Announcements

e Project #2 was due yesterday. Send it directly
to me. Please hand it in before Sunday if
possible.
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The epipolar geometry The epipolar geometry
epipolar geometry demo
epipolar plane TC \ .
C,C’ x,x” and X are coplanar What if only C,C’ x are known?

The epipolar geometry
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All points on &t project on | and I’
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The epipolar geometry

epipolar pole epipolar geometry demo
= intersection of baseline with image plane
= projection of projection center in other image
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epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image

The fundamental matrix F
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‘ T=C’-C ‘

Two reference frames are related via the extrinsic parameters

p'=R(p-T)

The equation of the epipolar plane through X is

(p-T)" (Txp)=0 wp(R"p") (Txp)=0

The fundamental matrix F

(R'p")' (Txp)=0

Txp=Sp
o -1, T,
S=| T, 0 -T,
-T, T, 0

= (R'p)'(Sp)=0
= (p"[R)Sp)=0
- p' =(0  essential matrix

The fundamental matrix F
p ' Ep=0
Let M and M’ be the intrinsic matrices, then
p=Mx p=M"x
= M 'x)'EM 'x)=0
m X' M TEM k=0
=) x'Tlﬂx =0 fundamental matrix




The fundamental matrix F

e The fundamental matrix is the algebraic
representation of epipolar geometry

» The fundamental matrix satisfies the condition
that for any pair of corresponding points x«x’
in the two images

xTFx=0  (x"I=0)

The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0
for all x&x’

1. Transpose: if F is fundamental matrix for (P,P’), then
FT is fundamental matrix for (P’,P)

2. Epipolar lines: I’=Fx & I=FTx’

3. Epipoles: on all epipolar lines, thus e’TFx=0, Vx
=e’TF=0, similarly Fe=0

4. Fhas 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank?2)

5. Fis a correlation, projective mapping from a point x to
a line I’=Fx (not a proper correlation, i.e. not invertible)

The fundamental matrix F

e |t can be used for
- Simplifies matching
- Allows to detect wrong matches

Estimation of F — 8-point algorithm
e The fundamental matrix F is defined by
1 T
x Fx=0
for any pair of matches x and x’ in two images.
fll f12 f13
e Letx=(u,v,1)T and x’=(u’,v’,1)T, F=|f, f, f,
f31 f32 f33

each match gives a linear equation

uu' f +vu' f, +u' fo+uv' f, +w' f,, +v' f +uf, +vf, + ;=0
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8-point algorithm
fll
f12
’ ’ ’ ’ f13
uu,”  ovuoou a1l ;
uu,” vou,” U, uv,t v,v,ov, o, v, 1L
. . : : f, =0
, fs
uuu,” vou,” u,” ouyv, vy, v, u, v, 1 ;
31
f32
_f33

e In reality, instead of solving Af = (0, we see_k f
to minimize |[Af| subj. Hf\?z 1. Find the vector
corresponding to the least singular value.

8-point algorithm

e To enforce that F is of rank 2, F is replaced by
F’ that minimizes ||F — F'|| subject to det F'=0.

- It is achieved by SVD. Let F = UZV ! where

o, 0 0 o, 0 0
=0 o, O/, let =0 o, 0
0 0 o, 0 0 0

then F'= UX'V Tis the solution.

8-point algorithm
% Build the constraint matrix
A=[x2(1,:) .*x1(1,:)" x2(1,:).*x1(2,:)" x2(1,:) ...
x2(2,:)'.*x1(1,:)" x2(2,:).*x1(2,:)" x2(2,:)" ...
x1(1,:)' x1(2,:)' ones(npts,1) ];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)";

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V";

8-point algorithm

e Pros: it is linear, easy to implement and fast
e Cons: susceptible to noise




. . - gi\' . - . gi\'
Problem with 8-point algorithm Normalized 8-point algorithm
fy 1. Transform input by %; = Tx,, X; = Tx,
iz 2. Call 8-point on X,,%; to obtain F
f ~
VR VAV AV R TRV AR VA VAR VAT R VAR f” S.F=T'"FT
uu,” Vou,” U, uv,T VLY, v, U, v, le o .
. . . . . . . . . f22 - X' FX — O
uu, vu’' u’ ouv,’ vv’' v’ u v, I f” \
~10000 ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100 1 f3l — 1
Al — -la|_
Orders of magnitude difference f32 x T FI x|=0
between column of data matrix - 3 e
— least-squares yields poor results F
- . - gi\' - - . gi\'
Normalized 8-point algorithm Normalized 8-point algorithm
normalized least squares yields good results F‘; %} = norma:!seggp:sgxg;
_ x2, T2] = normalise2dpts(x2);
Transform image to ~[-1,1]x[-1,1] A= [x2(1,) %1, x2(L,)5x1(2,:) x2(L,:) ..
(0,500) (700.500) | -1,1) (1,1) X2(2,:)' *x1(1,:)" x2(2,:)'.*x1(2,:)" x2(2,:)" ...
0 ° ! x1(1,:)' x1(2,:)' ones(npts,1) 1;
2 |
500
1 00) [U,D,V] = svd(A);
g F = reshape(V(: :
00 > (700,0) (-1-1) (1,-1) reshape(V(:,9),3,3)’;

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) O])*V’;

% Denormalise
F=T2*F*T1;




Normalization RANSAC

function [newpts, T] = normalise2dpts(pts) repeat

¢ = mean(pts(1:2,:)"); % Centroid select minimal sample (8 matches)

newp(l,:) = pts(1,:)-c(1); % Shift origin to centroid. compute solution(s) for F

newp(2,:) = pts(2,:)-c(2); determine inliers

until I'(#inliers,#samples)>95% or too many times
meandist = mean(sqrt(newp(1,:).*2 + newp(2,:)."2));
scale = sqrt(2)/meandist; compute F based on all inliers

T = [scale 0 -scale*c(1)
0 scale -scale*c(2)
0 0 1 I;
newpts = T*pts;

Results (ground truth) Results (8-point algorithm)

B Ground truth with .__st._andard stereo calibration m 8-point algor_itl1n1




Results (normalized 8-point algorith

® Normalized 8-point algorithm

Structure from motion

. -0 VFX
Structure from motion RIEIVF
|l Unknown
AN camera
N viewpoints

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self
calibration technique and called automatic camera tracking
or matchmoving.

Applications

e For computer vision, multiple-view shape
reconstruction, novel view synthesis and
autonomous vehicle navigation.

e For film production, seamless insertion of CGlI
into live-action backgrounds




Digil[24 Digil24
Matchmove CCRFA
e http://www.ccrfa.com/ccrfa/
e Making of “The Disappearing Act”
e 2007 winner
example #1 example #2 example #3 example #4
. Digil[24 - Digil[24
Structure from motion Structure from motion
o Step 1. Track Features
— Detect good features, Shi & Tomasi, SIFT
— Find correspondences between frames
oD f . * Lucas & Kanade-style motion estimation
eature |[__, .|| optimization [_,| geometry « window-based correlation
tracking 3D estimation (bundle adjust) fitting « SIFT matching

SFM pipeline




Digi

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

Structure from Motion =

» Step 2: Estimate Motion and Structure
— Simplified projection model, e.g., [Tomasi 92]
— 2 or 3 views at a time [Hartley 00]
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Digi

Structure from Motion

o Step 3: Refine estimates
— “Bundle adjustment” in photogrammetry
— Other iterative methods

Digi

Structure from Motion

» Step 4: Recover surfaces (image-based
triangulation, silhouettes, stereo...)




Factorization methods

Problem statement

Notations

n 3D points are seen in m views

d=(u,v,1): 2D image point

p=(x,y,z,1): 3D scene point

IT: projection matrix

7. projection function

q;; is the projection of the i-th point on image j

= J; projective depth of q;

q; =7(1;p)  #(%y.2)=(/2,y/2)
ﬂij =2

Structure from motion

e Estimate Hjand P, to minimize

e(I,,--, I ,py,---,Py) :ZZWij log P(z(I1;p;);q;)

i=1 i=1

ij

1 if p, is visiblein view j
0 otherwise
« Assume isotropic Gaussian noise, it is reduced to
m n 2
E(Hla"'anmﬂpv'“’pn):ZZWinﬂ.(iji)_qin
j=1 i=l

e Start from a simpler projection model




SFM under orthographic projection 2™ factorization (Tomasi & Kanade) R
, Orthographic projection image projection of n features in one image:
2D '”?age incorporating 3D rotation 3D scene offset
poiQ point [ql q, - qn]: H [pl p. - pn]
l / 2xn 2x3 3xn
q — Hp + t projection of n features in m images
i 1 T
- le 2X3 3X1 2)(1 qll ql2 qln 1
e Trick Ay Gn - G |_ I1, b p, - p.]
- Choose scene origin to be centroid of 3D points : e : ! gxn "
- Choose image origins to be centroid of 2D points I
. [Am1 A2 9 | m
- Allows us to drop the camera translation: Imxn 2mx3
q o Hp Wmeasurement M motion Sshape
Key Observation: rank(W) <=3
Digi IR VX

Factorization

known—— M S ——solve for
2mx3 3xn

» Factorization Technique
— W is at most rank 3 (assuming no noise)
— We can use singular value decomposition to factor W:

W =M'S'

2m xn 2mx3 3xn

— S differs from S by a linear transformation A:
W =M'S'= (MA ")(AS)

— Solve for A by enforcing metric constraints on M

Metric constraints

» Orthographic Camera e {1 o}
— Rows of IT are orthonormal: Slo o1

« Enforcing “Metric” Constraints
— Compute A such that rows of M have these
properties
M'A=M
Trick (not in original Tomasi/Kanade paper, but in followup work)
 Constraints are linear in AAT :

R ?}:HHT =TT'AATT) =I1'GII™  where G =AAT

 Solve for G first by writing equations for every IT, in M
e Then G = AAT by SVD (since U = V)




Factorization with noisy data

Results

W =M S+ E

2m xn 2mx3 3xn 2mxn

» SVD gives this solution
— Provides optimal rank 3 approximation W’ of W

W =W'+ E
2m xn 2m xn 2mxn
» Approach
— Estimate W’, then use noise-free factorization of W’
as before

— Result minimizes the SSD between positions of image
features and projection of the reconstruction

Extensions to factorization methods 2™

e Projective projection
e With missing data
» Projective projection with missing data

Bundle adjustment




Levenberg-Marquardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton’s
method.

Nonlinear least square

Given a set of measurements X, try to find
the best parameter vector p so that the
squared distance &' ¢ is minimal. Here,

& =x-X, with x = f(p).

Levenberg-Marquardt method

For a small ||dp||, f(P+dp) =~ f(p) + Jdp

J is the Jacobian matrix ﬂ_gi:p)

it is required to find the d; that minimizes the quantity

||x_f|:P+5p}|| = ||X—fl:P} - inp” = ||E_']§p||
J'Jo, = "¢
Nop = J7e

N;; = ;TL + [JTJ]H

damping term

Levenberg-Marquardt method

e =0 — Newton’s method
e (1 —>o0 — steepest descent method

= Strategy for choosing u
- Start with some small g
- If error is not reduced, keep trying larger 1 until it
does
- If error is reduced, accept it and reduce p for the
next iteration




Bundle adjustment

e Bundle adjustment (BA) is a technique for
simultaneously refining the 3D structure and
camera parameters

» |t is capable of obtaining an optimal
reconstruction under certain assumptions on
image error models. For zero-mean Gaussian
image errors, BA is the maximum likelihood
estimator.

Bundle adjustment

n 3D points are seen in m views

Xij is the projection of the i-th point on image j
a; is the parameters for the j-th camera

b; is the parameters for the i-th point

BA attempts to minimize the projection error

T .

mmz Z d(Q(a;, b;), xij)z

/ predicted projection
Euclidean distance

Bundle adjustment

Bundle adjustment
3 views and 4 points P = (ai”, ay’, as’. by, by, by", by")?
X = {xllr1 leTT xl:’;‘TT x?l';~ x??';j x?(’;rf x.“}lT- XZQT‘ x.";‘ST- x—-llT- Xq2 ' X43
Ay 0 ©O0 By 0 0 0
0 Ap 0 Bz 0 0 0
0 0 Aj; Bz 0 0 0
Asy O 0 By 0 0
0 Ay O O By 0 0
ax B 0 0 Aoy 0 Boa 0 0
P |A;x 0 0 O 0 By 0
0 Ay O O 0 By 0
0 0 Az O 0 Bz 0
Ay 0O 0 0 0 0 By
0 Ao 0 0 0 0 Bais
0 0 Ay 0 0 0 Buis




. . Digil24 . Digill24
Typical Jacobian S Block structure of normal equation S
L_l
’— — U, W
L-_’s
W | |
. Digil24 . Digillad
Bundle adjustment S Bundle adjustment S
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Track index

lifetime of 3192 tracks from the previous sequence

. |:"0”UFX - - |]!0”UFX
Issues in SFM Track lifetime
e Track lifetime
« Nonlinear lens distortion
» Degeneracy and critical surfaces
= Prior knowledge and scene constraints
e Multiple motions
every 50th frame of a 800-frame sequence
) ] BYVEX e 4- OVEX
Track lifetime Track lifetime
2 | p
[
2 i 3
@
£
@ ]
L 4
800 ' s ' - . " L s, &
0 500 1000 1500 2000 2500 3000 3500 0 20 40 60 80 100 120

track length histogram




Nonlinear lens distortion

T

Nonlinear lens distortion

effect of lens distortion

: -
Prior knowledge and scene constraint@™

add a constraint that several lines are parallel

- - Di i!:za
Prior knowledge and scene constraln

add a constraint that it is a turntable sequence




Applications of matchmove

2d3 boujou 2%

2

Digi

Enemy at the Gate, Double Negative

2d3 boujou 2 =

2

Enemy at the Gate, Double Negative

Jurassic park




Photo Tourism
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VideoTrace

http://www.acvt.com.au/research/videotrace/

Project #3 MatchMove

e It is more about using tools in this project

« You can choose either calibration or structure
from motion to achieve the goal

e Calibration
e |carus/Voodoo

gi\'J
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