Structure from motion

Digital Visual Effects, Spring 2008
Yung-Yu Chuang
2008/4/22
with slides by Richard Szeliski, Steve Seitz, Zhengyou Zhang and Marc Pollefyes

Outline

- Epipolar geometry and fundamental matrix
- Structure from motion
- Factorization method
- Bundle adj ustment
- Applications

Epipolar geometry \& fundamental matrix

epipolar geometry demo

$C, C^{\prime}, x, x^{\prime}$ and X are coplanar

What if only C, C^{\prime}, x are known?

Family of planes π and lines l and l 'intersect at e and e^{\prime}
epipolar geometry demo
=intersection of baseline with image plane
=projection of projection center in other image

epipolar plane =plane containing baseline
epipolar line =intersection of epipolar plane with image

Two reference frames are related via the extrinsic parameters

$$
\mathrm{p}^{\prime}=\mathrm{R}(\mathrm{p}-\mathrm{T})
$$

The equation of the epipolar plane through X is

$$
(\mathbf{p}-\mathbf{T})^{\mathrm{T}}(\mathbf{T} \times \mathbf{p})=0 \quad\left(\mathbf{R}^{\mathrm{T}} \mathbf{p}^{\prime}\right)^{\mathrm{T}}(\mathbf{T} \times \mathbf{p})=0
$$

$$
\mathbf{p}^{\mathrm{T}} \mathbf{E p}=0
$$

Let M and M^{\prime} be the intrinsic matrices, then

$$
\mathbf{p}=\mathbf{M}^{-1} \mathbf{x} \quad \mathbf{p}^{\prime}=\mathbf{M}^{\prime-1} \mathbf{x}^{\prime}
$$

$\Rightarrow\left(\mathbf{M}^{\prime-1} \mathbf{x}^{\prime}\right)^{\mathrm{T}} \mathbf{E}\left(\mathbf{M}^{-1} \mathbf{x}\right)=0$
$\Rightarrow \mathbf{x}^{\mathbf{T}^{\mathrm{T}} \mathbf{M}^{\mathbf{}^{-\mathrm{T}}} \mathbf{E} \mathbf{M}^{-1} \mathbf{x}=0}$
\longrightarrow

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{x}=0 \quad \text { fundamental matrix }
$$

- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x^{\prime}$ in the two images

$$
x^{\prime T} F x=0 \quad\left(x^{\prime T} l^{\prime}=0\right)
$$

F is the unique 3×3 rank 2 matrix that satisfies $x^{\prime \top} F x=0$ for all $x \leftrightarrow x^{\prime}$

1. Transpose: if F is fundamental matrix for $\left(P, P^{\prime}\right)$, then F^{\top} is fundamental matrix for (P^{\prime}, P)
2. Epipolar lines: $I^{\prime} \mp x \& I \neq F^{\top} x^{\prime}$
3. Epipoles: on all epipolar lines, thus $e^{\top} F x=0, \forall x$ $\Rightarrow e^{\prime}{ }^{\top} F=0$, similarly $\mathrm{Fe}=0$
4. F has 7 d.o.f., i.e. $3 \times 3-1$ (homogeneous) -1 (rank2)
5. F is a correlation, proj ective mapping from a point x to a line $l^{\prime}=F x$ (not a proper correlation, i.e. not invertible)

Estimation of F - 8-point algorithm

- It can be used for
- Simplifies matching
- Allows to detect wrong matches
- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches \mathbf{x} and \mathbf{x}^{\prime} in two images.

- Let $\mathbf{x}=(u, v, 1)^{\top}$ and $\mathbf{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{\top}, \quad \mathbf{F}=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$ each match gives a linear equation
$u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0$
$\left[\begin{array}{ccccccccc}u_{1} u_{1}{ }^{\prime} & v_{1} u_{1}{ }^{\prime} & u_{1}{ }^{\prime} & u_{1} v_{1}{ }^{\prime} & v_{1} v_{1}{ }^{\prime} & v_{1}{ }^{\prime} & u_{1} & v_{1} & 1 \\ u_{2} u_{2}{ }^{\prime} & v_{2} u_{2}{ }^{\prime} & u_{2}{ }^{\prime} & u_{2} v_{2}{ }^{\prime} & v_{2} v_{2}{ }^{\prime} & v_{2}{ }^{\prime} & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n} u_{n}^{\prime} & v_{n} u_{n}{ }^{\prime} & u_{n}^{\prime}{ }^{\prime} & u_{n} v_{n}^{\prime} & v_{n} v_{n}^{\prime} & v_{n}{ }^{\prime} & u_{n} & v_{n} & 1\end{array}\right]\left[\begin{array}{c}f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33}\end{array}\right]=0$
- In reality, instead of solving $\mathbf{A f}=0$, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$ subj. $\|f\|=1$. Find the vector corresponding to the least singular value.
- To enforce that F is of rank $2, F$ is replaced by F^{\prime} that minimizes $\left\|\mathbf{F}-\mathbf{F}^{\prime}\right\|$ subj ect to $\operatorname{det} \mathbf{F}^{\prime}=0$.
- It is achieved by SVD. Let $\mathbf{F}=\mathbf{U} \Sigma \mathbf{V}^{\text {T }}$, where
$\Sigma=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3}\end{array}\right]$, let $\Sigma^{\prime}=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & 0\end{array}\right]$
then $\mathbf{F}^{\prime}=\mathbf{U} \Sigma^{\prime} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

```
%Build the constraint matrix
    A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)'...
        x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)'...
        x1(1,:)' x1(2,:)' ones(npts,1) ];
```

 \([\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}) ;\)
 \%Extract fundamental matrix from the column of V \%corresponding to the smallest singular value.
F = reshape(V(: , 9), 3, 3)';
\%Enforce rank2 constraint
$[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}(\mathrm{F})$;
$F=U^{*} \operatorname{diag}([D(1,1) D(2,2) 0]) * V^{\prime} ;$

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

\rightarrow least-squares yields poor results

Normalized 8-point algorithm

1. Transform input by $\hat{\mathbf{x}}_{\mathbf{i}}=\mathbf{T} \mathbf{x}_{\mathrm{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}=\mathbf{T} \mathbf{x}_{\mathbf{i}}^{\prime}$
2. Call 8-point on $\hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{x}}_{\mathbf{i}}^{\prime}$ to obtain $\hat{\mathbf{F}}$
3. $\mathbf{F}=\mathbf{T}^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

DigjVFX
normalized least squares yields good results Transform image to $-[-1,1] \times[-1,1]$

Normalized 8-point algorithm

[$\times 1, \mathrm{~T} 1]=$ normalise2dpts($\times 1$);
[$\times 2$, T2] $=$ normalise2dpts $(\times 2)$;
$A=\left[x 2(1,:)^{\prime} . * x 1(1,:)^{\prime} \quad \times 2(1,:)^{\prime} .{ }^{*} \times 1(2,:)^{\prime} \times 2(1,:)^{\prime} \ldots\right.$ x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)'...
$\times 1(1,:)^{\prime} \quad \times 1(2,:)^{\prime} \quad$ ones(npts,1)];
$[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$;
$F=\operatorname{reshape}(\mathrm{V}(:, 9), 3,3)$ ';
$[\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{svd}(\mathrm{F})$;
$F=U^{*} \operatorname{diag}([D(1,1) D(2,2) 0]) * V ;$
\%Denormalise
$\mathrm{F}=\mathrm{T} 2^{*} \mathrm{~F}^{*} * \mathrm{~T} 1$;
function [newpts, T] = normalise2dpts(pts)
$\mathrm{c}=\mathrm{mean}\left(\operatorname{pts}(1: 2,:)^{\prime}\right)^{\prime} ; \quad$ \%Centroid
newp(1,:) $=\operatorname{pts}(1,:)-c(1)$; \%Shift origin to centroid. newp(2,:) $=\operatorname{pts}(2,:)-c(2)$;
meandist $=$ mean(sqrt(newp(1,:). $\xlongequal{\wedge}+$ newp(2,:). 2)); scale =sqrt(2)/ meandist;
$\mathrm{T}=$ [scale $\quad 0 \quad$-scale* $\mathrm{c}(1)$
0 scale -scale*c(2)
$\left.\begin{array}{llll}0 & 0 & 1\end{array}\right]$
newpts $=T *$ pts;

repeat

select minimal sample (8 matches)
compute solution(s) for F
determine inliers
until Γ (\#nliers, \#samples) $>95 \%$ or too many times compute F based on all inliers

Results (ground truth)
Results (8-point algorithm)

Structure from motion

Structure from motion
DigivFX

structure for motion: automatic recovery of camera motion and scene structure from two or more images. It is a self calibration technique and called automatic camera tracking or matchmoving.

Applications

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds

Structure from motion

SFM pipeline

- http:/ / www. ccrfa. com/ ccrfa/
- Making of "The Disappearing Act"
- 2007 winner

Structure from motion

- Step 1: Track Features
- Detect good features, Shi \& Tomasi, SIFT
- Find correspondences between frames
- Lucas \& Kanade-style motion estimation
- window-based correlation
- SIFT matching

http:// www.ces. clemson.edu/ -stb/ klt/

Structure from Motion

- Step 2: Estimate Motion and Structure
- Simplified projection model, e.g., [Tomasi 92]
- 2 or 3 views at a time [Hartley 00]

Structure from Motion

- Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)

Factorization methods

Notations

- n 3D points are seen in m views
- $\mathbf{q}=(u, v, 1)$: 2D image point
- $\mathbf{p =}(x, y, z, 1)$: 3D scene point
- П: projection matrix
- π : projection function
- q_{ij} is the projection of the i -th point on image j
- λ_{ij} projective depth of q_{ij}

$$
\begin{array}{ll}
\mathbf{q}_{i j}=\pi\left(\Pi_{j} \mathbf{p}_{i}\right) \quad \begin{array}{l}
\pi(x, y, z)=(x / z, y / z) \\
\\
\lambda_{i j}=z
\end{array}
\end{array}
$$

Structure from motion

- Estimate Π_{j} and \mathbf{p}_{i} to minimize

$$
\begin{gathered}
\varepsilon\left(\boldsymbol{\Pi}_{1}, \cdots, \boldsymbol{\Pi}_{m}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} w_{i j} \log P\left(\pi\left(\boldsymbol{\Pi}_{j} \mathbf{p}_{i}\right) ; \mathbf{q}_{i j}\right) \\
w_{i j}= \begin{cases}1 & \text { if } p_{i} \text { is visible in view } \mathrm{j} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- Assume isotropic Gaussian noise, it is reduced to

$$
\varepsilon\left(\boldsymbol{\Pi}_{1}, \cdots, \boldsymbol{\Pi}_{m}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} w_{i j}\left\|\pi\left(\boldsymbol{\Pi}_{j} \mathbf{p}_{i}\right)-\mathbf{q}_{i j}\right\|^{2}
$$

- Start from a simpler projection model

- Trick
- Choose scene origin to be centroid of 3D points
- Choose image origins to be centroid of 2D points
- Allows us to drop the camera translation:

$$
\mathbf{q}=\Pi \mathbf{p}
$$

projection of \mathbf{n} features in one image:

$\left\lfloor\begin{array}{ccc}\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots \\ 2 \times \mathrm{n} & \mathbf{q}_{\mathrm{n}}\end{array}\right]=\prod_{2 \times 3}\left[\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{\mathrm{n}}\end{array}\right]$
projection of \mathbf{n} features in \mathbf{m} images

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1 n} \\
\mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{q}_{m 1} & \mathbf{q}_{m 2} & \cdots & \mathbf{q}_{m n}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\Pi}_{1} \\
\boldsymbol{\Pi}_{2} \\
\vdots \\
\boldsymbol{\Pi}_{m} \times \mathrm{n}
\end{array}\right]} \\
& \left.\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right] \\
& \begin{array}{l}
3 \times \mathrm{n}
\end{array} \\
& \begin{array}{l}
\text { Key } \times 3
\end{array} \\
& \text { Keasurement } \quad \mathbf{M} \text { motion } \quad \mathbf{S} \text { shape } \\
& \hline
\end{aligned}
$$

Factorization

- Factorization Technique
- Wis at most rank 3 (assuming no noise)
- We can use singular value decomposition to factor \mathbf{W}.

$$
\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times 3}{\mathbf{M}} \underset{3 \times \mathrm{n}}{\mathbf{S}}
$$

- S' differs from \mathbf{S} by a linear transformation \mathbf{A}

$$
\mathbf{W}=\mathbf{M}^{\prime} \mathbf{S}^{\prime}=\left(\mathbf{M} \mathbf{A}^{-\mathbf{1}}\right)(\mathbf{A S})
$$

- Solve for \mathbf{A} by enforcing metric constraints on \mathbf{M}

Metric constraints

- Orthographic Camera
- Rows of Π are orthonormal:

$$
\prod \prod^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Enforcing "Metric" Constraints
- Compute A such that rows of Mhave these properties

$$
\mathbf{M}^{\prime} \mathbf{A}=\mathbf{M}
$$

Trick (not in original Tomasi/Kanade paper, but in followup work)

- Constraints are linear in $\mathbf{A A}^{\top}$:
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\Pi^{T}=\Pi^{\prime} \mathbf{A}\left(\mathbf{A} \Pi^{\prime}\right)^{T}=\Pi^{\prime} \mathbf{G} \Pi^{\prime T} \quad$ where $\mathbf{G}=\mathbf{A A}^{T}$
- Solve for \mathbf{G} first by writing equations for every $\boldsymbol{\Pi}_{\mathrm{i}}$ in \mathbf{M}
- Then $\mathbf{G}=\mathbf{A} \mathbf{A}^{\top}$ by SVD $($ since $\mathbf{U}=\mathbf{V})$

$$
\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times 3}{\mathbf{M}} \underset{3 \times \mathrm{n}}{\mathbf{S}}+\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{E}}
$$

- SVD gives this solution
- Provides optimal rank 3 approximation \mathbf{W} of \mathbf{W}

$$
\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}}=\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{W}^{\prime}}+\underset{2 \mathrm{~m} \times \mathrm{n}}{\mathbf{E}}
$$

- Approach
- Estimate \mathbf{W}, then use noise-free factorization of \mathbf{W} as before
- Result minimizes the SSD between positions of image features and projection of the reconstruction

Extensions to factorization methods

- Projective projection
- With missing data
- Projective projection with missing data
- LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Given a set of measurements \mathbf{x}, try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon^{T} \varepsilon$ is minimal. Here, $\varepsilon=\mathbf{x}-\hat{\mathbf{x}}$, with $\hat{\mathbf{x}}=f(\mathbf{p})$.

Levenberg-Marquardt method

For a small $\left\|\delta_{\mathbf{p}}\right\|, f\left(\mathbf{p}+\delta_{\mathbf{p}}\right) \approx f(\mathbf{p})+\mathbf{J} \delta_{\mathbf{p}}$
\mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$
it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$
\left\|\mathbf{x}-f\left(\mathbf{p}+\delta_{\mathbf{p}}\right)\right\| \approx\left\|\mathbf{x}-f(\mathbf{p})-\mathbf{J} \delta_{\mathbf{p}}\right\|=\left\|\epsilon-\mathbf{J} \delta_{\mathbf{p}}\right\|
$$

$$
\begin{aligned}
& \mathbf{J}^{T} \mathbf{J} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
& \mathbf{N} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
& \mathbf{N}_{i i}=\underset{\uparrow}{\mu}+\left[\mathbf{J}^{T} \mathbf{J}\right]_{i i} \\
& \text { damping term }
\end{aligned}
$$

- $\mu=0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing μ
- Start with some small μ
- If error is not reduced, keep trying larger μ until it does
- If error is reduced, accept it and reduce μ for the next iteration
- Bundle adj ustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.
- n 3D points are seen in m views
- $x_{i j}$ is the projection of the i-th point on image j
- a_{j} is the parameters for the j -th camera
- b_{i} is the parameters for the i-th point
- BA attempts to minimize the projection error

$$
\min _{\mathbf{a}_{j}, \mathbf{b}_{i}} \sum_{i=1}^{n} \sum_{j=1}^{m} d \underset{\prod_{\text {predicted proj ection }}}{\left.\mathbf{Q}\left(\mathbf{a}_{j}, \mathbf{b}_{i}\right), \mathbf{x}_{i j}\right)^{2}}
$$

Euclidean distance

Bundle adjustment

Bundle adj ustment

3 views and 4 points $\mathbf{P}=\left(\mathbf{a}_{1}^{T}, \mathbf{a}_{2}^{T}, \mathbf{a}_{3}^{T}, \mathbf{b}_{1}^{T}, \mathbf{b}_{2}^{T}, \mathbf{b}_{3}^{T}, \mathbf{b}_{4}^{T}\right)^{T}$ $\left.\mathbf{X}=\left(\mathbf{x}_{11}{ }^{T}, \mathbf{x}_{12}{ }^{T}, \mathbf{x}_{13}{ }^{T}, \mathbf{x}_{21}{ }^{T}, \mathbf{x}_{22}{ }^{T}, \mathbf{x}_{23}{ }^{T}, \mathbf{x}_{31}{ }^{T}, \mathbf{x}_{32}{ }^{T}, \mathbf{x}_{33}{ }^{T}, \mathbf{x}_{41}{ }^{T}, \mathbf{x}_{42}{ }^{T}, \mathbf{x}_{43}\right)^{T}\right)^{T}$

$$
\frac{\partial \mathbf{X}}{\partial \mathbf{P}}=\left(\begin{array}{ccccccc}
\mathbf{A}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{12} & \mathbf{0} & \mathbf{B}_{12} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{13} & \mathbf{B}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{A}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{21} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{22} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{23} & \mathbf{0} & \mathbf{B}_{23} & \mathbf{0} & \mathbf{0} \\
\mathbf{A}_{31} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{31} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{32} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \mathbf{0} \\
\mathbf{A}_{41} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{41} \\
\mathbf{0} & \mathbf{A}_{42} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{42} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{43} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{43}
\end{array}\right)
$$

Block structure of normal equation

Bundle adjustment

Multiplied by $\left(\begin{array}{cc}\mathbf{I} & -\mathbf{W} \mathbf{V}^{*-1} \\ \mathbf{0} & \mathbf{I}\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathbf{U}^{*}-\mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^{T} & \mathbf{0} \\
\mathbf{W}^{T} & \mathbf{V}^{*}
\end{array}\right)\binom{\delta_{\mathbf{a}}}{\delta_{\mathbf{b}}}=\binom{\epsilon_{\mathbf{a}}-\mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}}{\epsilon_{\mathbf{b}}} \\
& \left(\mathbf{U}^{*}-\mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^{T}\right) \delta_{\mathbf{a}}=\epsilon_{\mathbf{a}}-\mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}} \\
& \mathbf{V}^{*} \delta_{\mathbf{b}}=\epsilon_{\mathbf{b}}-\mathbf{W}^{T} \delta_{\mathbf{a}}
\end{aligned}
$$

- Track lifetime
- Nonlinear lens distortion
- Degeneracy and critical surfaces
- Prior knowledge and scene constraints
- Multiple motions

every 50th frame of a 800-frame sequence

Track lifetime

lifetime of 3192 tracks from the previous sequence

track length histogram

effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallel

Prior knowledge and scene constraintsigive

add a constraint that it is a turntable sequence

Applications of matchmove

Enemy at the Gate, Double Negative

2d3 boujou

DigivFX
J urassic park

Photo Tourism
Microsoft
Exploring photo collections in 3D

(b)

(c)

VideoTrace

http:/ / www. acvt. com. au/ research/ videotrace/

Project \#3 MatchMove

- It is more about using tools in this proj ect
- You can choose either calibration or structure from motion to achieve the goal
- Calibration
- Icarus/ Voodoo

References

- Carlo Tomasi and Takeo Kanade, Shape and Motion from Image Streams: A Factorization Method, Proceedings of NatI. Acad. Sci., 1993.
- Manolis Lourakis and Antonis Argyros, The Design and Implementation of a Generic Sparse Bundle Adj ustment Software Package Based on the Levenberg-Marquardt Algorithm, FORTHICS/ TR-320 2004.
- N. Snavely, S. Seitz, R. Szeliski, Photo Tourism: Exploring Photo Collections in 3D, SIGGRAPH 2006.
- A. Hengel et. al., VideoTrace: Rapid Interactive Scene Modelling from Video, SIGGRAPH 2007.

