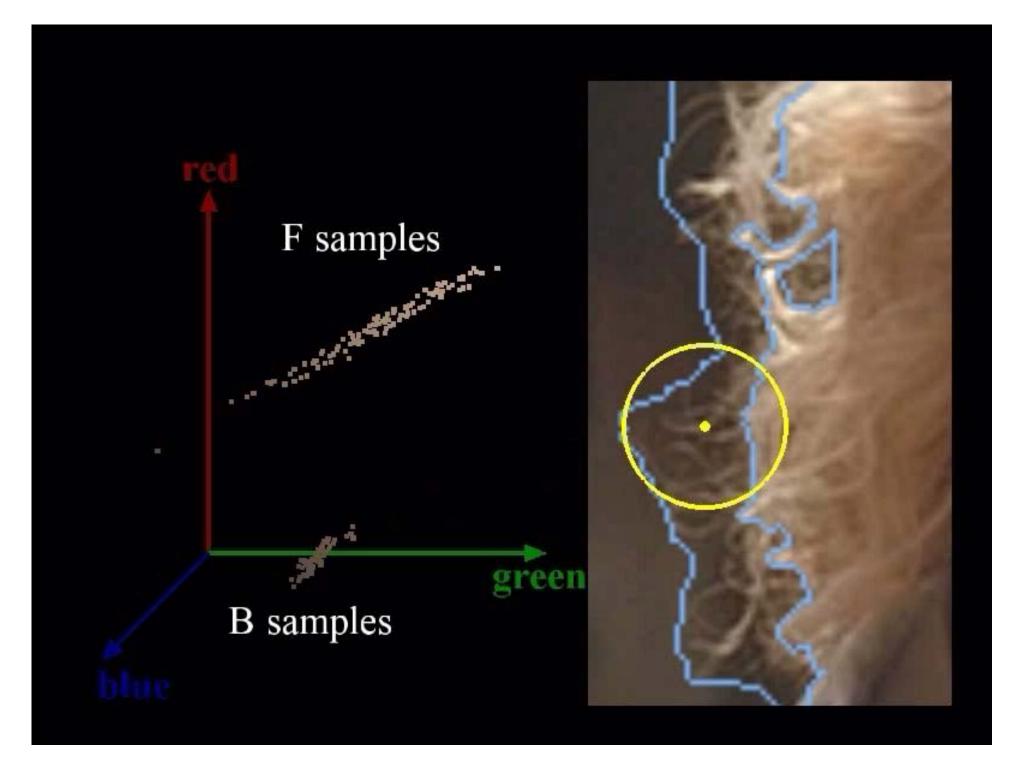
Bayesian image matting

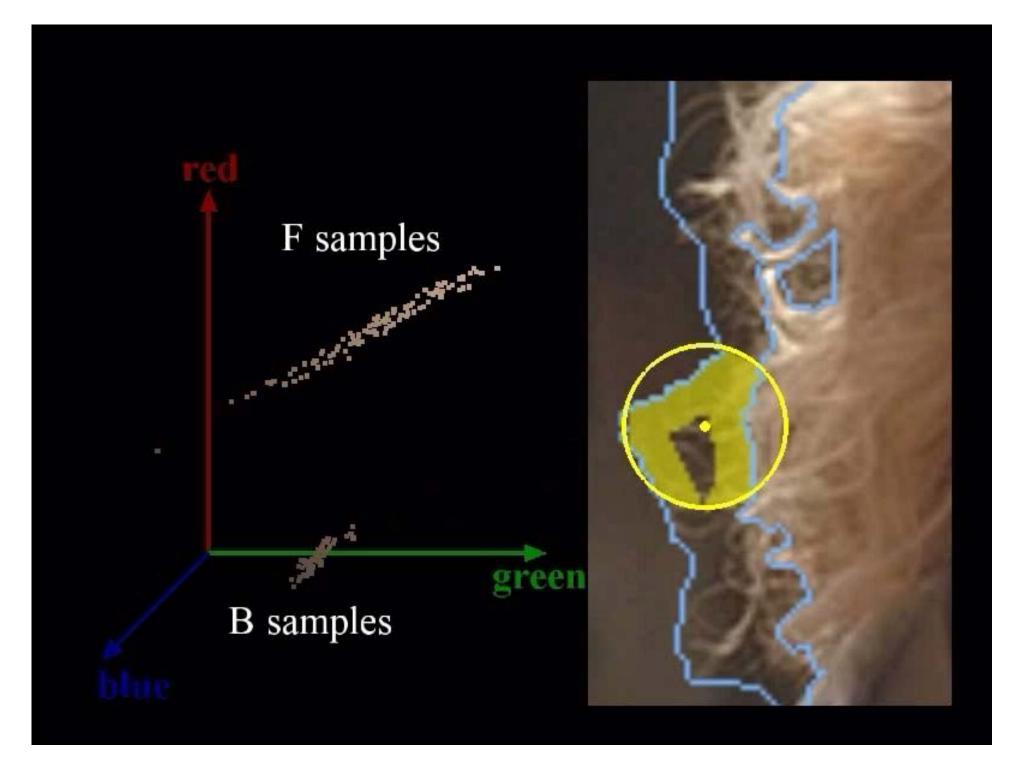


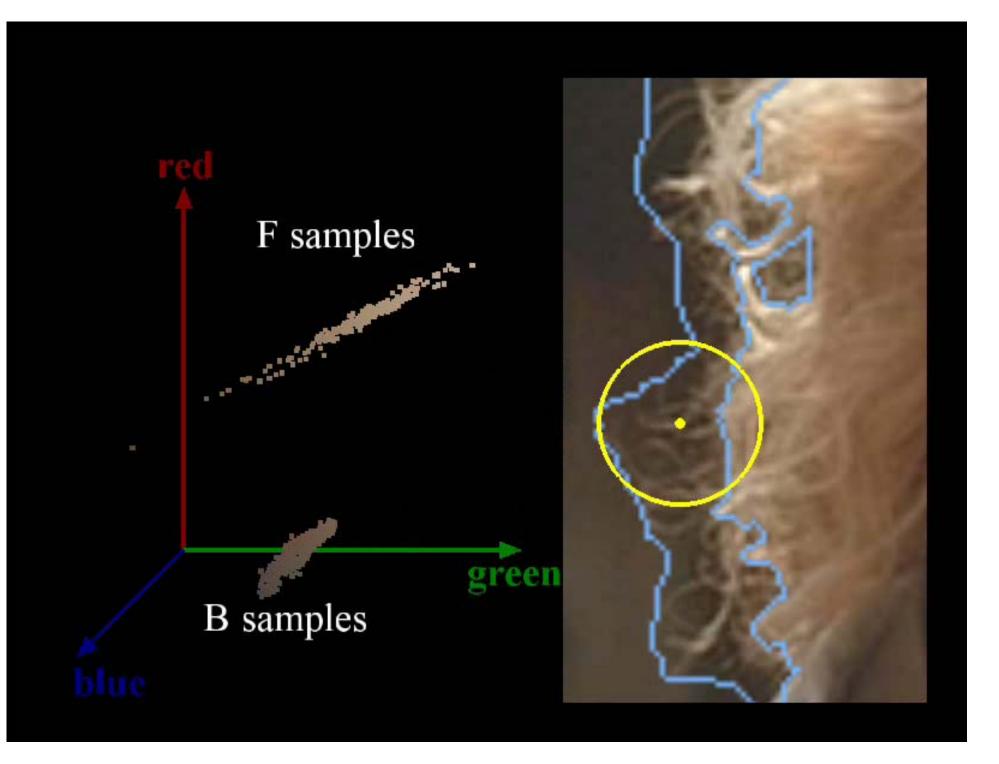


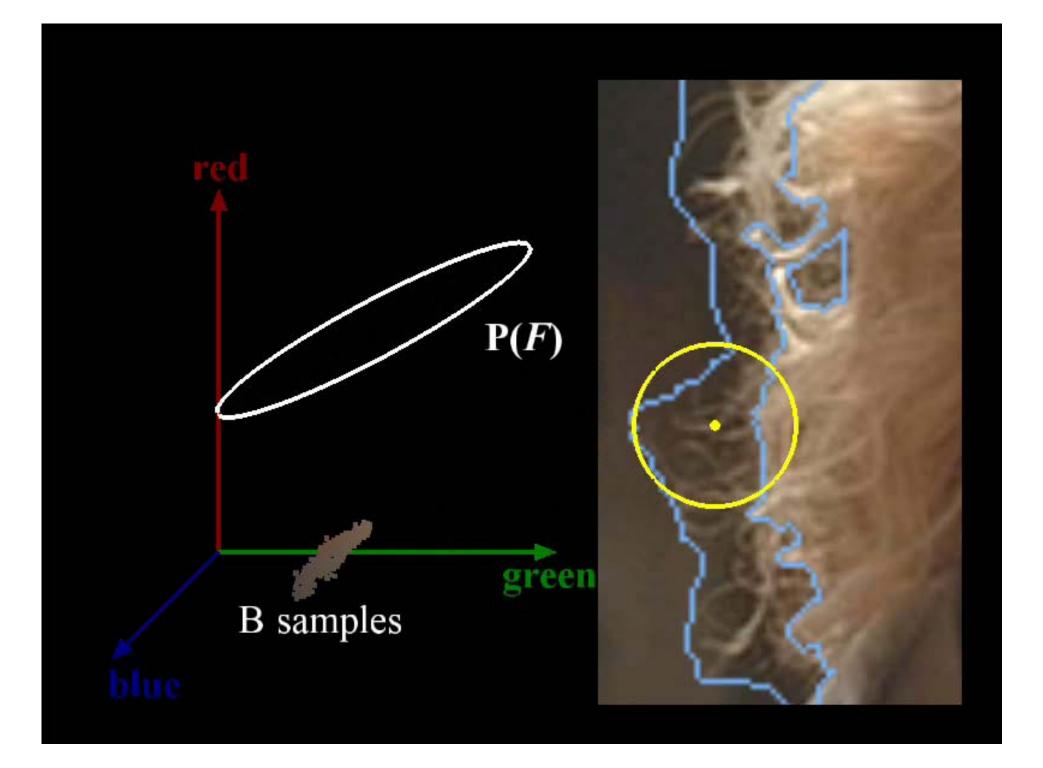


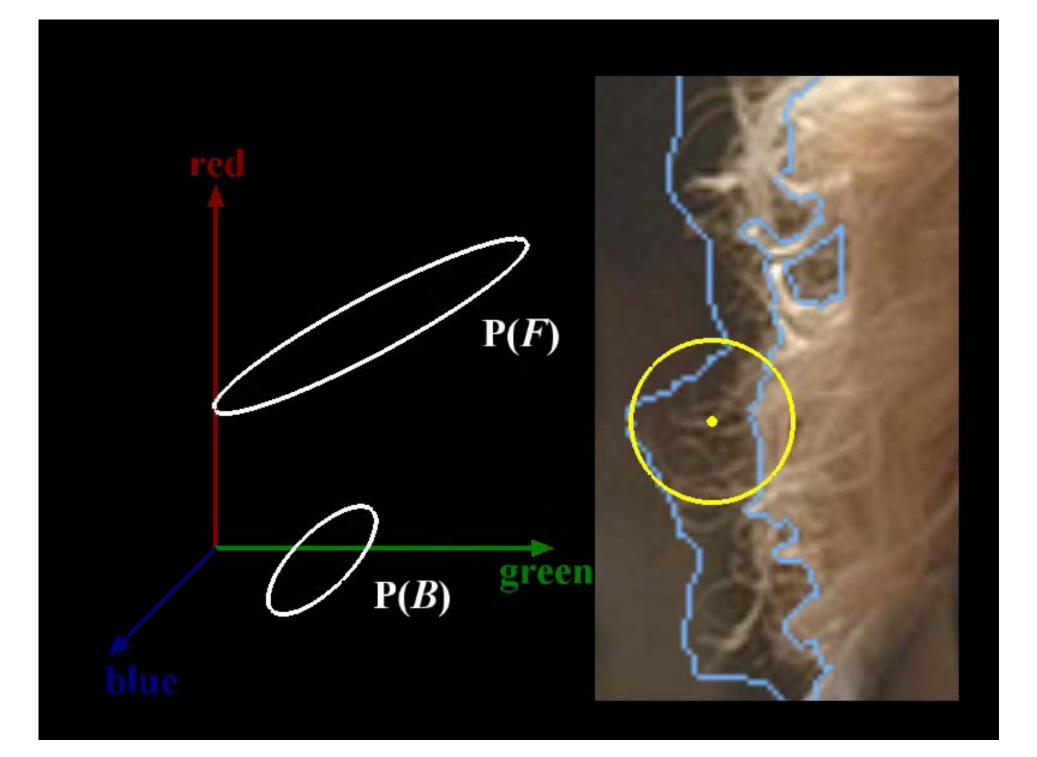


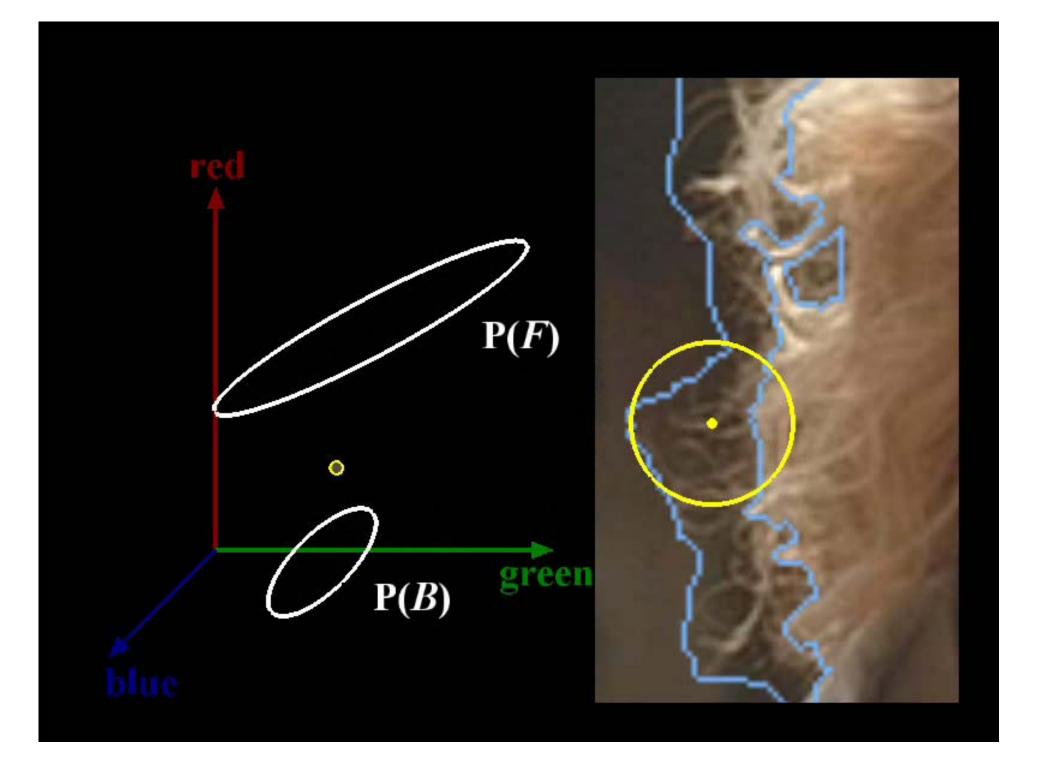


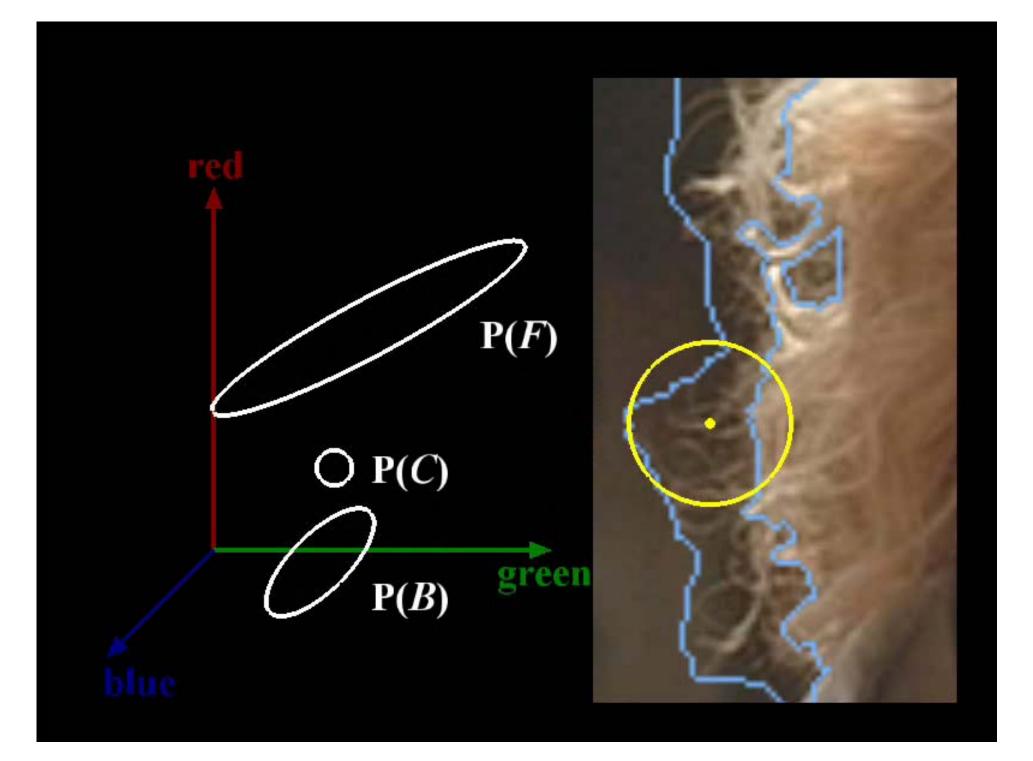


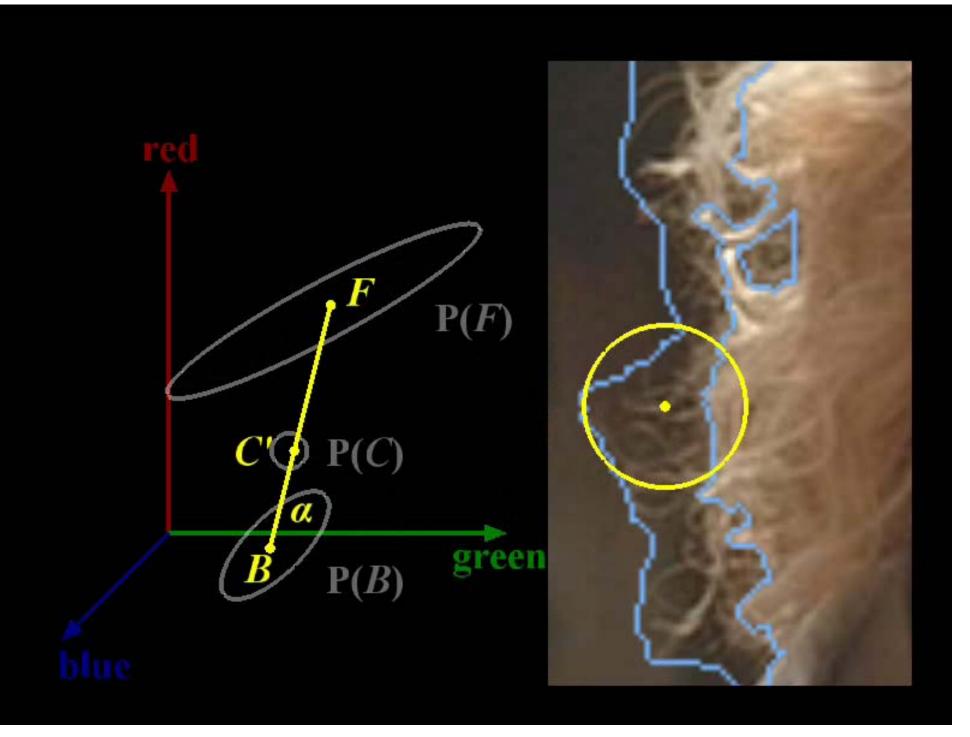












Demo

alpha

Results

input

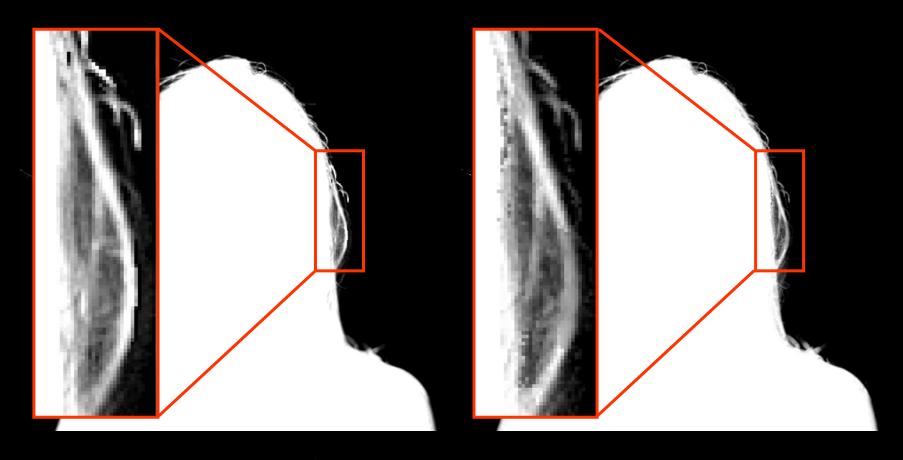
composite

Results

trimap

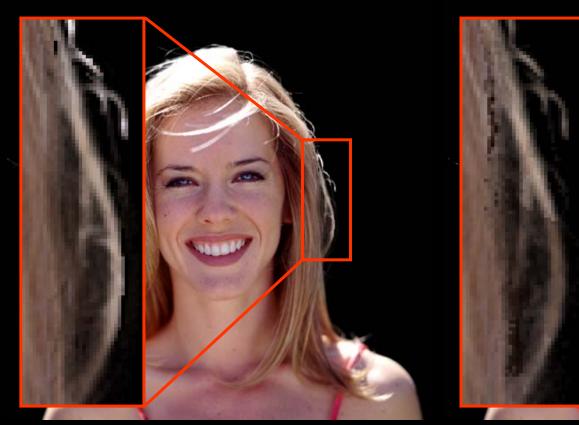
Bayesian

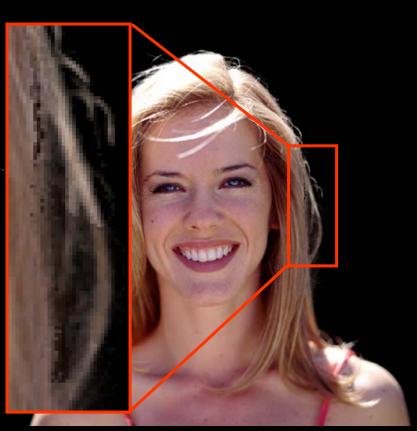
Ruzon-Tomasi



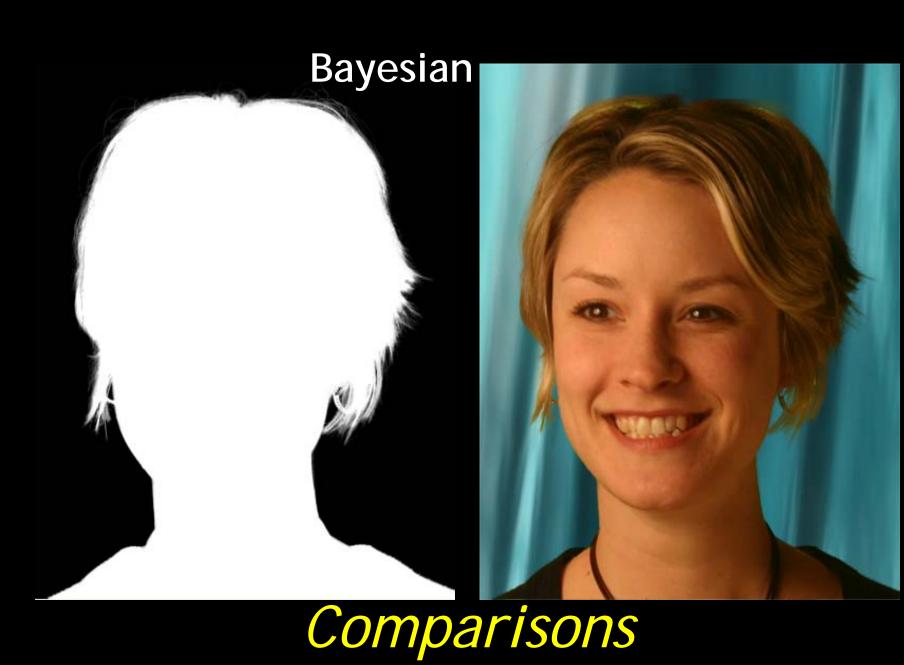
Bayesian

Ruzon-Tomasi

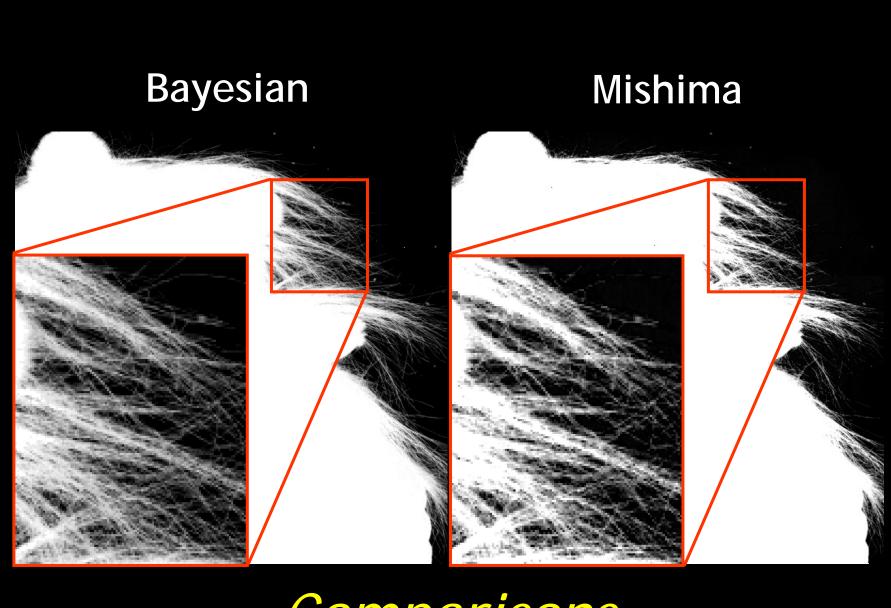




Comparisons



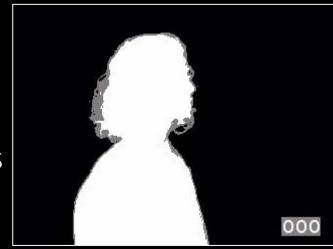
input image



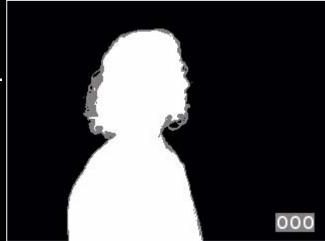
Bayesian

Mishima

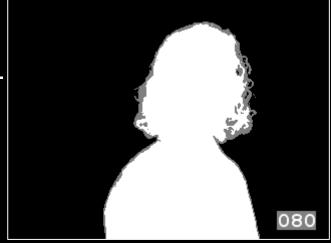
input key trimaps



interpolated trimaps



interpolated trimaps



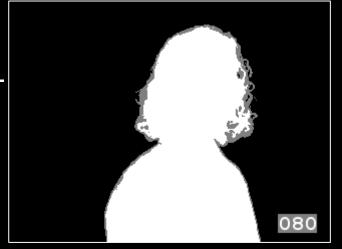
ou

output alpha

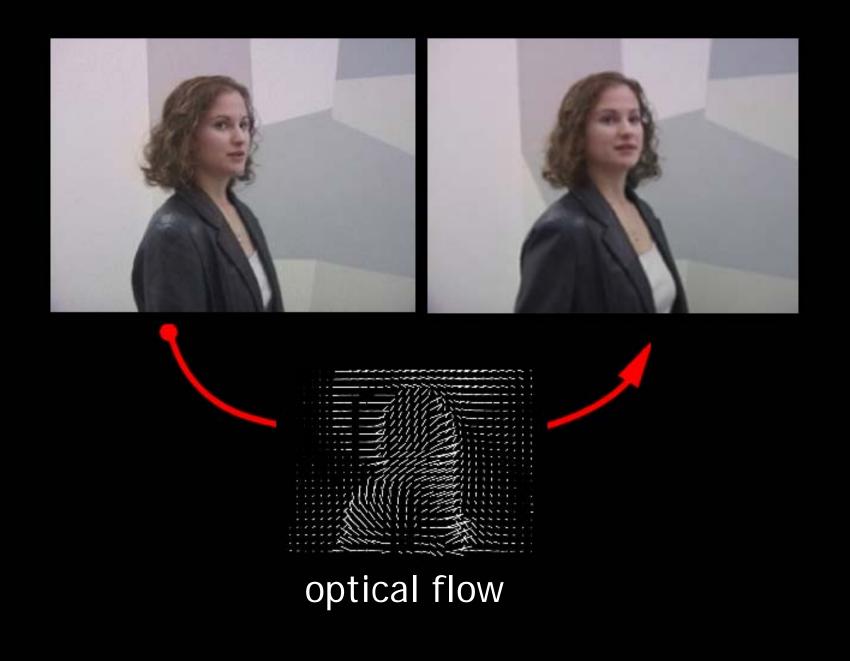
000

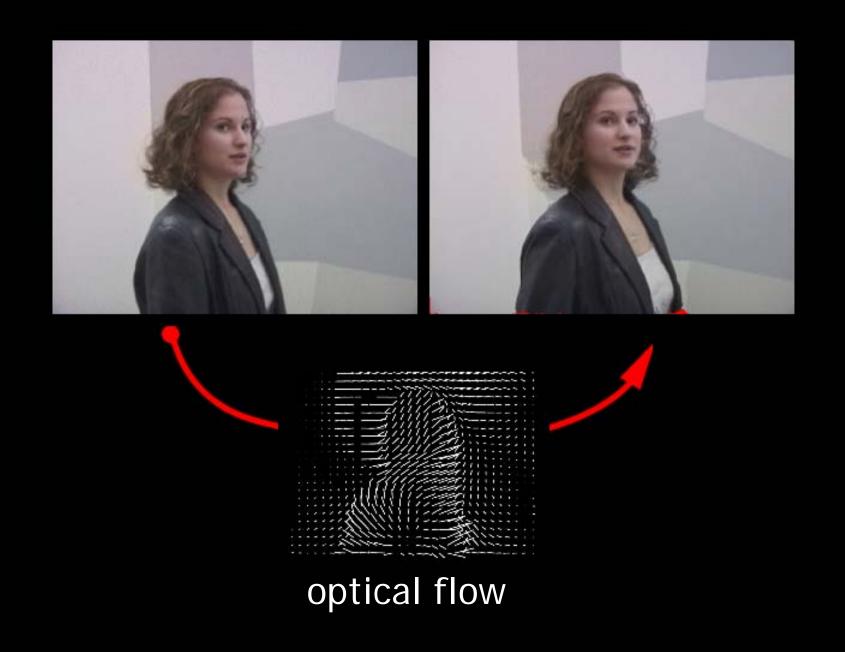
Composite

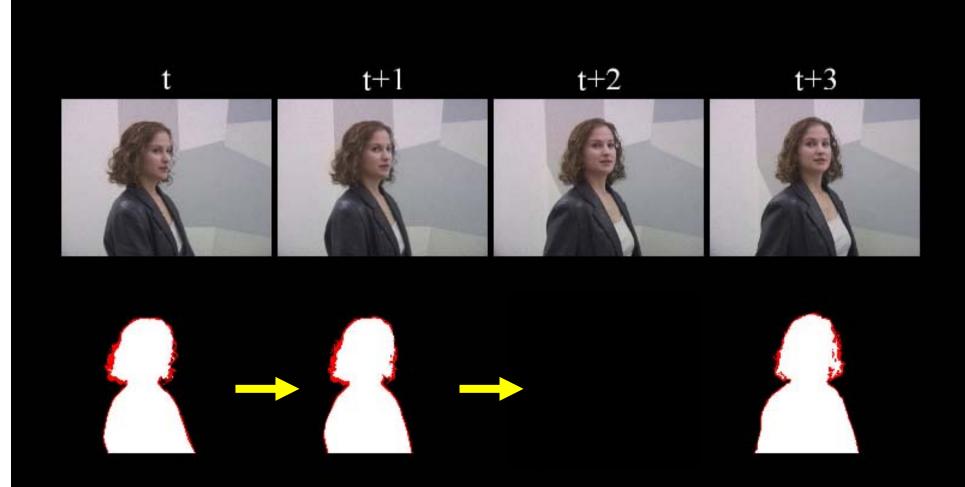
interpolated trimaps



output alpha









Sample composite

Garbage mattes

Garbage mattes

Background estimation

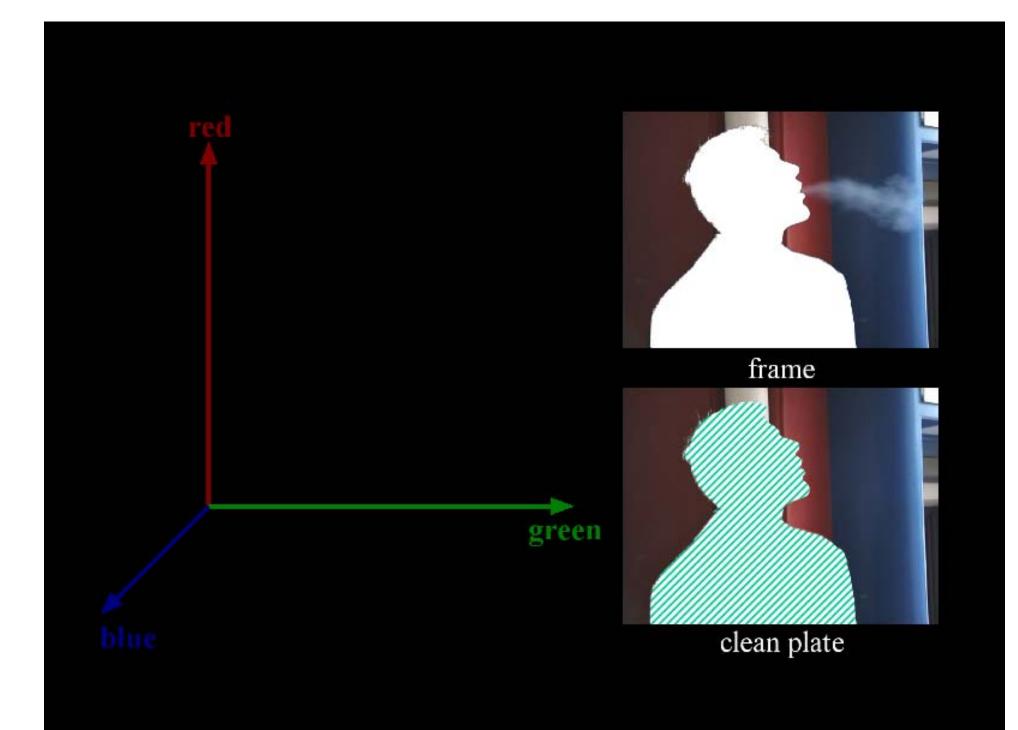
Background estimation

Alpha matte

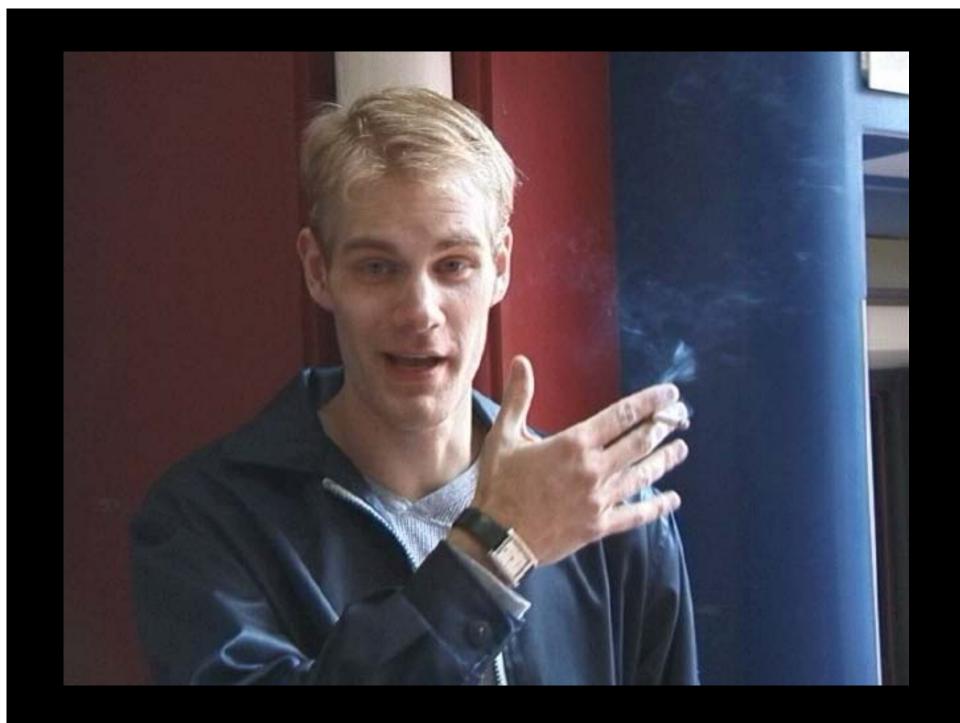
without background

with background

Comparison







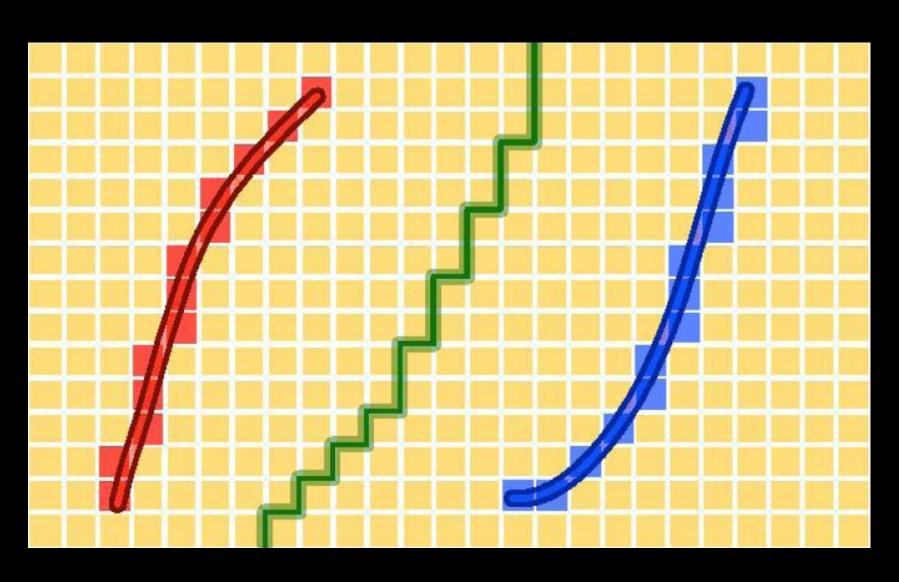
Problems with Bayesian matting

- It requires fine trimaps for good results
- It is tedious to generate fine trimaps
- Its performance rapidly degrades when foreground and background patterns become complex
- There is no direct and local control to the resulted mattes

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Motivation



$$E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$

$$E_1(x_i = 1) = 0 E_1(x_i = 0) = \infty \forall i \in \mathcal{F}$$

$$E_1(x_i = 1) = \infty E_1(x_i = 0) = 0 \forall i \in \mathcal{B}$$

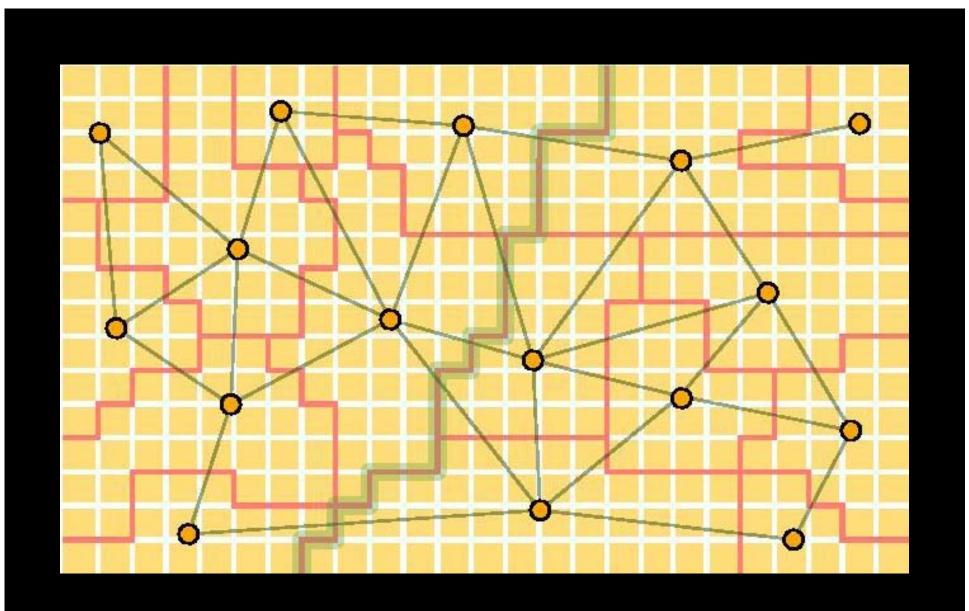
$$E_1(x_i = 1) = \frac{d_i^{\mathcal{F}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} E_1(x_i = 0) = \frac{d_i^{\mathcal{B}}}{d_i^{\mathcal{F}} + d_i^{\mathcal{B}}} \forall i \in \mathcal{U}$$

$$E(X) = \sum_{i \in \mathcal{V}} E_1(x_i) + \lambda \sum_{(i,j) \in \mathcal{E}} E_2(x_i, x_j)$$

$$E_{2}(x_{i},x_{j}) = |x_{i} - x_{j}| \cdot g(C_{ij})$$

$$C_{ij} = ||C(i) - C(j)||^{2}$$

$$g(\varepsilon) = \frac{1}{\varepsilon + 1}$$



Matting approaches

- Sampling approaches: solve for each alpha separately by utilizing local fg/bg samples, e.g. Ruzon/Tomasi, Knockout and Bayesian matting.
- Propagation approaches: solve the whole matte together by optimizing, e.g. Poisson, BP, random walker, closed-form and robust matting.

Poisson matting

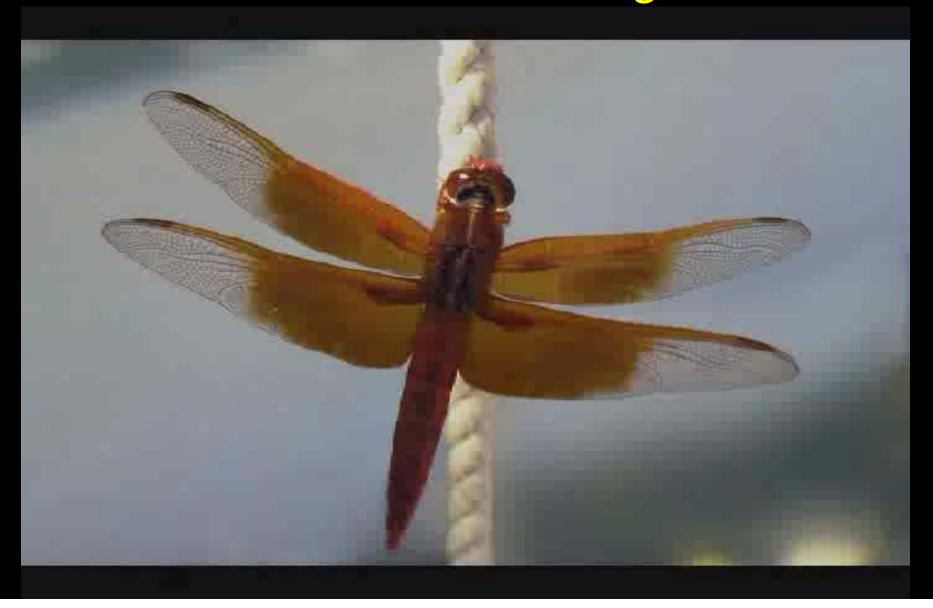
$$I = \alpha F + (1 - \alpha)B$$

$$\nabla I = (F - B)\nabla\alpha + \alpha\nabla F + (1 - \alpha)\nabla B$$

$$\nabla \alpha \approx \frac{1}{F - B} \nabla I$$

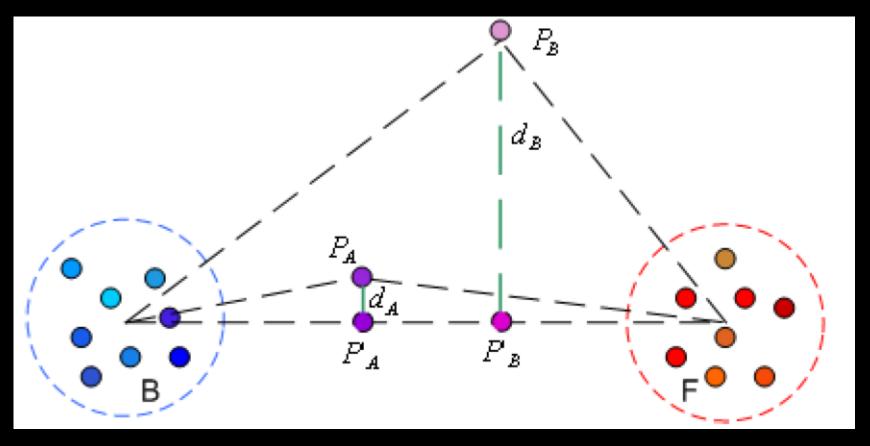
$$\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega} ||\nabla \alpha_p - \frac{1}{F_p - B_p} \nabla I_p||^2 dp$$

Poisson matting



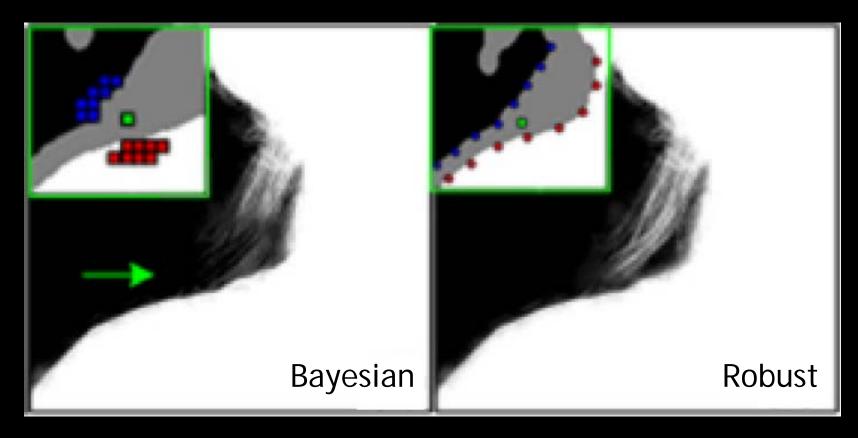
Robust matting

 Jue Wang and Michael Cohen, CVPR 2007



Robust matting

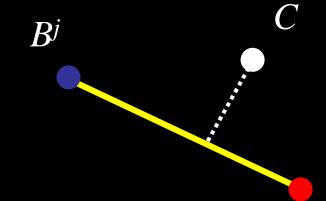
• Instead of fitting models, a nonparametric approach is used



Robust matting

 We must evaluate hypothesized foreground/background pairs

$$\hat{\alpha} = \frac{(C - B^j)(F^i - B^j)}{\parallel F^i - B^j \parallel^2}$$



distance ratio

$$R_d(F^i, B^j) = \frac{\parallel C - (\hat{\alpha}F^i + (1 - \hat{\alpha})B^j) \parallel}{\parallel F^i - B^j \parallel}$$

 To encourage pure fg/bg pixels, add weights

$$B = = = = = = - - - - F^{1}$$

$$F^{2}$$

$$w(F^i) = exp\{- || F^i - C ||^2 / D_F^2\}$$

$$\min_i(\parallel F^i - C \parallel)$$

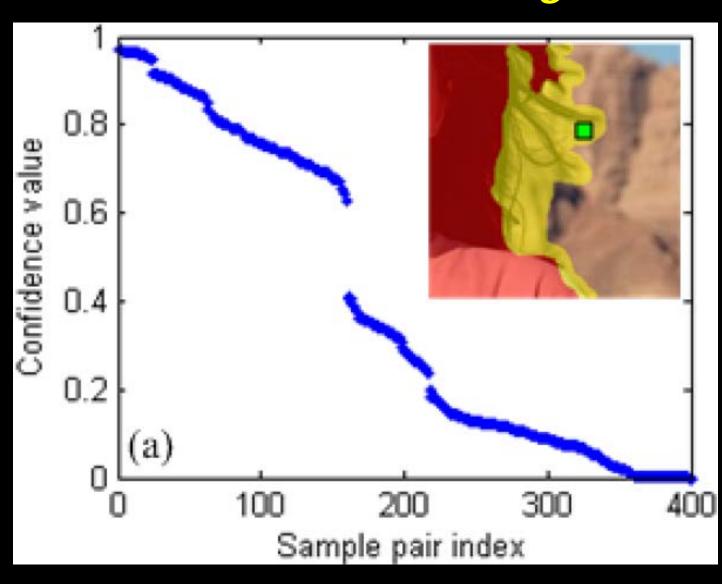
$$w(B^j) = exp\{- || B^j - C ||^2 / D_B^2\}$$

$$\min_j(\parallel B^j - C \parallel)$$

 Combine them together. Pick up the best 3 pairs and average them

confidence

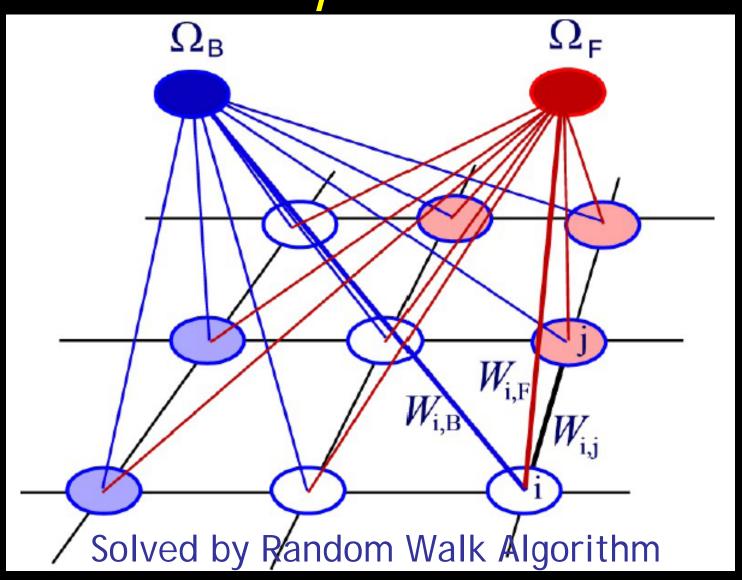
$$f(F^i, B^j) = exp\left\{-\frac{R_d(F^i, B^j)^2 \cdot w(F^i) \cdot w(B^j)}{\sigma^2}\right\}$$



matte

confidence

Matte optimization



Matte optimization

data constraints

$$W(i, F) = \gamma \cdot [\hat{f}_i \hat{\alpha}_i + (1 - \hat{f}_i) \delta(\hat{\alpha}_i > 0.5)]$$

$$W(i, B) = \gamma \cdot [\hat{f}_i (1 - \hat{\alpha}_i) + (1 - \hat{f}_i) \delta(\hat{\alpha}_i < 0.5)]$$

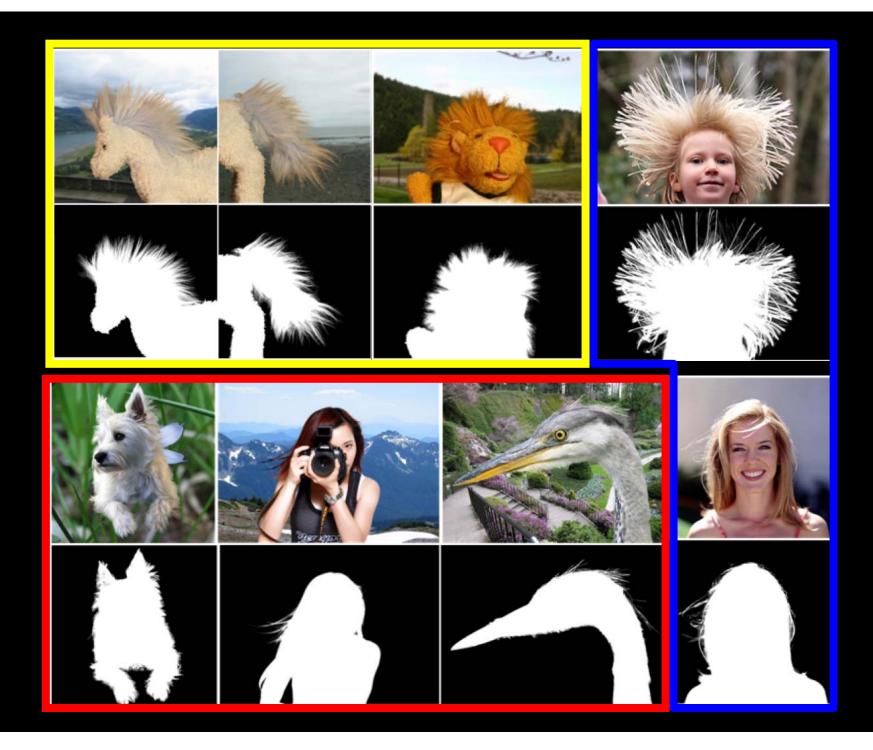
neighborhood constraints

$$W_{ij} = \sum_{k}^{(i,j) \in w_k} \frac{1}{9} (1 + (C_i - \mu_k)(\Sigma_k + \frac{\epsilon}{9}I)^{-1}(C_j - \mu_k))$$

Demo (EZ Mask)

Evaluation

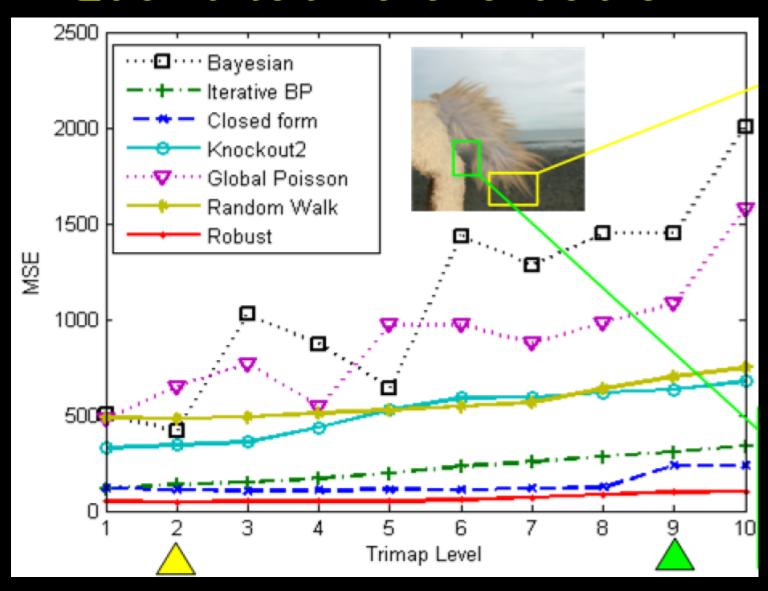
- 8 images collected in 3 different ways
- Each has a "ground truth" matte

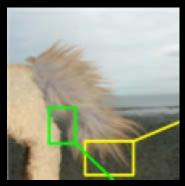


Evaluation

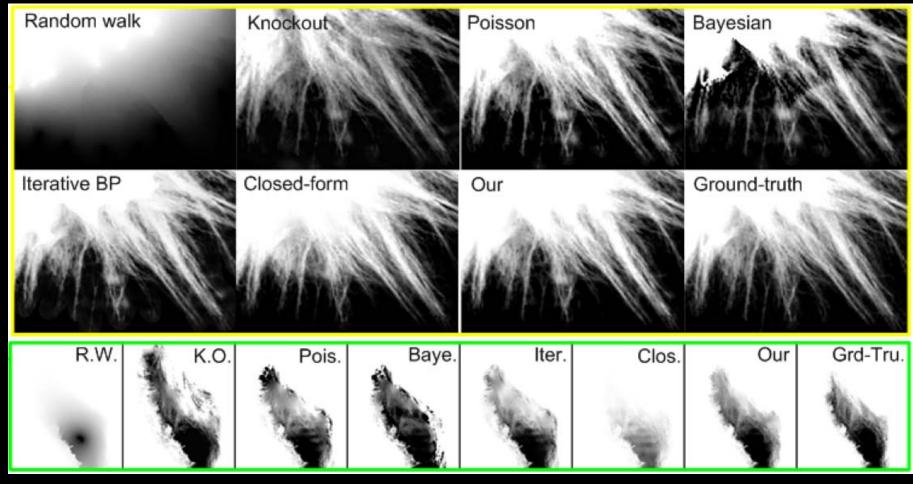
- Mean square error is used as the accuracy metric
- Try 8 trimaps with different accuracy for testing robustness
- 7 methods are tested: Bayesian,
 Belief propagation, Poisson, Random Walk, KnockOut2, Closed-Form and Robust matting

Quantitative evaluation

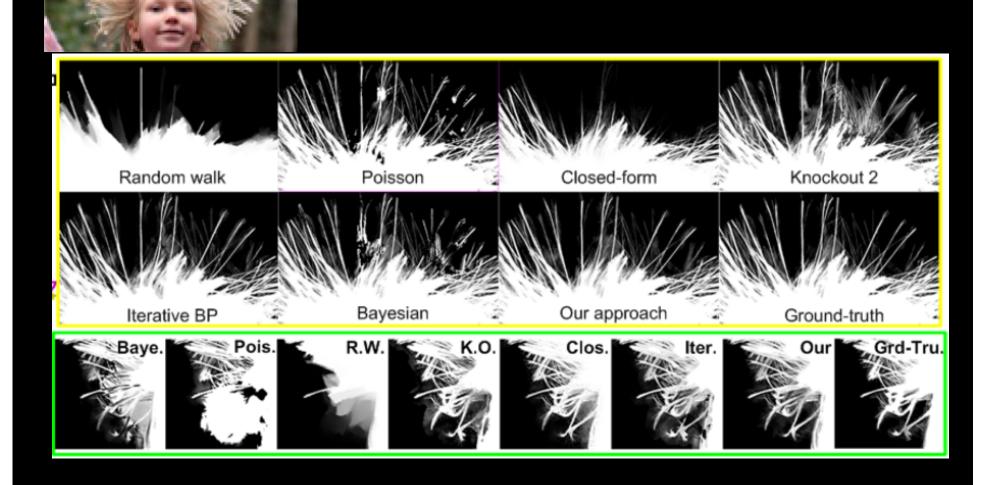




Subjective evaluation



Subjective evaluation



Ranks of these algorithms

	accuracy	robustness
Poisson	6.9	6.8
Random walk	6.0	4.4
Knockout2	4.5	4.5
Bayesian	3.9	6.0
Belief Propagation	3.3	3.1
Close-form	2.6	2.0
Robust matting	1.0	1.3

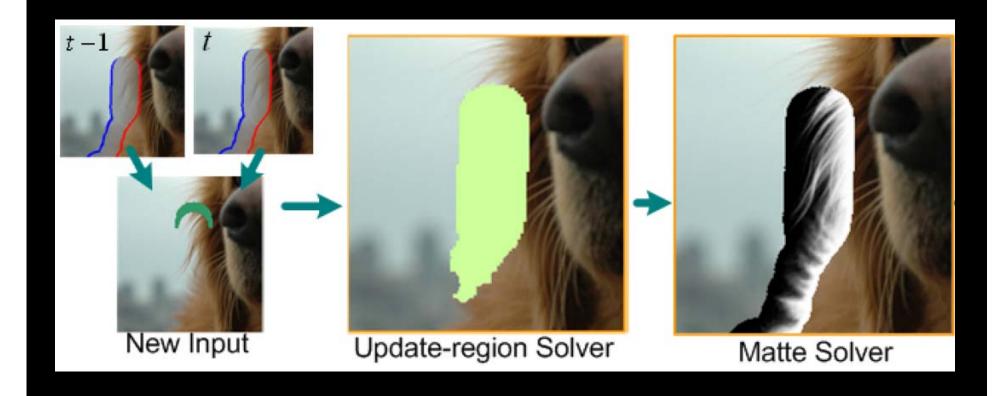
Summary

- Propagation-based methods are more robust
- Sampling-based methods often generate more accurate mattes than propagation-based ones with fine trimaps
- Robust matting combines strengths of both

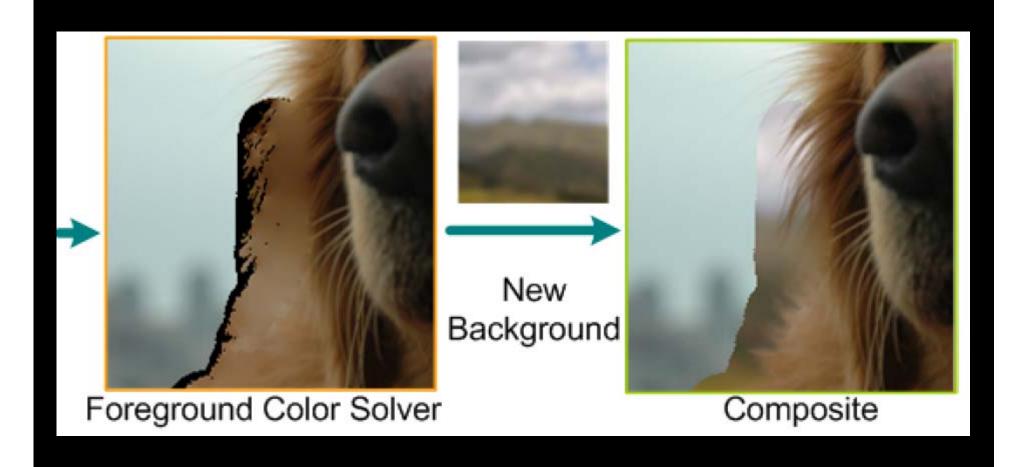
Soft scissor

- Jue Wang et. al., SIGGRAPH 2007
- Users interact in a similar way to intelligent scissors

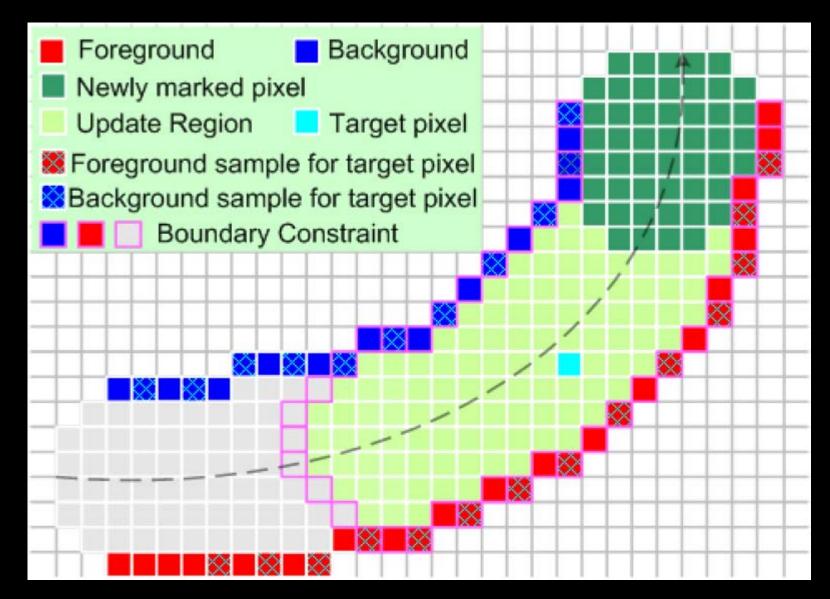
Flowchart



Flowchart



Soft scissor



Demo (Power Mask)



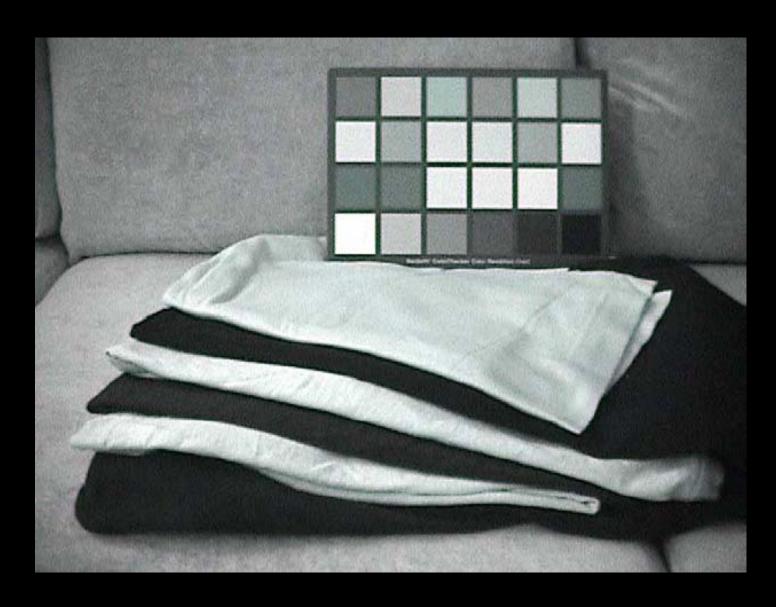
Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Matting with multiple observations

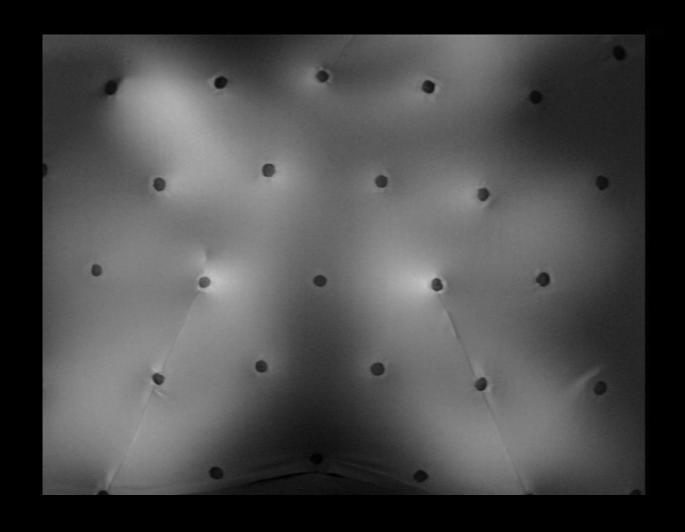
- Invisible lights
 - Polarized lights
 - Infrared
- Thermo-key
- Depth Keying (ZCam)
- Flash matting

Invisible lights (Infared)



Invisible lights (Infared)

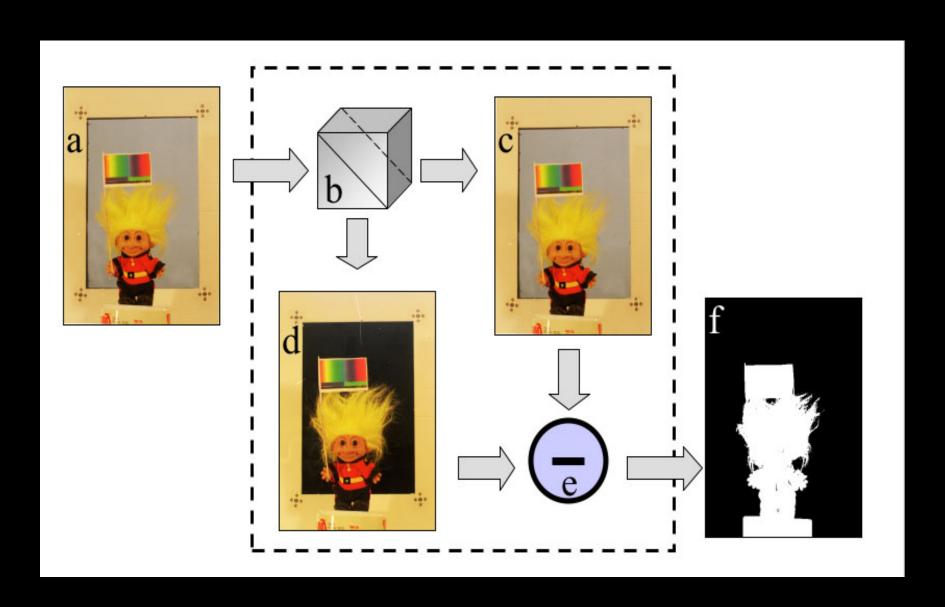
Invisible lights (Infared)



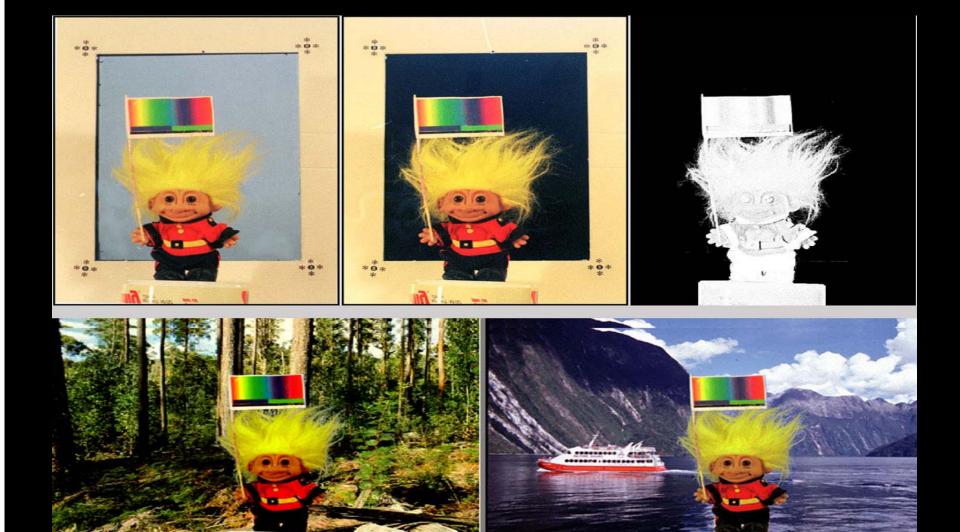
Invisible lights (Infared)

Invisible lights (Infared)

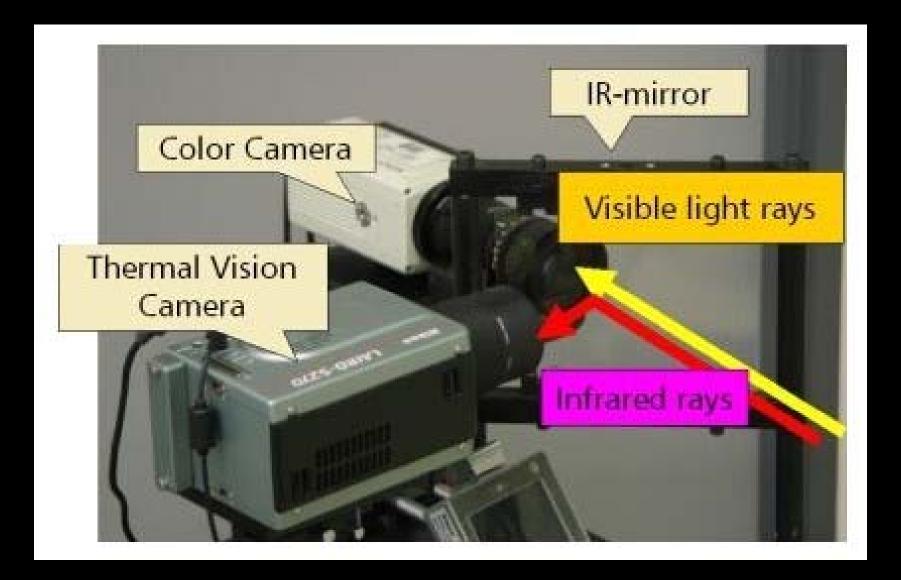
Invisible lights (Infared)



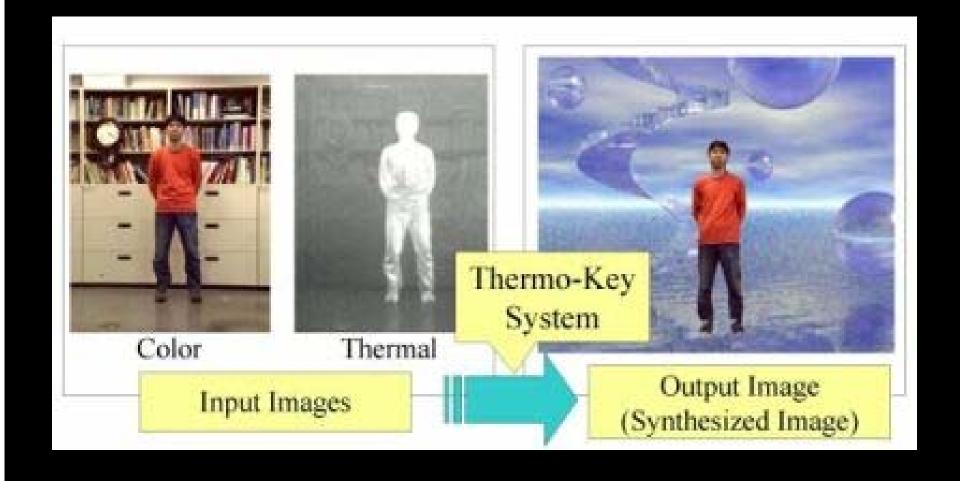
Invisible lights (Polarized)



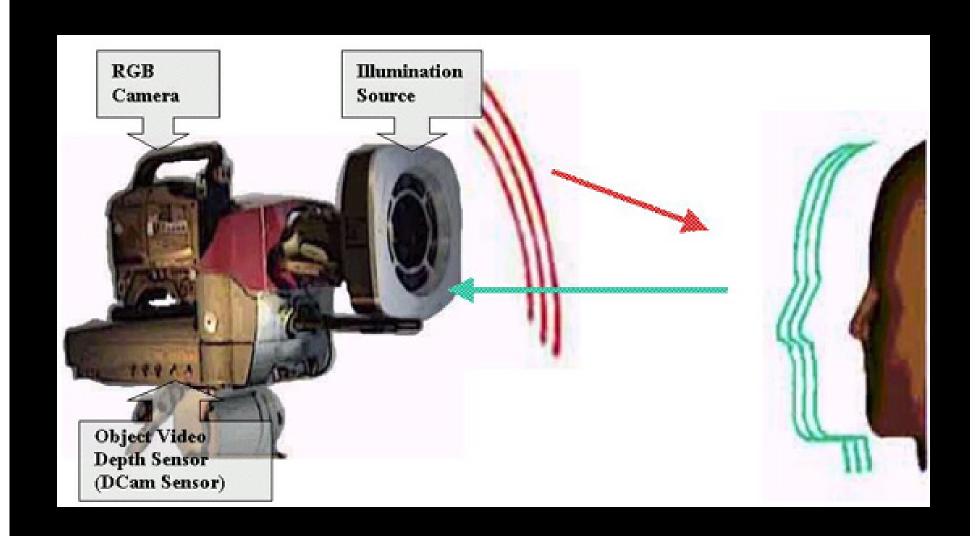
Invisible lights (Polarized)



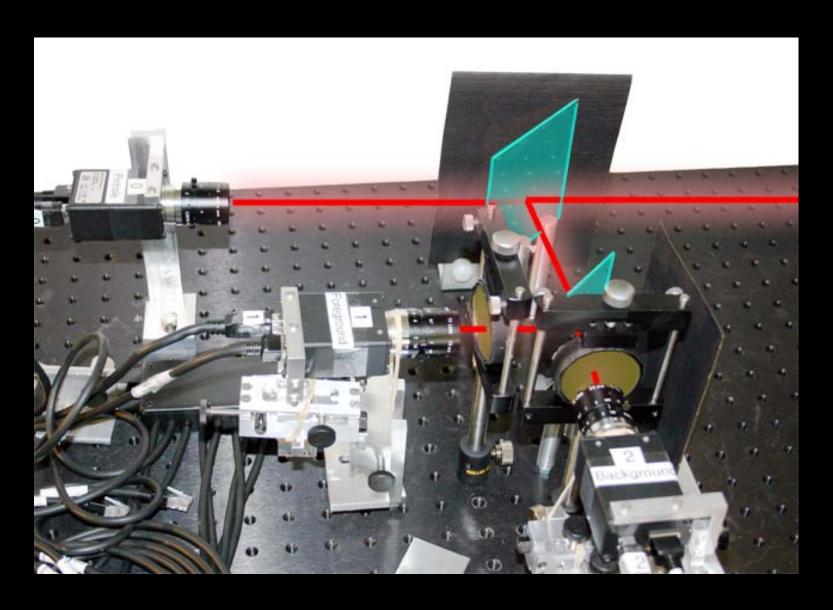
Thermo-Key



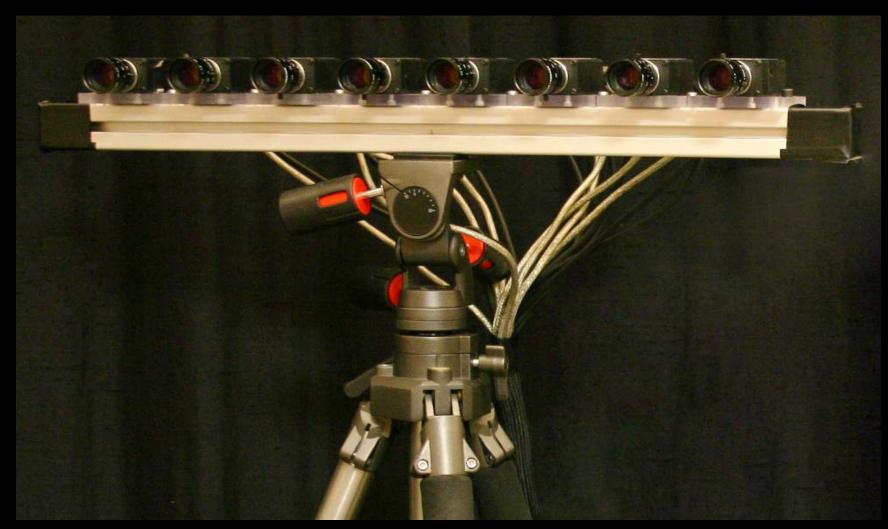
Thermo-Key



ZCam



Defocus matting



video

Matting with camera arrays

flash no flash matte

Flash matting

$$I = \alpha F + (1 - \alpha)B,$$

$$I^f = \alpha F^f + (1 - \alpha)B^f,$$

Background is much further than foreground and receives almost no flash light $R^f \approx R$

$$I^f = \alpha F^f + (1 - \alpha)B$$

Flash matting

Foreground flash matting equation

$$I' = I^f - I = \alpha(F^f - F) = \alpha F'$$

Generate a trimap and directly apply Bayesian matting.

$$\arg \max_{\alpha, F'} L(\alpha, F'|I')$$

$$= \arg \max_{\alpha, F'} \{L(I'|\alpha, F') + L(F') + L(\alpha)\}$$

$$L(I'|\alpha, F') = -|I' - \alpha F'||/\sigma_{I'}^{2}$$

$$L(F') = -(F' - \overline{F'})^{T} \Sigma_{F'}^{-1} (F' - \overline{F'})$$

Flash matting



Foreground flash matting

$$I = \alpha F + (1 - \alpha)B$$
$$I' = \alpha F'$$

$$\arg \max_{\alpha,F,B,F'} L(\alpha,F,B,F'|I,I')$$

$$= \arg \max_{\alpha,F,B,F'} \{L(I|\alpha,F,B) + L(I'|\alpha,F') + L(F) + L(F) + L(F') + L(\alpha)\}$$

Joint Bayesian flash matting

$$\alpha = \frac{\sigma_{I'}^{2} (F - B)^{T} (I - B) + \sigma_{I}^{2} F^{T} I^{T}}{\sigma_{I'}^{2} (F - B)^{T} (F - B) + \sigma_{I}^{2} F^{T} F^{T}}$$

$$\begin{bmatrix} \Sigma_F^{-1} + \mathbf{I}\alpha^2/\sigma_I^2 & \mathbf{I}\alpha(1-\alpha)\sigma_I^2 & \mathbf{0} \\ \mathbf{I}\alpha(1-\alpha)\sigma_I^2 & \Sigma_B^{-1} + \mathbf{I}\alpha^2/\sigma_I^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \Sigma_{F'}^{-1} + \mathbf{I}\alpha^2/\sigma_{I'}^2 \end{bmatrix} \begin{bmatrix} F \\ B \\ F' \end{bmatrix}$$

$$= \begin{bmatrix} \Sigma_F^{-1}\overline{F} + I\alpha/\sigma_I^2 \\ \Sigma_B^{-1}\overline{B} + I(1-\alpha)/\sigma_I^2 \\ \Sigma_{F'}^{-1}\overline{F'} + I'\alpha/\sigma_{I'}^2 \end{bmatrix},$$

Joint Bayesian flash matting

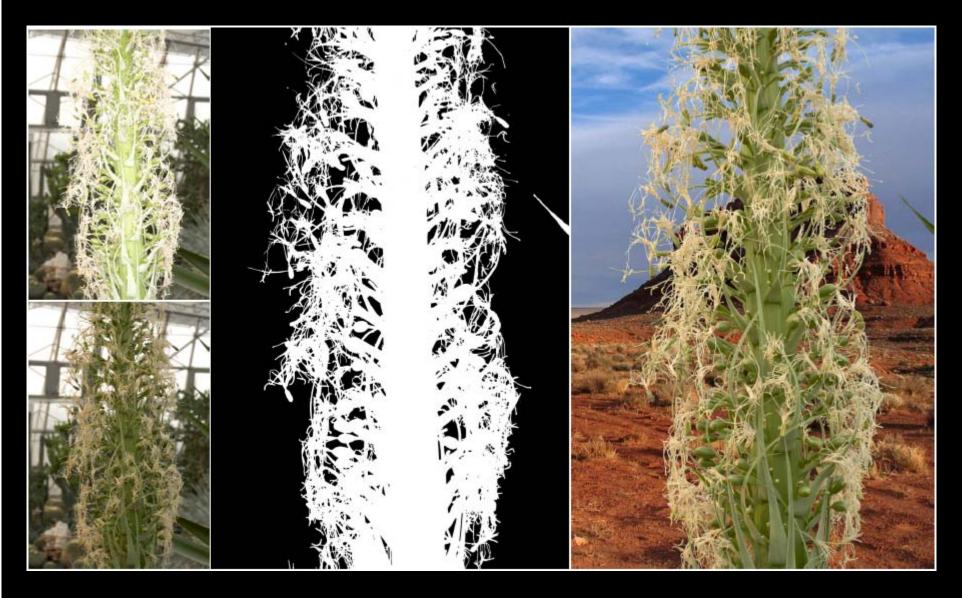
flash no flash

Comparison

foreground flash matting

ioint Bayesian flash matting

Comparison



Flash matting

Outline

- Traditional matting and compositing
- The matting problem
- Bayesian matting and extensions
- Matting with less user inputs
- Matting with multiple observations
- Beyond the compositing equation*
- Conclusions

Conclusions

- Matting algorithms improves a lot in these 10 years
- In production, it is still always preferable to shoot against uniform backgrounds
- Algorithms for more complex backgrounds
- Devices or algorithms for automatic matting