－Project \＃2 is due midnight next Monday
－Results for project \＃l artifacts voting

Camera calibration

Digital Visual Effects，Spring 2008
Yung－Yu Cbuang
2008／4／15
with slides by Richard Szeliski，Steve Seitz，and Marc Pollefyes

Honorable mention（8）：胡傳性 高紹航

Honorable mention（8）：劉俊良

Honorable mention（10）：周伯相

Third place（13）：羅聖傑 鄭京沍

First place（17）：梁或 吴孟松

Outline
－Camera projection models
－Camera calibration
－Nonlinear least square methods

Camera projection models

illum in tabula per radios Solis，quàm in ccelo contin－ git：hoc eft，fi in calo fuperior pars deliquiü patiatur，in radiis apparebit inferior deficere，vt ratio exigit optica．

Sic nos exaAt̀ Anno ．1544．Louanii celipfim Solis obferuauimus，inuenimuś；deficere paulò plus äd dex－

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Pinhole camera model

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Principal point offset

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Is this form of \mathbf{K} good enough?

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- non-square pixels (digital video)
- skew
- radial distortion

$$
\mathbf{K}=\left[\begin{array}{ccc}
f a & s & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

No distortion

Pin cushion

Barrel

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens
- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation: where is the camera?
- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

- Also called "parallel projection": $(x, y, z) \rightarrow(x, y)$
- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Illusion
100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001 100000011000000110000001

Perspective cues

Fun with perspective

Perspective cues

Camera calibration

Camera calibration

DigivFX

- Estimate both intrinsic and extrinsic parameters
- Mainly, two categories:

1. Photometric calibration: uses reference objects with known geometry
2. Self calibration: only assumes static scene, e.g. structure from motion

Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optimization

Chromaglyphs (HP research)

Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.
Advantage

- Only requires a plane
- Don't have to know positions/ orientations
- Good code available online!
- Intel's OpenCV library: http://www. intel.com/ research/mrl/ research/ opencv/
- Matlab version by J ean-Yves Bouget
http:// www. vision. caltech. edu/ bouguetj/ calib_doc/ index. html
- Zhengyou Zhang's web site: http:// research. microsoft.com/ -zhang/ Calib/

Step 1: data acquisition

Step 3: corner extraction
Step 4: minimize projection error

Step 5: refinement

Optimized parameters

Aspect ratio optimized (est_aspect_ratio = 1) \rightarrow both components of fc are estinated (DE Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point, set ci kew not optimized (est-alpha=6) - (DEFAULT)
istortion not fulk ertion :
Nain calibration optimization procedure - Number of images: 2
Gradient descent iterations: 1...2 , 3...4...5...don Estimation of uncertainties...done

Calibration results after optimization (with uncertainties) :

Pixel error:

Camera calibration

$\mathbf{x} \sim \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}=\mathbf{M X}$
$\left[\begin{array}{l}u \\ v \\ 1\end{array}\right] \sim\left[\begin{array}{cccc}m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$

Linear regression

- Directly estimate 11 unknowns in the Mmatrix using known 3D points ($\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}}$) and measured feature positions (u_{i}, v_{i})

Linear regression

$$
\begin{aligned}
u_{i} & =\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
v_{i} & =\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1}
\end{aligned}
$$

$$
\begin{aligned}
& u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
& v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{aligned}
$$

$\left[\begin{array}{cccccccccccc}X_{i} & Y_{i} & Z_{i} & 1 & 0 & 0 & 0 & 0 & -u_{i} X_{i} & -u_{i} Y_{i} & -u_{i} Z_{i} & -u_{i} \\ 0 & 0 & 0 & 0 & X_{i} & Y_{i} & Z_{i} & 1 & -v_{i} X_{i} & -v_{i} Y_{i} & -v_{i} Z_{i} & -v_{i}\end{array}\right]\left[\begin{array}{l}m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \\ m_{23}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\left[\begin{array}{cccccccccccc}X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\ X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}\end{array}\right]\left[\begin{array}{c}m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$

Solve for Projection Matrix M using least-square techniques

Normal equation

Given an overdetermined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Linear regression

- Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image
- Disadvantages:
- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks
- More unknowns than true degrees of freedom
- A probabilistic view of least square
- Feature measurement equations

$$
\begin{aligned}
u_{i} & =f\left(\widehat{\mathbf{M}}, \mathbf{x}_{i}\right)+n_{i}=\widehat{u}_{i}+n_{i}, \quad n_{i} \sim N(0, \sigma) \\
v_{i} & =g\left(\mathbf{M}, \mathbf{x}_{i}\right)+m_{i}=\widehat{v}_{i}+m_{i}, \quad m_{i} \sim N(0, \sigma)
\end{aligned}
$$

- Probability of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
\begin{aligned}
P & =\prod_{i} p\left(u_{i} \mid \widehat{u}_{i}\right) p\left(v_{i} \mid \widehat{v}_{i}\right) \\
& =\prod_{i} e^{-\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma^{2}} e^{-\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma^{2}}
\end{aligned}
$$

- Likelihood of \mathbf{M} given $\left\{\left(u_{i}, v_{i}\right)\right\}$
$L=-\log P=\sum_{i}\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma_{i}^{2}+\left(v_{i}-\hat{v}_{i}\right)^{2} / \sigma_{i}^{2}$
- It is a least square problem (but not necessarily linear least square)
- How do we minimize L ?
- We can use Levenberg-Marquardt method to minimize it

Least square fitting

Least Squares Problem
Find x^{*}, a local minimizer for

$$
F(\mathrm{x})=\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}(\mathrm{x})\right)^{2},
$$

where $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1, \ldots, m$ are given functions, and $m \geq n$.
number of data points number of parameters

Linear least square fitting

Linear least square fitting
DigivFX

$M(t ; \mathbf{x})=x_{0}+x_{1} t+x_{2} t^{3}$ is linear, too.

Function minimization
Least square is related to function minimization.

```
Global Minimizer
Given }F:\mp@subsup{\mathbb{R}}{}{n}\mapsto\mathbb{R}\mathrm{ . Find
    \mp@subsup{x}{}{+}}=\mp@subsup{\operatorname{argmin}}{\mathbf{x}}{{}{F(\mathbf{x})}
```

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

```
Local Minimizer
Given F:}\mp@subsup{\mathbb{R}}{}{n}\mapsto\mathbb{R}\mathrm{ . Find }\mp@subsup{\textrm{x}}{}{*}\mathrm{ so that
    F(\mp@subsup{\textrm{x}}{}{*})\leqF(\textrm{x})}\mathrm{ for }|\textrm{x}-\mp@subsup{\textrm{x}}{}{*}|<\delta
```

Function minimization
We assume that the cost function F is differentiable and so smooth that the following Taylor expansion is valid, ${ }^{2)}$

$$
F(\mathbf{x}+\mathbf{h})=F(\mathbf{x})+\mathbf{h}^{\top} \mathbf{g}+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

where \mathbf{g} is the gradient,

$$
\mathbf{g} \equiv \mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}}(\mathbf{x}) \\
\vdots \\
\frac{\partial F}{\partial x_{n}}(\mathbf{x})
\end{array}\right]
$$

and \mathbf{H} is the Hessian,

$$
\mathbf{H} \equiv \mathbf{F}^{\prime \prime}(\mathbf{x})=\left[\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(\mathbf{x})\right]
$$

Quadratic functions
Approximate the function with a quadratic function within a small neighborhood

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x+c
$$

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right], \quad b=\left[\begin{array}{r}
2 \\
-8
\end{array}\right], \quad c=0
$$

Function minimization

Theorem 1.5. Necessary condition for a local minimizer.
If x^{*} is a local minimizer, then

$$
\mathrm{g}^{*} \equiv \mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=0
$$

Why?
By definition, if \mathbf{x}^{*} is a local minimizer,

$$
\|\mathbf{h}\| \text { is small enough } \longrightarrow \mathbf{F}\left(\mathbf{x}^{*}+\mathbf{h}\right)>\mathbf{F}\left(\mathbf{x}^{*}\right)
$$

$$
\mathbf{F}\left(\mathbf{x}^{*}+\mathbf{h}\right)=\mathbf{F}\left(\mathbf{x}^{*}\right)+\mathbf{h}^{\mathrm{T}} \mathbf{F}^{\prime}\left(\mathbf{x}^{*}\right)+\mathbf{O}\left(\|h\|^{2}\right)
$$

Theorem 1.5. Necessary condition for a local minimizer. If x^{*} is a local minimizer, then

$$
\mathrm{g}^{*} \equiv \mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=0
$$

Definition 1.6. Stationary point. If

$$
\mathrm{g}_{\mathrm{s}} \equiv \mathbf{F}^{\prime}\left(\mathbf{x}_{\mathrm{s}}\right)=0,
$$

then x_{s} is said to be a stationary point for F.

$$
F\left(\mathbf{x}_{\mathrm{s}}+\mathbf{h}\right)=F\left(\mathbf{x}_{\mathrm{s}}\right)+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

\mathbf{H}_{s} is positive definite

a) minimum

b) maximum

c) saddle point

Theorem 1.8. Sufficient condition for a local minimizer.
Assume that x_{s} is a stationary point and that $\mathbf{F}^{\prime \prime}\left(\mathrm{x}_{\mathrm{s}}\right)$ is positive definite.
Then x_{s} is a local minimizer.

$$
\begin{array}{r}
F\left(\mathbf{x}_{\mathrm{s}}+\mathbf{h}\right)=F\left(\mathbf{x}_{\mathrm{s}}\right)+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right) \\
\text { with } \mathbf{H}_{\mathrm{s}}=\mathbf{F}^{\prime \prime}\left(\mathbf{x}_{\mathrm{s}}\right)
\end{array}
$$

If we request that \mathbf{H}_{5} is positive definite, then its eigenvalues are greater than some number $\delta>0$

$$
\mathbf{h}^{\top} \mathbf{H}_{5} \mathbf{h}>\delta\|\mathbf{h}\|^{2}
$$

Descent methods

DigivFX

$\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$ for $k \rightarrow \infty$

1. Find a descent direction \mathbf{h}_{d}
2. find a step length giving a good decrease in the F-value.

Algorithm Descent method begin	
$\begin{aligned} & k:=0 ; \mathrm{x}:=\mathrm{x}_{0} ; \text { found }:=\mathbf{f a l s e} \\ & \text { while }(\text { not } \text { found }) \text { and }\left(k<k_{\max }\right) \end{aligned}$	\{Starting point $\}$
$\mathbf{h}_{\mathrm{d}}:=$ search_direction(\mathbf{x})	\{From x and downhill\}
```if (no such h exists) found := true else```	$\{\mathrm{x}$ is stationary $\}$
$\begin{aligned} & \alpha:=\text { step_length }\left(\mathbf{x}, \mathbf{h}_{\mathrm{d}}\right) \\ & \mathbf{x}:=\mathbf{x}+\alpha \mathbf{h}_{\mathrm{d}} ; \quad k:=k+1 \end{aligned}$	\{from x in direction $\mathbf{h}_{\mathrm{d}}$ \} \{next iterate $\}$
end	

Descent direction

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \quad \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

## Definition Descent direction.

$\mathbf{h}$ is a descent direction for $F$ at $\mathbf{x}$ if $\mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})<0$.

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

$$
\frac{F(\mathbf{x})-F(\mathbf{x}+\alpha \mathbf{h})}{\alpha\|\mathbf{h}\|}=-\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})=-\left\|\mathbf{F}^{\prime}(\mathbf{x})\right\| \cos \theta
$$

the decrease of $\boldsymbol{F}(\boldsymbol{x})$ per
unit along $h$ direction
greatest gain rate if $\theta=\pi \rightarrow \mathbf{h}_{\mathrm{sd}}=-\mathbf{F}^{\prime}(\mathbf{x})$
$h_{s d}$ is a descent direction because $h_{\text {sd }}^{\top} F^{\prime}(x)=-F^{\prime}(x)^{2}<0$
$\varphi(\alpha)=F(\mathbf{x}+\alpha \mathbf{h}), \quad \mathbf{x}$ and $\mathbf{h}$ fixed, $\alpha \geq 0 . \quad$ Find $\alpha$ so that

$\varphi(\alpha)=\mathbf{F}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)$ is minumum ${ }^{00} f(x)$

$$
0=\frac{\partial \varphi(\alpha)}{\partial \alpha}=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)}{\partial \alpha}
$$

$$
f\left(x_{(i)}+\alpha r_{(i)}\right)
$$


$\begin{array}{ll}x_{2} & \text { (d) }\end{array}$

$$
=\frac{\partial \mathbf{F}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \alpha}=\mathbf{h}^{\mathrm{T}} \mathbf{F}^{\prime}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)
$$

$$
h=-F^{\prime}\left(\mathbf{x}_{0}\right)
$$

Line search DigivFX

## Steepest descent method


isocontour


It has good performance in the initial stage of the iterative process. Converge very slof with a linear rate.
$\mathrm{x}^{*}$ is a stationary point $\rightarrow$ it satisfies $\mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=\mathbf{0}$.
$\mathbf{F}^{\prime}(\mathbf{x}+\mathbf{h})=\mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right)$
$\simeq \mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h}$ for $\|\mathbf{h}\|$ sufficiently small
$\rightarrow \mathbf{H h}_{\mathrm{n}}=-\mathbf{F}^{\prime}(\mathbf{x})$ with $\mathbf{H}=\mathbf{F}^{\prime \prime}(\mathbf{x})$

$$
\mathbf{x}:=\mathbf{x}+\mathbf{h}_{\mathrm{n}}
$$

Suppose that $\mathbf{H}$ is positive definite
$\rightarrow \mathbf{u}^{\top} \mathbf{H u}>0$ for all nonzero $\mathbf{u}$.
$\rightarrow 0<\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{H} \mathbf{h}_{\mathrm{n}}=-\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \mathbf{h}_{\mathrm{n}}$ is a descent direction
It has good performance in the final stage of the iterative process, where x is close to $\mathrm{x}^{*}$.

Hybrid method

$$
\begin{aligned}
& \text { if } \mathbf{F}^{\prime \prime}(\mathbf{x}) \text { is positive definite } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{n}} \\
& \text { else } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{sd}} \\
& \mathbf{x}:=\mathbf{x}+\alpha \mathbf{h}
\end{aligned}
$$

This needs to calculate second-order derivative which might not be available.

## Levenberg-Marquardt method

- LM can be thought of as a combination of steepest descent and the Newton method. When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Given a set of measurements $\mathbf{x}$, try to find the best parameter vector $\mathbf{p}$ so that the squared distance $\varepsilon^{T} \varepsilon$ is minimal. Here, $\varepsilon=\mathbf{x}-\hat{\mathbf{x}}$, with $\hat{\mathbf{x}}=f(\mathbf{p})$.

For a small $\left\|\delta_{\mathbf{p}}\right\|, f\left(\mathbf{p}+\delta_{\mathbf{p}}\right) \approx f(\mathbf{p})+\mathbf{J} \delta_{\mathbf{p}}$ $\mathbf{J}$ is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial_{\mathbf{p}}}$
it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity

$$
\left\|\mathbf{x}-f\left(\mathbf{p}+\delta_{\mathbf{p}}\right)\right\| \approx\left\|\mathbf{x}-f(\mathbf{p})-\mathbf{J} \delta_{\mathbf{p}}\right\|=\left\|\epsilon-\mathbf{J} \delta_{\mathbf{p}}\right\|
$$

$$
\begin{aligned}
& \mathbf{J}^{T} \mathbf{J} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
& \mathbf{N} \delta_{\mathbf{p}}=\mathbf{J}^{T} \epsilon \\
& \mathbf{N}_{i i}=\underset{\uparrow}{\mu}+\left[\mathbf{J}^{T} \mathbf{J}\right]_{i i} \\
& \text { damping term }
\end{aligned}
$$

## Levenberg-Marquardt method

- $\mu=0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing $\mu$
- Start with some small $\mu$
- If F is not reduced, keep trying larger $\mu$ until it does
- If F is reduced, accept it and reduce $\mu$ for the next iteration


## How is calibration used?

- Good for recovering intrinsic parameters; It is thus useful for many vision applications
- Since it requires a calibration pattern, it is often necessary to remove or replace the pattern from the footage or utilize it in some ways...


