Structure from motion

Digital Visual Effects, Spring 2008

Yung-Yu Chuang

2008/4/22

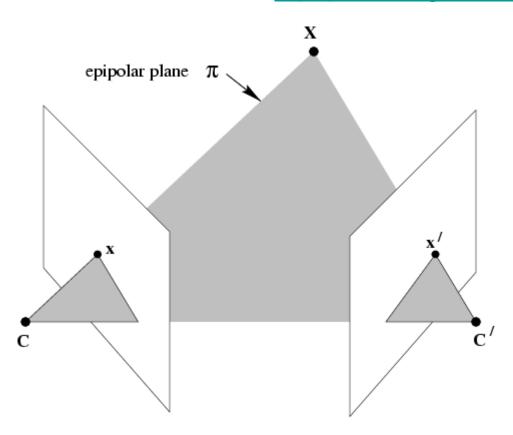
 Project #2 was due yesterday. Send it directly to me. Please hand it in before Sunday if possible.

Outline

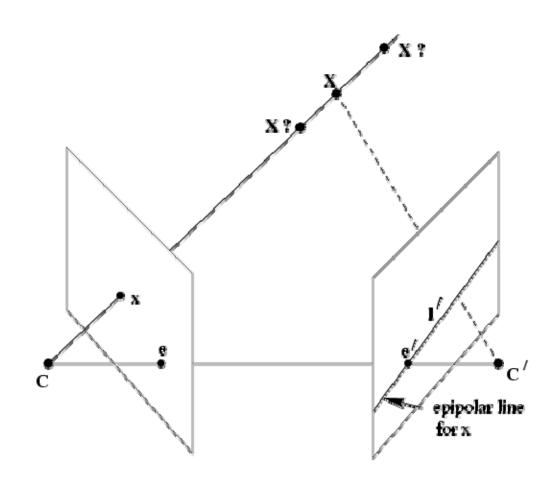
- Epipolar geometry and fundamental matrix
- Structure from motion
- Factorization method
- Bundle adjustment
- Applications

Epipolar geometry & fundamental matrix

epipolar geometry demo

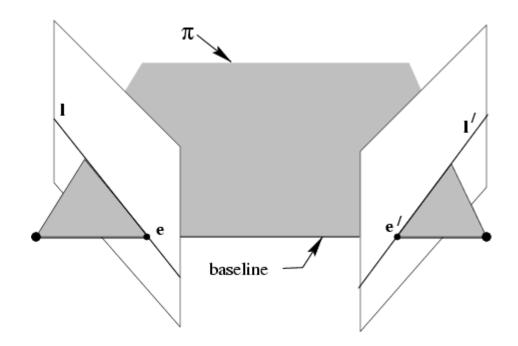


C,C',x,x' and X are coplanar



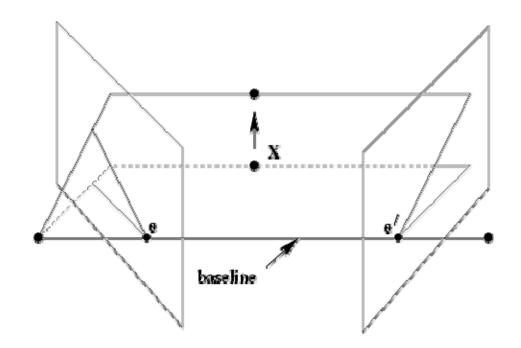
What if only C, C', x are known?

The epipolar geometry



All points on π project on I and I'

The epipolar geometry



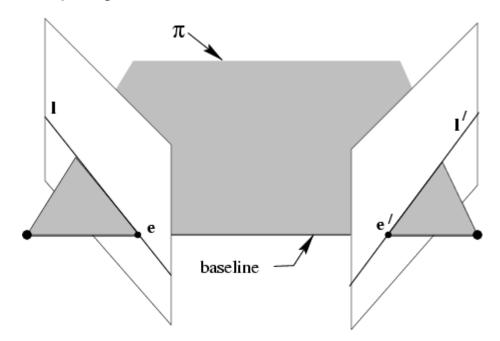
Family of planes π and lines l and l' intersect at e and e'

The epipolar geometry

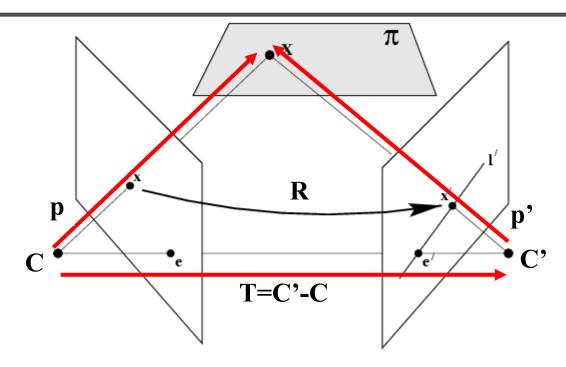
epipolar pole

epipolar geometry demo

- = intersection of baseline with image plane
- = projection of projection center in other image



epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image



Two reference frames are related via the extrinsic parameters

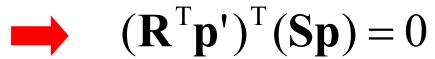
$$p' = R(p - T)$$

The equation of the epipolar plane through X is

$$(\mathbf{p} - \mathbf{T})^{\mathrm{T}} (\mathbf{T} \times \mathbf{p}) = 0 \implies (\mathbf{R}^{\mathrm{T}} \mathbf{p}')^{\mathrm{T}} (\mathbf{T} \times \mathbf{p}) = 0$$

$$(\mathbf{R}^{\mathrm{T}}\mathbf{p}')^{\mathrm{T}}(\mathbf{T}\times\mathbf{p}) = 0$$
$$\mathbf{T}\times\mathbf{p} = \mathbf{S}\mathbf{p}$$

$$\mathbf{S} = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$$



$$(\mathbf{p'}^{\mathrm{T}}\mathbf{R})(\mathbf{S}\mathbf{p}) = 0$$

$$\mathbf{p'}^{\mathsf{T}}\mathbf{E}\mathbf{p} = 0$$
 essential matrix

$$\mathbf{p'}^{\mathrm{T}} \mathbf{E} \mathbf{p} = 0$$

Let M and M' be the intrinsic matrices, then

$$\mathbf{p} = \mathbf{M}^{-1}\mathbf{x} \qquad \mathbf{p'} = \mathbf{M'}^{-1}\mathbf{x'}$$

$$(\mathbf{M'}^{-1} \mathbf{x'})^{\mathrm{T}} \mathbf{E} (\mathbf{M}^{-1} \mathbf{x}) = 0$$

$$\mathbf{x'}^{\mathsf{T}} \mathbf{M'}^{\mathsf{-T}} \mathbf{E} \mathbf{M}^{\mathsf{-1}} \mathbf{x} = \mathbf{0}$$

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = 0$$

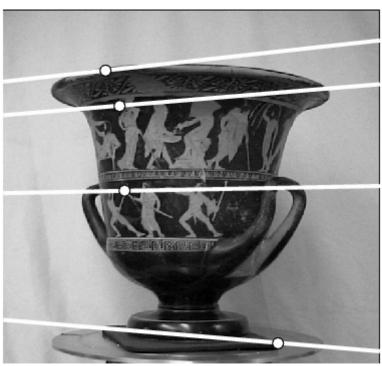
 $\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$ fundamental matrix

- The fundamental matrix is the algebraic representation of epipolar geometry
- The fundamental matrix satisfies the condition that for any pair of corresponding points x↔x' in the two images

$$\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0} \qquad \left(\mathbf{x'}^{\mathrm{T}} \mathbf{1'} = \mathbf{0} \right)$$

F is the unique 3x3 rank 2 matrix that satisfies $x'^TFx=0$ for all $x\leftrightarrow x'$

- 1. Transpose: if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)
- 2. Epipolar lines: $I'=Fx \& I=F^Tx'$
- 3. Epipoles: on all epipolar lines, thus $e'^TFx=0$, $\forall x \Rightarrow e'^TF=0$, similarly Fe=0
- 4. F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- 5. F is a correlation, projective mapping from a point x to a line I'=Fx (not a proper correlation, i.e. not invertible)



- It can be used for
 - Simplifies matching
 - Allows to detect wrong matches

Estimation of F — 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ each match gives a linear equation

$$uu' f_{11} + vu' f_{12} + u' f_{13} + uv' f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm
$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix}$$

• In reality, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$ subj. $\|\mathbf{f}\| = 1$. Find the vector corresponding to the least singular value.

8-point algorithm

- To enforce that F is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to det $\mathbf{F}' = 0$.
- It is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$
, let $\Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

then $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

% Build the constraint matrix

- % Extract fundamental matrix from the column of V
- % corresponding to the smallest singular value.

$$F = reshape(V(:,9),3,3)';$$

% Enforce rank2 constraint

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

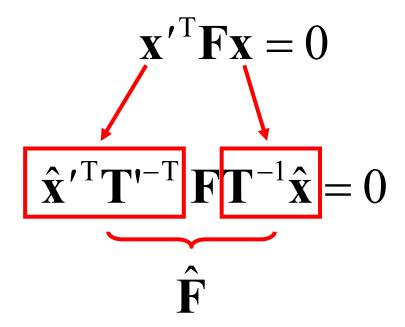
$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$
Orders of magnitude difference

between column of data matrix

between column of data matrix → least-squares yields poor results

Normalized 8-point algorithm

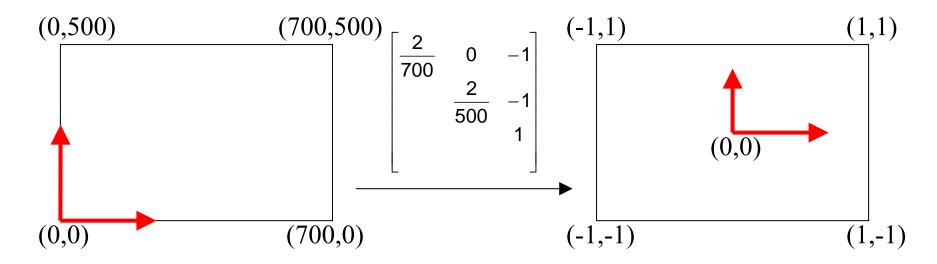
- 1. Transform input by $\hat{\mathbf{x}}_i = \mathbf{T}\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = \mathbf{T}\mathbf{x}_i'$
- 2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
- 3. $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$



DigiVFX

Normalized 8-point algorithm

normalized least squares yields good results Transform image to \sim [-1,1]x[-1,1]



Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
 [x2, T2] = normalise2dpts(x2);
  A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
       x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
       x1(1,:)' x1(2,:)' ones(npts,1)];
  [U,D,V] = svd(A);
  F = reshape(V(:,9),3,3)';
  [U,D,V] = svd(F);
  F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
  F = T2'*F*T1;
```



```
function [newpts, T] = normalise2dpts(pts)
   c = mean(pts(1:2,:)')'; % Centroid
   newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
   newp(2,:) = pts(2,:)-c(2);
   meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2);
   scale = sqrt(2)/meandist;
   T = [scale 0 - scale*c(1)]
         0 scale -scale*c(2)
             0
                  1 ];
   newpts = T*pts;
```

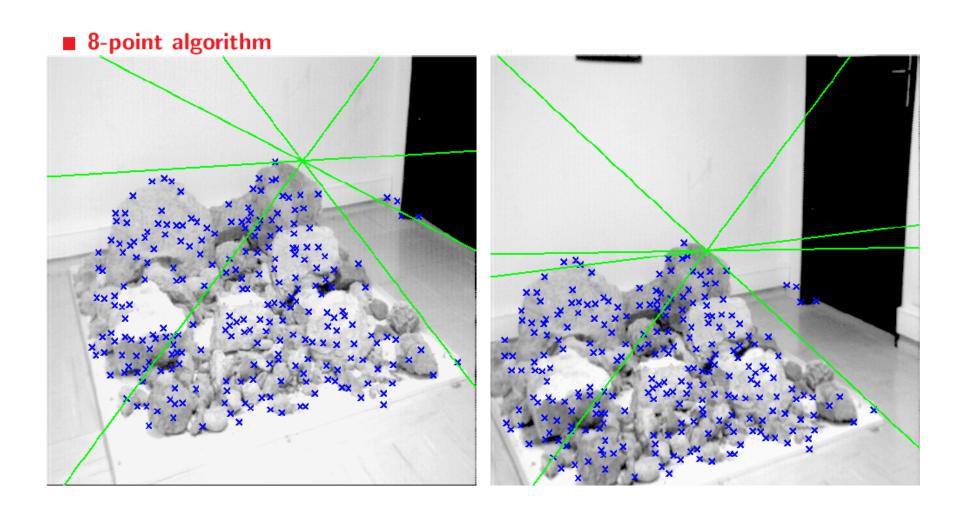
RANSAC


```
repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers
until Γ(#inliers, #samples)>95% or too many times
compute F based on all inliers
```

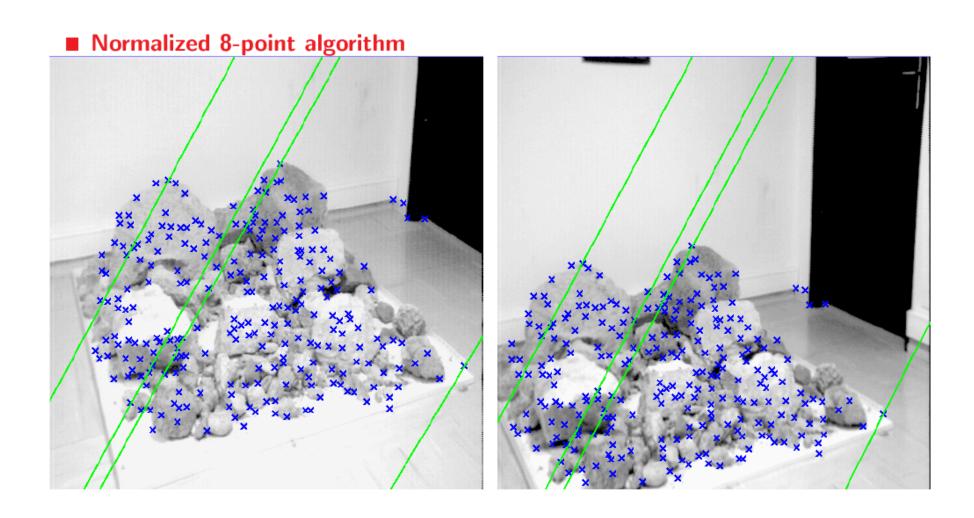
Results (ground truth)

■ Ground truth with standard stereo calibration

Results (8-point algorithm)

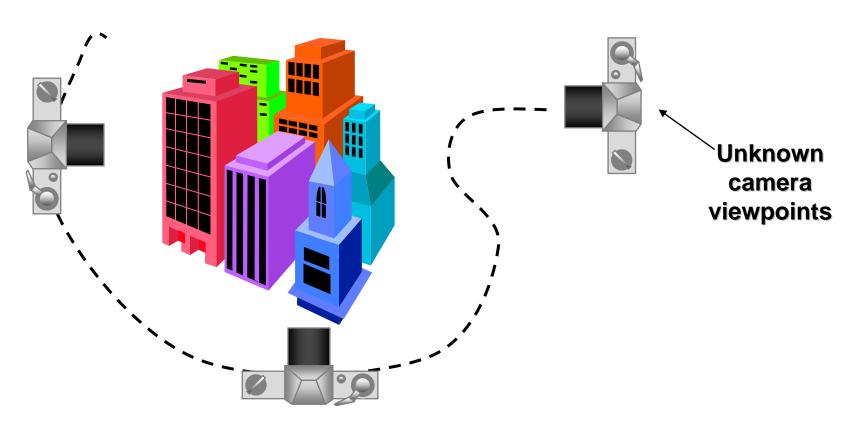


Results (normalized 8-point algorithm)



Structure from motion

Structure from motion



structure for motion: automatic recovery of <u>camera motion</u> and <u>scene structure</u> from two or more images. It is a self calibration technique and called *automatic camera tracking* or *matchmoving*.

Applications

- For computer vision, multiple-view shape reconstruction, novel view synthesis and autonomous vehicle navigation.
- For film production, seamless insertion of CGI into live-action backgrounds

Matchmove

example #1

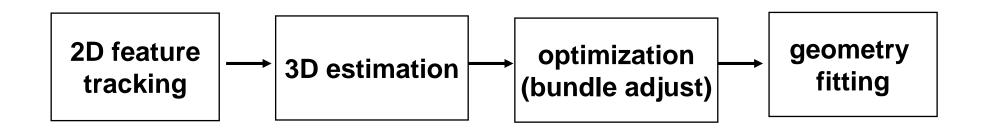
example #2

example #3

CCRFA

- http://www.ccrfa.com/ccrfa/
- Making of "The Disappearing Act"
- 2007 winner

Structure from motion



SFM pipeline

Structure from motion

- Step 1: Track Features
 - Detect good features, Shi & Tomasi, SIFT
 - Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - window-based correlation
 - SIFT matching

KLT tracking

http://www.ces.clemson.edu/~stb/klt/

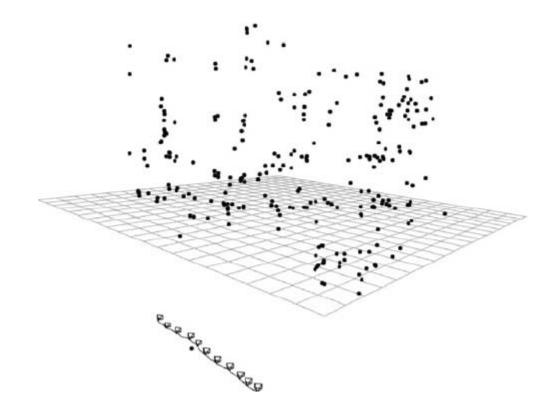
Digi<mark>VFX</mark>

Structure from Motion

- Step 2: Estimate Motion and Structure
 - Simplified projection model, e.g., [Tomasi 92]
 - 2 or 3 views at a time [Hartley 00]

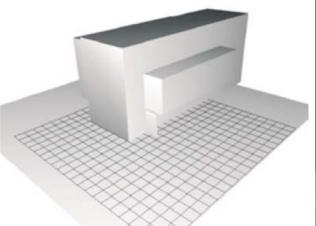
Structure from Motion

- Step 3: Refine estimates
 - "Bundle adjustment" in photogrammetry
 - Other iterative methods



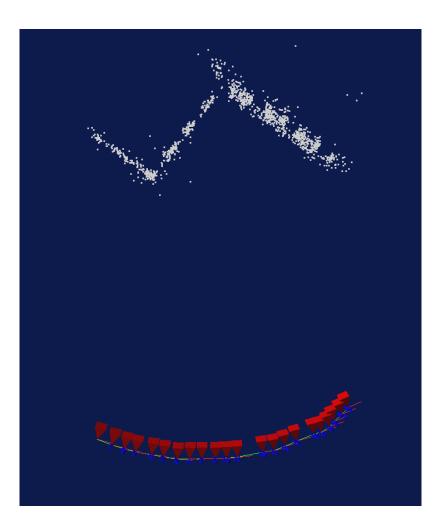
Structure from Motion

• Step 4: Recover surfaces (image-based triangulation, silhouettes, stereo...)



Factorization methods

Problem statement



Notations

- n 3D points are seen in m views
- q=(u, v, 1): 2D image point
- p=(x,y,z,1): 3D scene point
- Π: projection matrix
- π : projection function
- q_{ij} is the projection of the i-th point on image j
- λ_{ij} projective depth of q_{ij}

$$\mathbf{q}_{ij} = \pi(\Pi_j \mathbf{p}_i) \qquad \pi(x, y, z) = (x/z, y/z)$$
$$\lambda_{ij} = z$$

Structure from motion

• Estimate \prod_{i} and \mathbf{p}_{i} to minimize

$$\mathcal{E}(\mathbf{\Pi}_{1}, \dots, \mathbf{\Pi}_{m}, \mathbf{p}_{1}, \dots, \mathbf{p}_{n}) = \sum_{j=1}^{m} \sum_{i=1}^{n} w_{ij} \log P(\pi(\mathbf{\Pi}_{j} \mathbf{p}_{i}); \mathbf{q}_{ij})$$

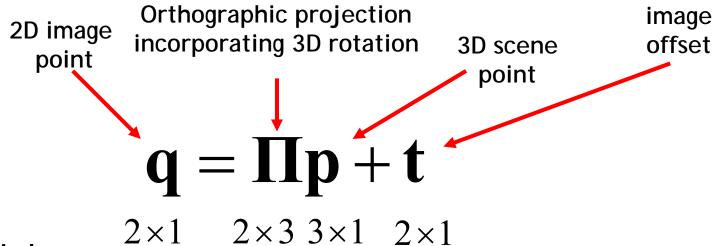
$$w_{ij} = \begin{cases} 1 & \text{if } p_{i} \text{ is visible in view j} \\ 0 & \text{otherwise} \end{cases}$$

Assume isotropic Gaussian noise, it is reduced to

$$\mathcal{E}(\mathbf{\Pi}_1, \dots, \mathbf{\Pi}_m, \mathbf{p}_1, \dots, \mathbf{p}_n) = \sum_{j=1}^m \sum_{i=1}^n w_{ij} \| \pi(\mathbf{\Pi}_j \mathbf{p}_i) - \mathbf{q}_{ij} \|^2$$

Start from a simpler projection model

SFM under orthographic projection



- Trick
 - Choose scene origin to be centroid of 3D points
 - Choose image origins to be centroid of 2D points
 - Allows us to drop the camera translation:

$$q = \Pi p$$

factorization (Tomasi & Kanade)

projection of *n* features in one image:

$$\begin{bmatrix} \mathbf{q_1} & \mathbf{q_2} & \cdots & \mathbf{q_n} \end{bmatrix} = \prod_{2 \times 3} \begin{bmatrix} \mathbf{p_1} & \mathbf{p_2} & \cdots & \mathbf{p_n} \end{bmatrix}$$

projection of *n* features in *m* images

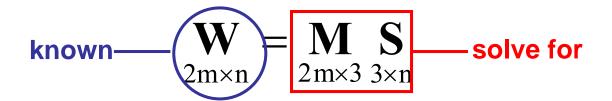
$$\begin{bmatrix} \mathbf{q}_{11} & \mathbf{q}_{12} & \cdots & \mathbf{q}_{1n} \\ \mathbf{q}_{21} & \mathbf{q}_{22} & \cdots & \mathbf{q}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{q}_{m1} & \mathbf{q}_{m2} & \cdots & \mathbf{q}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{\Pi}_1 \\ \mathbf{\Pi}_2 \\ \vdots \\ \mathbf{\Pi}_m \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

$$2m \times n \qquad 2m \times 3$$

W measurement M motion S shape

Key Observation: rank(**W**) <= 3

Factorization



- Factorization Technique
 - W is at most rank 3 (assuming no noise)
 - We can use singular value decomposition to factor W:

$$\mathbf{W}_{2m\times n} = \mathbf{M}' \mathbf{S}'_{2m\times 3 3\times n}$$

– S' differs from S by a linear transformation A:

$$W = M'S' = (MA^{-1})(AS)$$

Solve for A by enforcing metric constraints on M

Metric constraints

- Orthographic Camera
 - Rows of Π are orthonormal: $\Pi \Pi^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Enforcing "Metric" Constraints
 - Compute A such that rows of M have these properties

$$M'A = M$$

Trick (not in original Tomasi/Kanade paper, but in followup work)

Constraints are linear in AA^T:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \prod \prod^{T} = \prod' \mathbf{A} (\mathbf{A} \prod')^{T} = \prod' \mathbf{G} \prod'^{T} \qquad where \quad \mathbf{G} = \mathbf{A} \mathbf{A}^{T}$$

- Solve for ${\bf G}$ first by writing equations for every Π_i in ${\bf M}$
- Then $\mathbf{G} = \mathbf{A}\mathbf{A}^{\mathsf{T}}$ by SVD (since $\mathbf{U} = \mathbf{V}$)

Factorization with noisy data

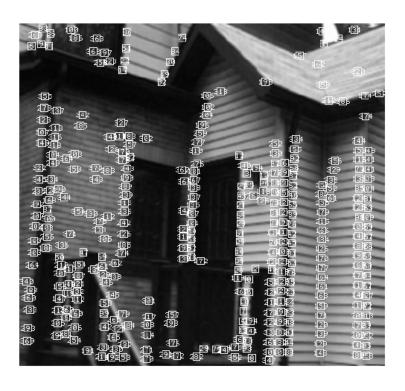
$$\mathbf{W}_{2m\times n} = \mathbf{M}_{2m\times 3} \mathbf{S}_{3\times n} + \mathbf{E}_{2m\times n}$$

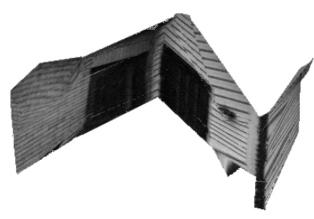
- SVD gives this solution
 - Provides optimal rank 3 approximation W' of W

$$\mathbf{W}_{2m\times n} = \mathbf{W}' + \mathbf{E}_{2m\times n}$$

- Approach
 - Estimate W', then use noise-free factorization of W' as before
 - Result minimizes the SSD between positions of image features and projection of the reconstruction

Results





Extensions to factorization methods

- Projective projection
- With missing data
- Projective projection with missing data

Levenberg-Marquardt method

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Nonlinear least square

Given a set of measurements \mathbf{x} , try to find the best parameter vector \mathbf{p} so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

Levenberg-Marquardt method

For a small
$$||\delta_{\mathbf{p}}||$$
, $f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$
 \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$

it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| \approx ||\mathbf{x} - f(\mathbf{p})| - |\mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}||$$

$$\mathbf{J}^T \mathbf{J} \delta_{\mathbf{p}} = \mathbf{J}^T \epsilon$$
 $\mathbf{N} \delta_{\mathbf{p}} = \mathbf{J}^T \epsilon$
 $\mathbf{N}_{ii} = \mu + \left[\mathbf{J}^T \mathbf{J} \right]_{ii}$
 $damping\ term$

DigiVFX

Levenberg-Marquardt method

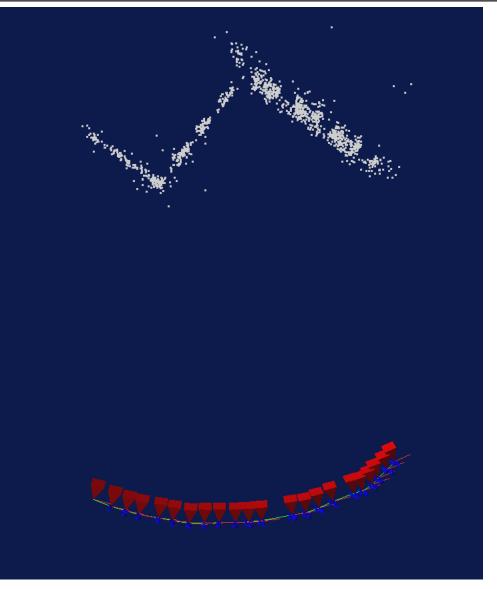
- $\mu = 0$ \rightarrow Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing μ
 - Start with some small μ
 - If error is not reduced, keep trying larger μ until it does
 - If error is reduced, accept it and reduce μ for the next iteration

- Bundle adjustment (BA) is a technique for simultaneously refining the 3D structure and camera parameters
- It is capable of obtaining an optimal reconstruction under certain assumptions on image error models. For zero-mean Gaussian image errors, BA is the maximum likelihood estimator.

- n 3D points are seen in m views
- x_{ij} is the projection of the *i*-th point on image *j*
- a_i is the parameters for the j-th camera
- b_i is the parameters for the *i*-th point
- BA attempts to minimize the projection error

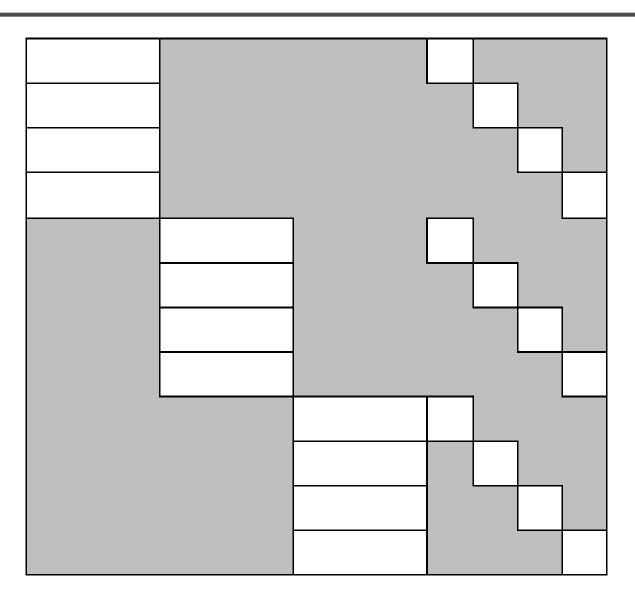
$$\min_{\mathbf{a}_j, \mathbf{b}_i} \sum_{i=1}^n \sum_{j=1}^m d(\mathbf{Q}(\mathbf{a}_j, \mathbf{b}_i), \mathbf{x}_{ij})^2$$
predicted projection

Euclidean distance

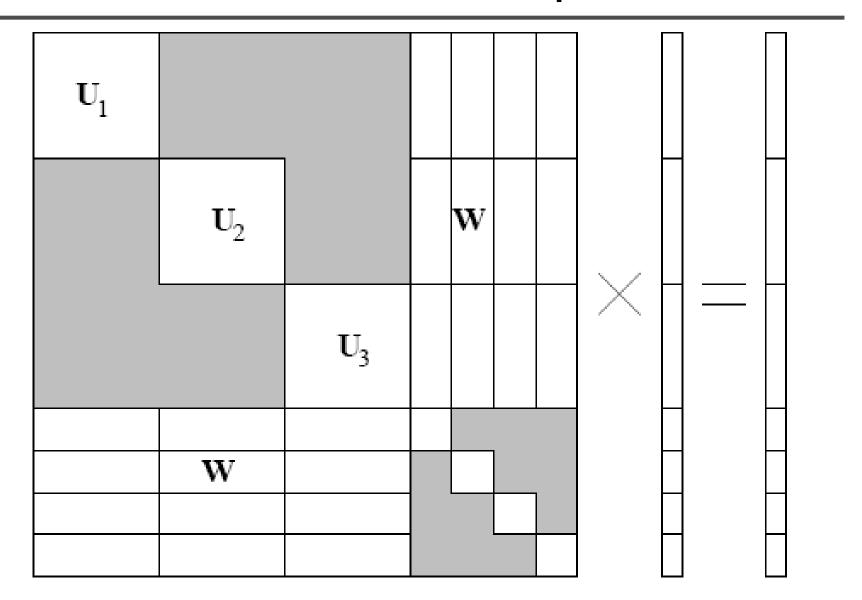


3 views and 4 points $\mathbf{P} = (\mathbf{a}_1^T, \ \mathbf{a}_2^T, \ \mathbf{a}_3^T, \ \mathbf{b}_1^T, \ \mathbf{b}_2^T, \ \mathbf{b}_3^T, \ \mathbf{b}_4^T)^T$ $\mathbf{X} = (\mathbf{x}_{11}^T, \ \mathbf{x}_{12}^T, \ \mathbf{x}_{13}^T, \ \mathbf{x}_{21}^T, \ \mathbf{x}_{22}^T, \ \mathbf{x}_{23}^T, \ \mathbf{x}_{31}^T, \ \mathbf{x}_{32}^T, \ \mathbf{x}_{33}^T, \ \mathbf{x}_{41}^T, \ \mathbf{x}_{42}^T, \ \mathbf{x}_{43}^T)^T$

$$rac{\partial \mathbf{X}}{\partial \mathbf{P}} = egin{pmatrix} \mathbf{A}_{13} & , \ \mathbf{A}_{21} & , \ \mathbf{A}_{22} & , \ \mathbf{A}_{23} & , \ \mathbf{A}_{31} & , \ \mathbf{A}_{32} & , \ \mathbf{A}_{33} & , \ \mathbf{A}_{41} & , \ \mathbf{A}_{41} \\ 0 & \mathbf{A}_{12} & \mathbf{0} & \mathbf{B}_{12} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{A}_{13} & \mathbf{B}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{23} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{31} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{31} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{32} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{32} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{33} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{41} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{41} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{42} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{42} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{43} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{43} \end{pmatrix}$$



Block structure of normal equation



$$\begin{pmatrix} \mathbf{U}_1 & \mathbf{0} & \mathbf{0} & \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{0} & \mathbf{U}_2 & \mathbf{0} & \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{0} & \mathbf{0} & \mathbf{U}_3 & \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \\ \mathbf{W}_{11}^T & \mathbf{W}_{12}^T & \mathbf{W}_{13}^T & \mathbf{V}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{21}^T & \mathbf{W}_{22}^T & \mathbf{W}_{23}^T & \mathbf{0} & \mathbf{V}_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{W}_{31}^T & \mathbf{W}_{32}^T & \mathbf{W}_{33}^T & \mathbf{0} & \mathbf{0} & \mathbf{V}_3 & \mathbf{0} \\ \mathbf{W}_{41}^T & \mathbf{W}_{42}^T & \mathbf{W}_{43}^T & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{V}_4 \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}_1} \\ \delta_{\mathbf{a}_2} \\ \delta_{\mathbf{a}_3} \\ \delta_{\mathbf{b}_1} \\ \delta_{\mathbf{b}_2} \\ \delta_{\mathbf{b}_3} \\ \delta_{\mathbf{b}_4} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}_1} \\ \epsilon_{\mathbf{a}_2} \\ \epsilon_{\mathbf{a}_3} \\ \epsilon_{\mathbf{b}_1} \\ \epsilon_{\mathbf{b}_2} \\ \epsilon_{\mathbf{b}_3} \\ \epsilon_{\mathbf{b}_4} \end{pmatrix}$$

$$\mathbf{U}^* = \begin{pmatrix} \mathbf{U}_1^* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_2^* & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{U}_3^* \end{pmatrix}, \mathbf{V}^* = \begin{pmatrix} \mathbf{V}_1^* & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_2^* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{V}_3^* & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{V}_4^* \end{pmatrix}, \mathbf{W} = \begin{pmatrix} \mathbf{W}_{11} & \mathbf{W}_{21} & \mathbf{W}_{31} & \mathbf{W}_{41} \\ \mathbf{W}_{12} & \mathbf{W}_{22} & \mathbf{W}_{32} & \mathbf{W}_{42} \\ \mathbf{W}_{13} & \mathbf{W}_{23} & \mathbf{W}_{33} & \mathbf{W}_{43} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{U}^* & \mathbf{W} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

Multiplied by
$$\begin{pmatrix} \mathbf{I} & -\mathbf{W}\mathbf{V}^{*-1} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{U}^* - \mathbf{W} \, \mathbf{V}^{*-1} \, \mathbf{W}^T & \mathbf{0} \\ \mathbf{W}^T & \mathbf{V}^* \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \epsilon_{\mathbf{a}} - \mathbf{W} \, \mathbf{V}^{*-1} \, \epsilon_{\mathbf{b}} \\ \epsilon_{\mathbf{b}} \end{pmatrix}$$

$$(\mathbf{U}^* - \mathbf{W} \mathbf{V}^{*-1} \mathbf{W}^T) \delta_{\mathbf{a}} = \epsilon_{\mathbf{a}} - \mathbf{W} \mathbf{V}^{*-1} \epsilon_{\mathbf{b}}$$

$$\mathbf{V}^* \delta_{\mathbf{b}} = \epsilon_{\mathbf{b}} - \mathbf{W}^T \delta_{\mathbf{a}}$$

Issues in SFM

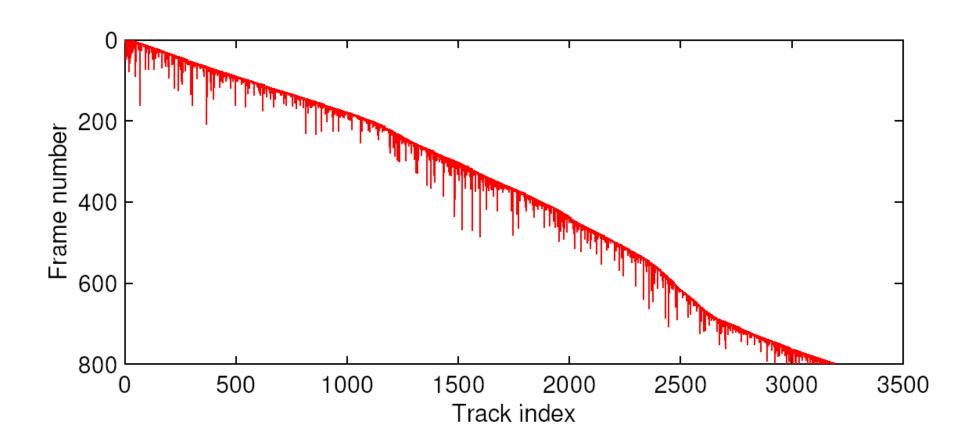
- Track lifetime
- Nonlinear lens distortion
- Degeneracy and critical surfaces
- Prior knowledge and scene constraints
- Multiple motions

Track lifetime



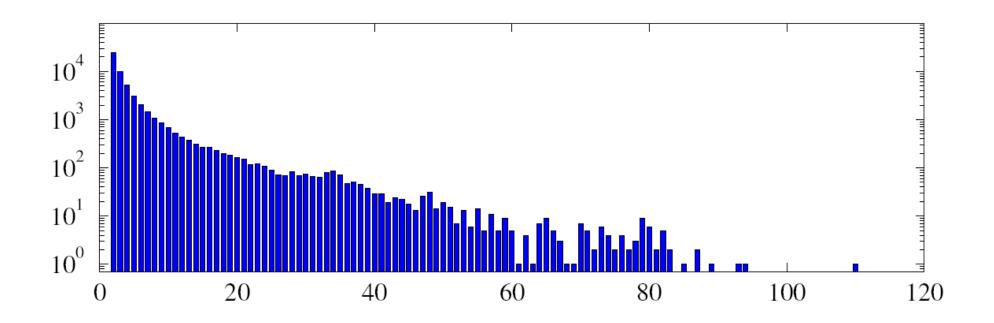
every 50th frame of a 800-frame sequence

Track lifetime



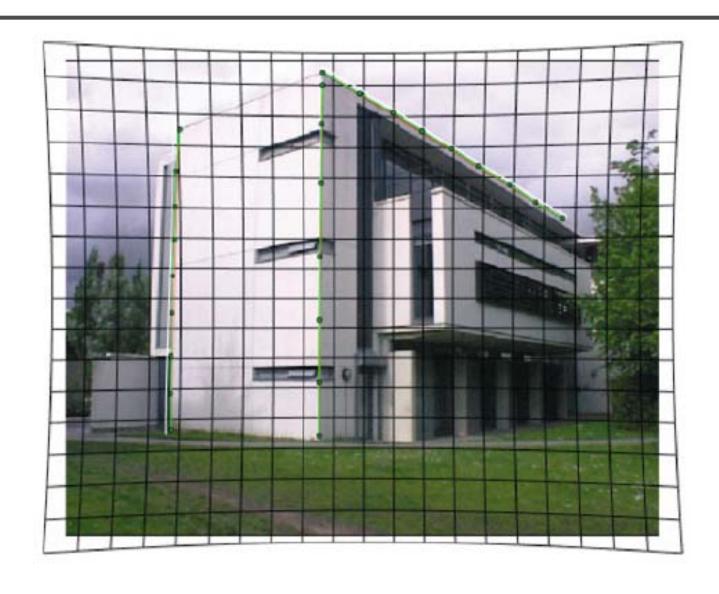
lifetime of 3192 tracks from the previous sequence

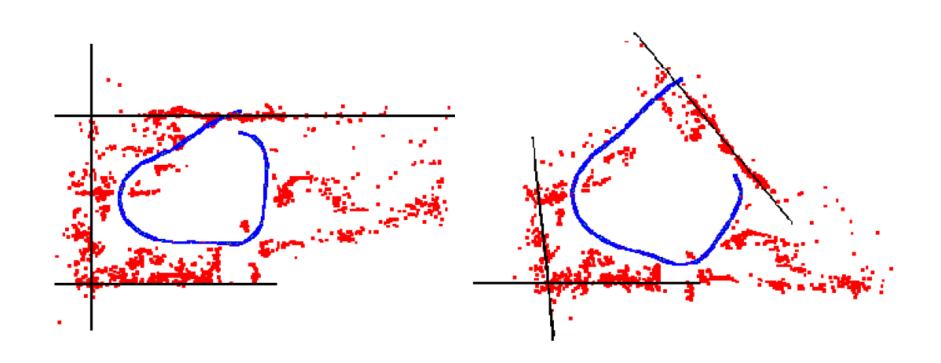
Track lifetime



track length histogram

Nonlinear lens distortion



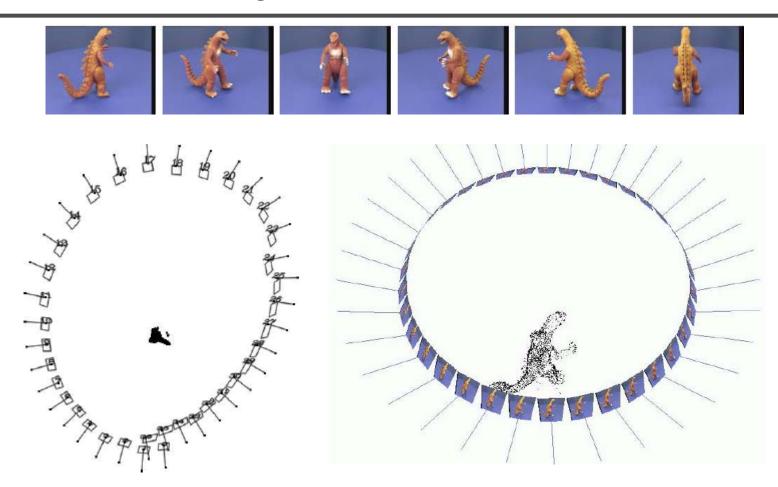


effect of lens distortion

Prior knowledge and scene constraints

add a constraint that several lines are parallel

Prior knowledge and scene constraints



add a constraint that it is a turntable sequence

Applications of matchmove

2d3 boujou

Enemy at the Gate, Double Negative

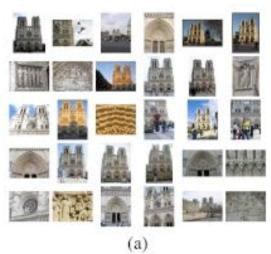
Enemy at the Gate, Double Negative

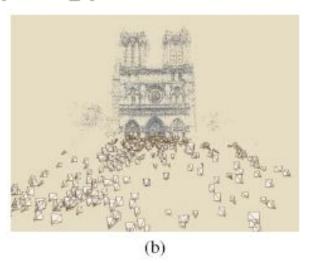
Jurassic park

Photo Tourism

Photo Tourism

Exploring photo collections in 3D





(c)

VideoTrace

http://www.acvt.com.au/research/videotrace/

Project #3 MatchMove

- It is more about using tools in this project
- You can choose either calibration or structure from motion to achieve the goal
- Calibration
- Icarus/Voodoo

DigiVFX

References

- Carlo Tomasi and Takeo Kanade, <u>Shape and Motion from Image</u>
 <u>Streams: A Factorization Method</u>, Proceedings of Natl. Acad. Sci., 1993.
- Manolis Lourakis and Antonis Argyros, <u>The Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm</u>, FORTH-ICS/TR-320 2004.
- N. Snavely, S. Seitz, R. Szeliski, <u>Photo Tourism: Exploring Photo</u> Collections in 3D, SIGGRAPH 2006.
- A. Hengel et. al., <u>VideoTrace: Rapid Interactive Scene Modelling</u> from Video, SIGGRAPH 2007.