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Photomontage

The Two Ways of Life, 1857, Oscar Gustav Rejlander
Printed from the original 32 wet collodion negatives.




Photographic compositions

Lang Ching-shan




Use of mattes for compositing

The Great Train Robbery (1903) matte shot




Use of mattes for compositing

The Great Train Robbery (1903) matte shot




Optical compositing

Miniature FProjection

e Action
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Frojector Camera

King Kong (1933) Stop-motion + optical compositing




Digital matting and compositing

The lost world (1925) The lost world (1997)
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Miniature, stop-motion Computer-generated images




Digital matting and composting

King Kong (1933) Jurassic Park 11l (2001)
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Blue-screen matting,
Optical compositing digital composition,
digital matte painting
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Digital matting: bluescreen matting

Forrest Gump (1994)

e The most common approach for films.
e Expensive, studio setup.
e Not a simple one-step process.




Color difference method (Ultimatte)

C=F+aB = a

Blue-screen Spill suppression Matte creation
photograph If B>G then B=G o=B-max(G,R)

demo with Paint Shop Pro (B=min(B,G))




Problems with color difference

Background color is usually not perfect! (lighting, shadowing...)




Chroma-keying (Primatte)




Chroma-keying (Primatte)
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C=aF+(1-a)B
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C=0F +(1-a)B

~ B compositing
W equation

Matting




Three approaches: C
1 reduce #unknowns

2 add observations o compositing
3 add priors 4 ‘4 equation

Matting

C=oF +(1-0a)B




C=aF+(1-a)B

- - }‘ difference
v K’ matting

Matting (reduce #unknowns)




C=aF+(1-a)B

blue screen
matting

I\/Iattlng (reduce #unknowns)




C=aF+(1-a)B
C=aF+(1-a)B

triangulation

I\/Iattlng (add observations)




C=aF+(1-a)B

Rotzmscolgnuasi

I\/Iattlng (add priors)
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para- [ ey || observed
NEIGIE 2)+e Y signal

. Example:
A mZaX P(z|y) super-resolution

de-blurring
= max P(y ‘ Z)P(Z) de-blocking

: P(y)
=max L(y|z)+ L(z)

Bayesian framework




para- observed
/ —> + — -
meters H2)+e y signal

Z*=max L(y|z)+ L(2)

2
data Hy - f(Z)H a-priori
evidence o’ knowledge

Bayesian framework




posterior probability

\ likelihood priors

arg max |P(F, B, a | C)
> I B.a Ao . ._

— arg max |P(C | F, B, «a
- F B« ' ' /

L(C|F,B,a) = —||C —aF — (1 —a)B|| 2 /20 f

Bayesian framework




Priors




arg max LIC|F,B,a)+ L(F)+ L(B)

arg max —||C' — aF — (1 — a)B||*/o¢,

~(F-F) S3' (F-F)/2
(B-B) 23" (B-B) /2

Bayesian matting




repeat

1. fix alpha
i E}lJrIQ-Q/U% Iat('l—a:)/cfC
| fa(l—a)/ot. 3! +1(1-a)*/of | |
X5 lFJr(“"a/ch
S5 B0 a)fok
2. fix Fand B

(C—B)-(F - B)
|F — BJ]?

until converge
Optimization




Bayesian image matting




Bayesian image matting




Bayesian image matting




Bayesian image matting
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Bayesian image matting













F samples
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F samples
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F samples
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F samples
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Results




composite




Comparisons




Bayesian Ruzon-Tomasi

Comparisons




Bayesian Ruzon-Tomasi

Comparisons




Mishima
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Input Image

Comparisons




Bayesian Mishima

Comparisons




Bayesian Mishima
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Video matting




Input
key
trimaps

Video matting




Interpo-
lated
trimaps

Video matting




Interpo-
lated
trimaps

Video matting




Interpo-
lated
trimaps

Video matting
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Sample composite




Garbage mattes




Garbage mattes




Background estimation




Background estimation




Alpha matte




without with
background background

Comparison
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“clean plate
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Problems with Bayesian matting

e |t requires fine trimaps for good results
e |t Is tedious to generate fine trimaps

e |ts performance rapidly degrades when
foreground and background patterns
become complex

e There 1s no direct and local control to the
resulted mattes
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Motivation




LazySnapping




LazySnapping




LazySnapping




LazySnapping




Matting approaches

e Sampling approaches: solve for each
alpha separately by utilizing local
fg/bg samples, e.g. Ruzon/Tomasi,
Knockout and Bayesian matting.

e Propagation approaches: solve the
whole matte together by optimizing,
e.g. Poisson, BP, random walker,
closed-form and robust matting.




Poisson matting

1

:;+:: ’ ) ) '_)
o = argmin / / Vo, — ——VI,||°dp
&« J JpeQ ! Fp —B D /




Poisson matting




Robust matting

e Jue Wang and Michael Cohen, CVPR
2007




Robust matting

e [nstead of fitting models, a non-
parametric approach is used

Bayesian Robust




Robust matting

e We must evaluate hypothesized
foreground/background pairs

(€~ BI)(F — B)
[~ B |

distance ratio

o | C—=(aF"+(1—-a)B?) |
. H Ff L BJ H




Robust matting

e To encourage pure fg/bg pixels, add
weights

w(F") = exp { — || F* = C ||* /D% }

min; (|| F* — C"|})
w(B’) = exp{— || B’ - C ||* /D%}

min;(|| B —C|)




Robust matting

e Combine them together. Pick up the
best 3 pairs and average them

confidence

J(F f B’ ) = exp {

Ry(F', B)? - w(F) - w(B) }
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Sample pair index




Robust matting

confidence




Matte optimization

Solved by Rrandom Walk Algorithm




Matte optimization

data constraints
U(/ F) [}‘fo +(l—]‘)()( >() )]

neighborhood constraints




Demo (EZ Mask)




Evaluation

e 8 Images collected in 3 different
ways

e Each has a ““ground truth” matte







Evaluation

e Mean square error is used as the
accuracy metric

e Try 8 trimaps with different accuracy

for testing robustness

e / methods are tested: Bayesian,
Belief propagation, Poisson, Random

Walk, KnockOut2, Closed-Form and
Robust matting




Quantitative evaluation

T

] Bayesian

=4 = lterative BP

| —#* — Closed form
Knockout2

g Global Poisson
Random Walk

| = Robust

Trimap Level




Subjective evaluation

Random walk Knotkouts

Iterative BP Closed-form

Grd-Tru.
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Ranks of these algorithms

accuracy robustness

POISSON 6.9 6.8
Random walk 6.0 4.4

Knockout? 4.5 4.5
Bayesian 3.9 6.0
Belief Propagation 3.3 3.1
Close-form 2.6 2.0
Robust matting 1.0 1.3




summary

e Propagation-based methods are more
robust

e Sampling-based methods often
generate more accurate mattes than
propagation-based ones with fine
trimaps

e Robust matting combines strengths
of both




Soft scissor

e Jue Wang et. al., SIGGRAPH 2007

e Users interact in a similar way to
Intelligent scissors




Flowchart

Update-region Solver Matte Solver




Flowchart

New
Background

Foregrund Color Solver Composite




Soft scissor

B Foreground B Background
M Newly marked pixel

Update Region Target pixel
#8 Foreground sample for target pixel
¥ Background sample for target pixel
me Boundary Constraint



Demo (Power Mask)
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Matting with multiple observations

e Invisible lights
- Polarized lights
- Infrared

e Thermo-key

e Depth Keying (ZCam)
e Flash matting
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InV|S|bIe lights (Infared)




Invisible lights (Infared)




Invisible lights (Infared)




Invisible lights (Infared)




Invisible lights (Infared)




Invisible lights (Infared)




Invisible lights (Polarized)




Invisible lights (Polarized)
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Matting with camera arrays




no flash

Flash matting




Background is much further than foreground and

receives almost no flash light :

Flash matting




Foreground flash matting equation

Generate a trimap and directly apply Bayesian matting.

arg max Lo, F'| T

o, Y

=arg max {L(I'|a,F')+ L(F')+ L(a)}
o, FY

L(I'la, F'y = —||I'—aF'||/o7
L(F')=—(F = F)'s.}(F = F)
Flash matting
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Foreground flash matting




arg max L(a, F, B, F'|I, I
o, F,B,F’

=arg max {L(I|a, F,B)+ L(I'|a, F') +

o, F,B,F’

L(F)+ L(B)+ L(F") + L(a)}

Joint Bayesian flash matting
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Joint Bayesian flash matting




no flash

Comparison




foreground loint Bayesian
flash matting flash matting

Comparison




Flash matting
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Conclusions

e Matting algorithms improves a lot In
these 10 years

e [n production, It is still always
preferable to shoot against uniform

backgrounds

e Algorithms for more complex
backgrounds

e Devices or algorithms for automatic
matting




