

Honorable mention(8): 劉俊良

DigiVFX

Third place (13): 羅聖傑 鄭京恆

Honorable mention(10): 周伯相

Second place (14): 葉蓉蓉 劉冠廷

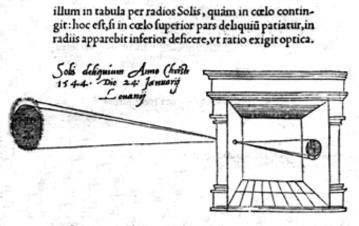
First place (17): 梁彧 吳孟松

Outline

- Camera projection models
- Camera calibration
- Nonlinear least square methods

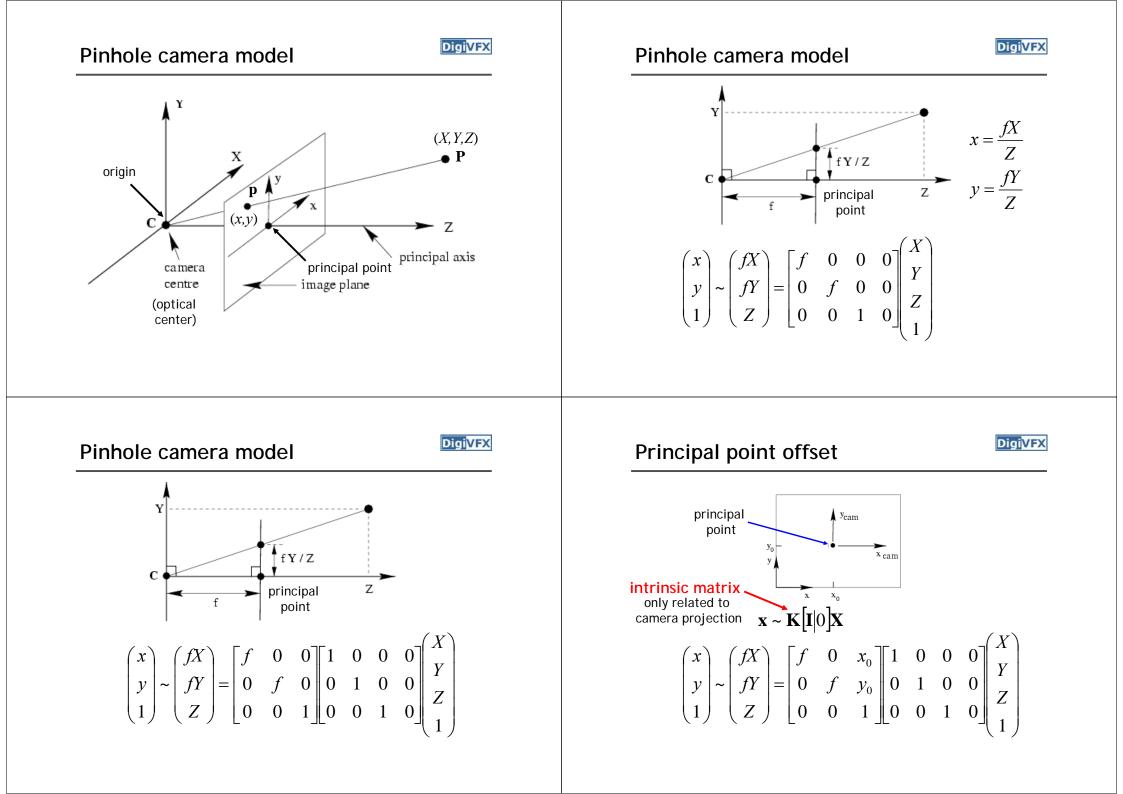
Pinhole camera

DigiVFX



Sic nos exactè Anno .1544 . Louanii eclipfim Solis obferuauimus, inuenimusq; deficere paulò plus q dex-

Camera projection models



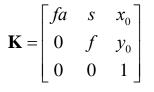
Intrinsic matrix

Is this form of K good enough?

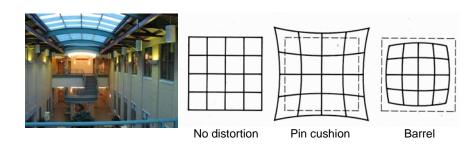
 $\mathbf{K} = \begin{bmatrix} f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{bmatrix}$

DigiVFX

- non-square pixels (digital video)
- skewradial distortion



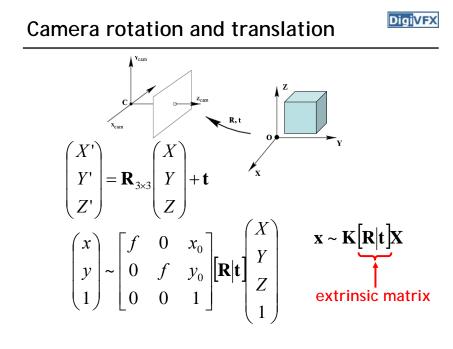
Distortion

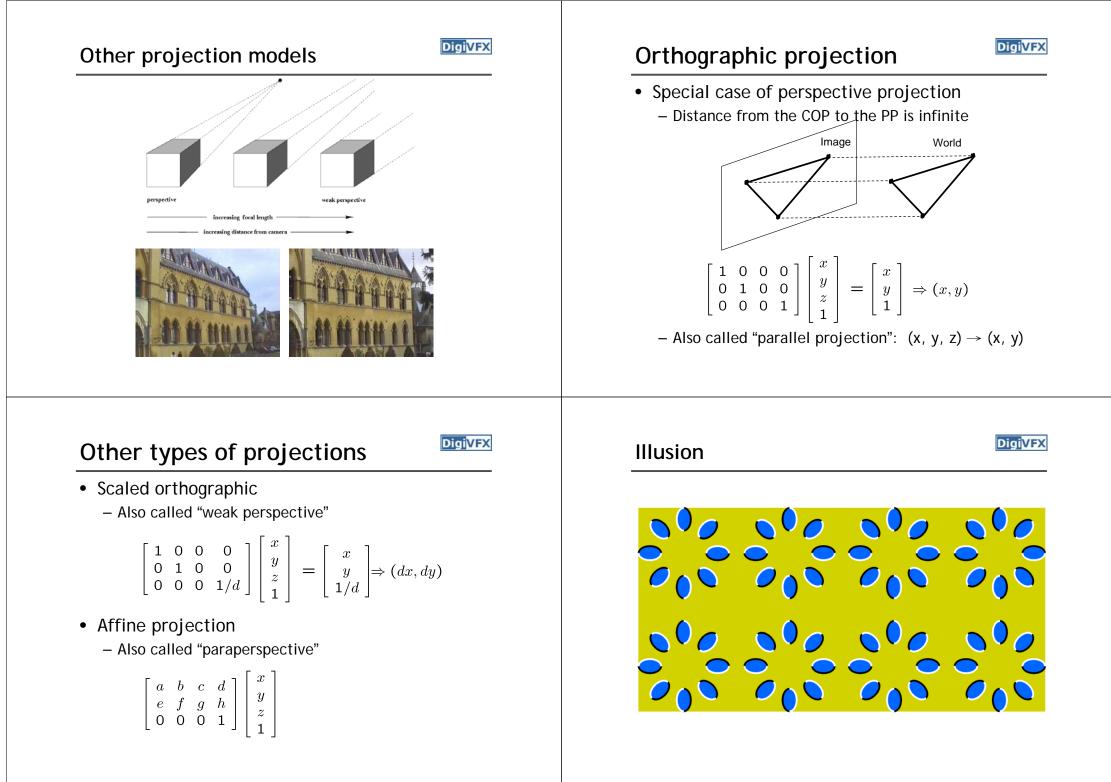


- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Two kinds of parameters

- *internal* or *intrinsic* parameters such as focal length, optical center, aspect ratio: *what kind of camera?*
- *external* or *extrinsic* (pose) parameters including rotation and translation: *where is the camera?*

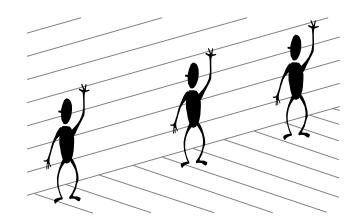




Illusion

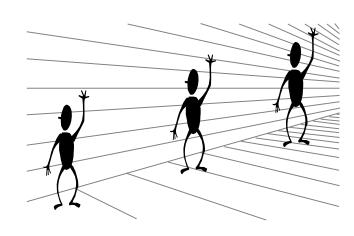
DigiVFX

Fun with perspective

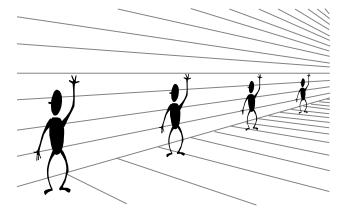


Perspective cues

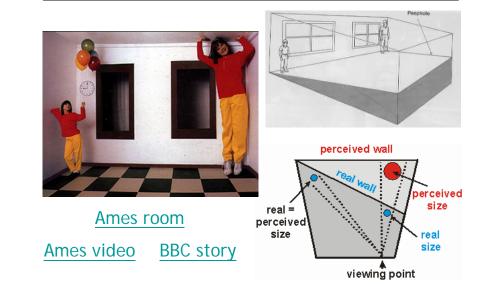
DigiVFX



Perspective cues



Fun with perspective



Camera calibration

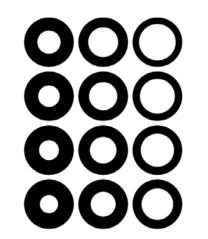
Forced perspective in LOTR

Camera calibration

- Estimate both intrinsic and extrinsic parameters
- Mainly, two categories:
- 1. Photometric calibration: uses reference objects with known geometry
- 2. Self calibration: only assumes static scene, e.g. structure from motion

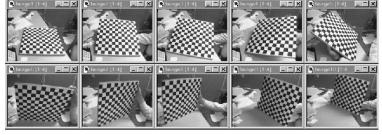
Camera calibration approaches

- 1. linear regression (least squares)
- 2. nonlinear optimization



Chromaglyphs (HP research)

Multi-plane calibration

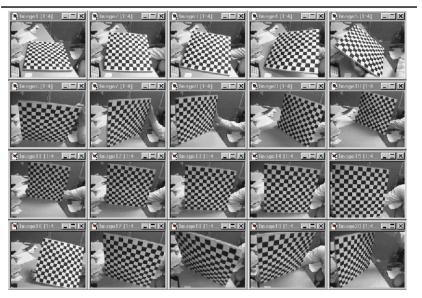


Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

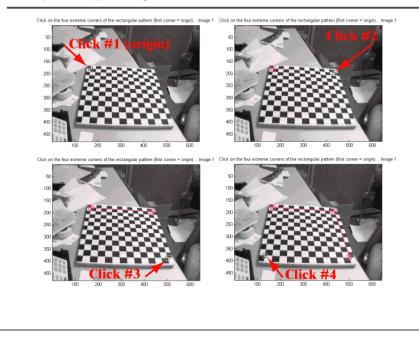
- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
 - Intel's OpenCV library: <u>http://www.intel.com/research/mrl/research/opencv/</u>
 - Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Zhengyou Zhang's web site: <u>http://research.microsoft.com/~zhang/Calib/</u>

Step 1: data acquisition

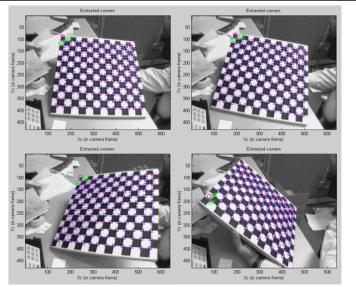


Step 2: specify corner order

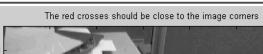
DigiVFX

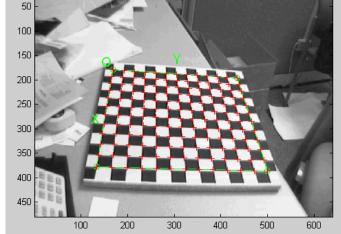


Step 3: corner extraction



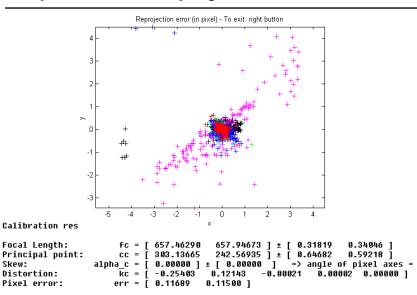
Step 3: corner extraction

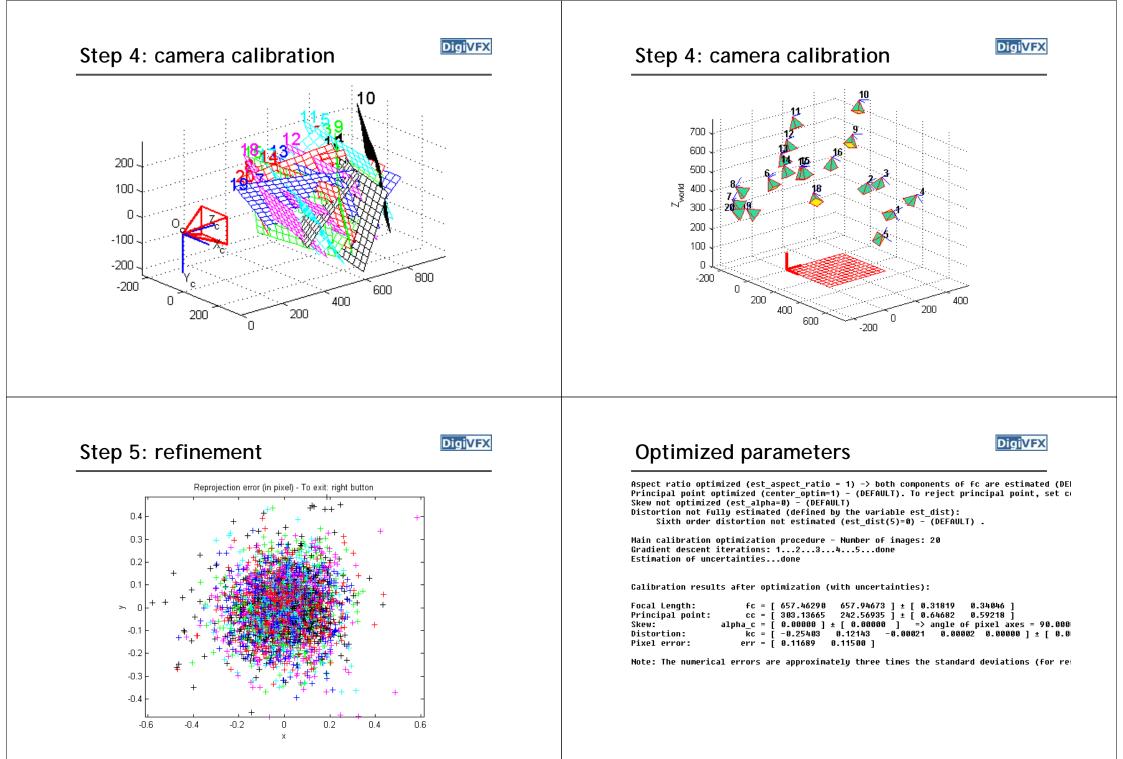


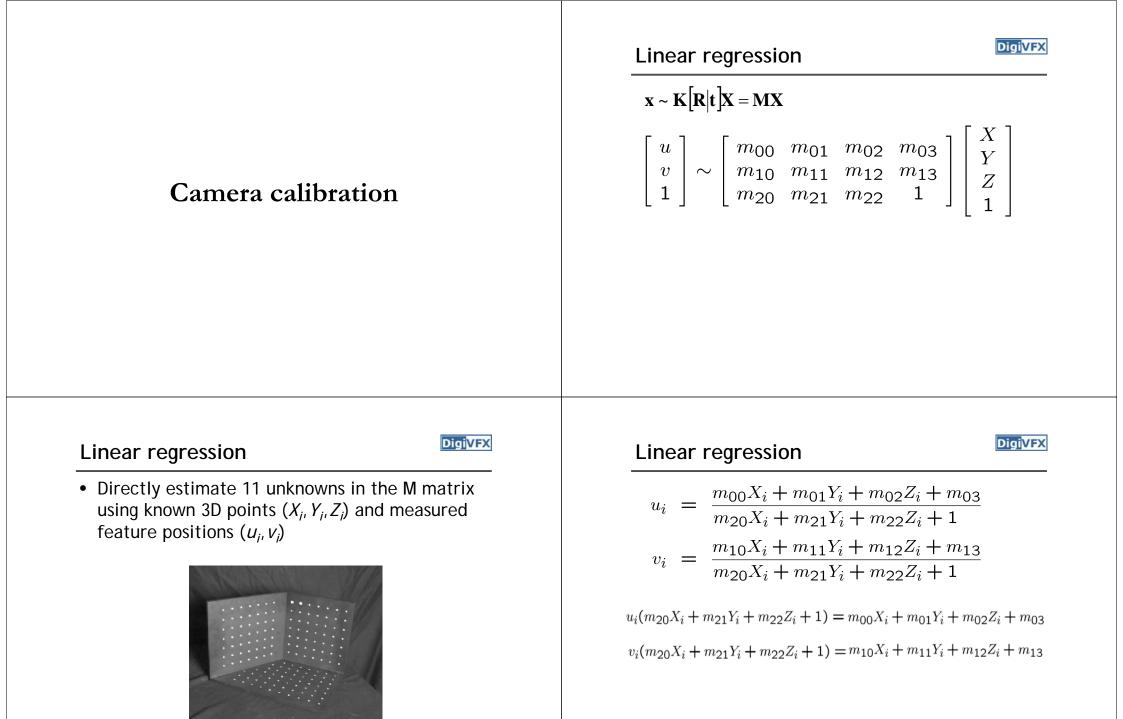


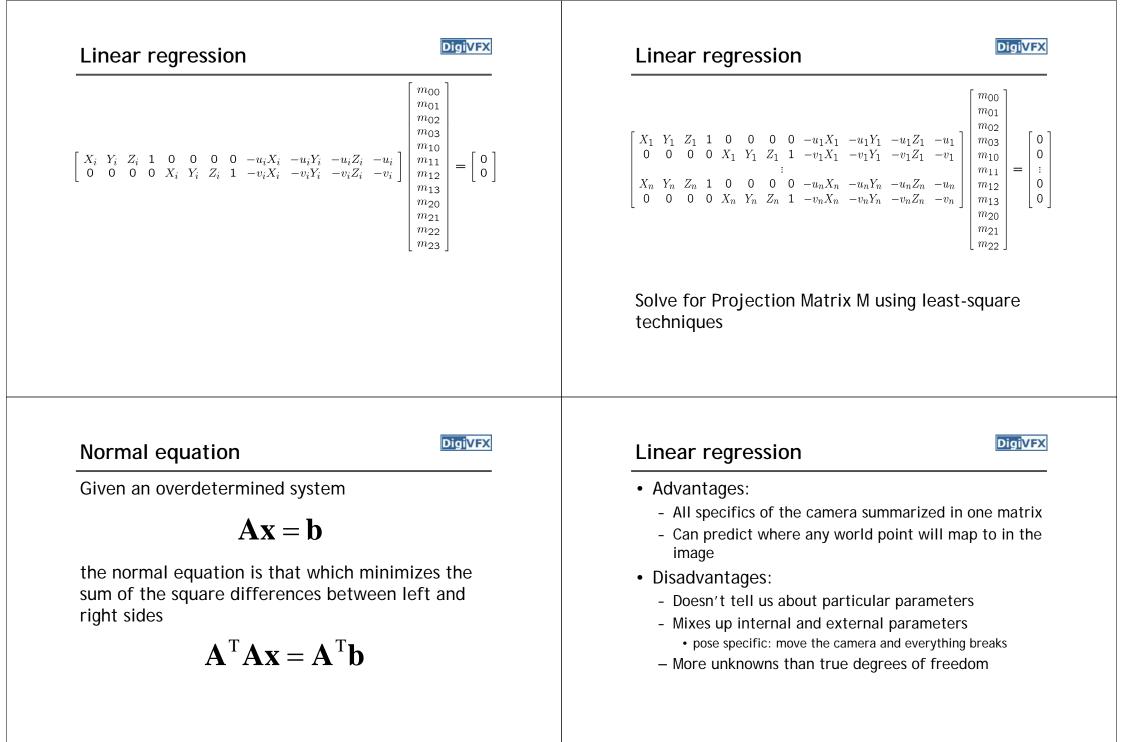
Step 4: minimize projection error

Digi<mark>VFX</mark>









Nonlinear optimization

Digi<mark>VFX</mark>

- A probabilistic view of least square
- Feature measurement equations

$$u_i = f(\mathbf{M}, \mathbf{x}_i) + n_i = \hat{u}_i + n_i, \quad n_i \sim N(0, \sigma)$$

$$v_i = g(\mathbf{M}, \mathbf{x}_i) + m_i = \hat{v}_i + m_i, \quad m_i \sim N(0, \sigma)$$

• Probability of **M** given {(*u_i*,*v_i*)}

$$P = \prod_{i} p(u_i | \hat{u}_i) p(v_i | \hat{v}_i)$$

=
$$\prod_{i} e^{-(u_i - \hat{u}_i)^2 / \sigma^2} e^{-(v_i - \hat{v}_i)^2 / \sigma^2}$$

Optimal estimation

• Likelihood of **M** given $\{(u_i, v_i)\}$

$$L = -\log P = \sum_{i} (u_i - \hat{u}_i)^2 / \sigma_i^2 + (v_i - \hat{v}_i)^2 / \sigma_i^2$$

- It is a least square problem (but not necessarily linear least square)
- How do we minimize *L*?

Optimal estimation

Digi<mark>VFX</mark>

• Non-linear regression (least squares), because the relations between \hat{u}_i and u_i are non-linear functions **M**

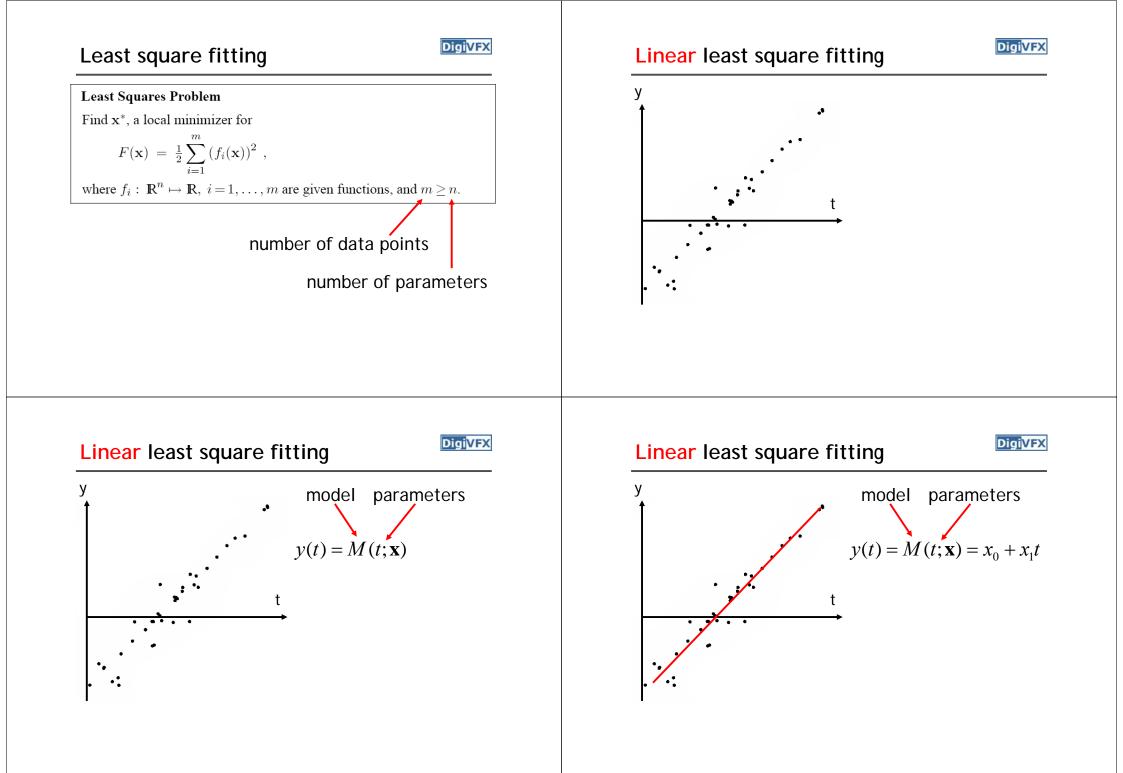
unknown parameters

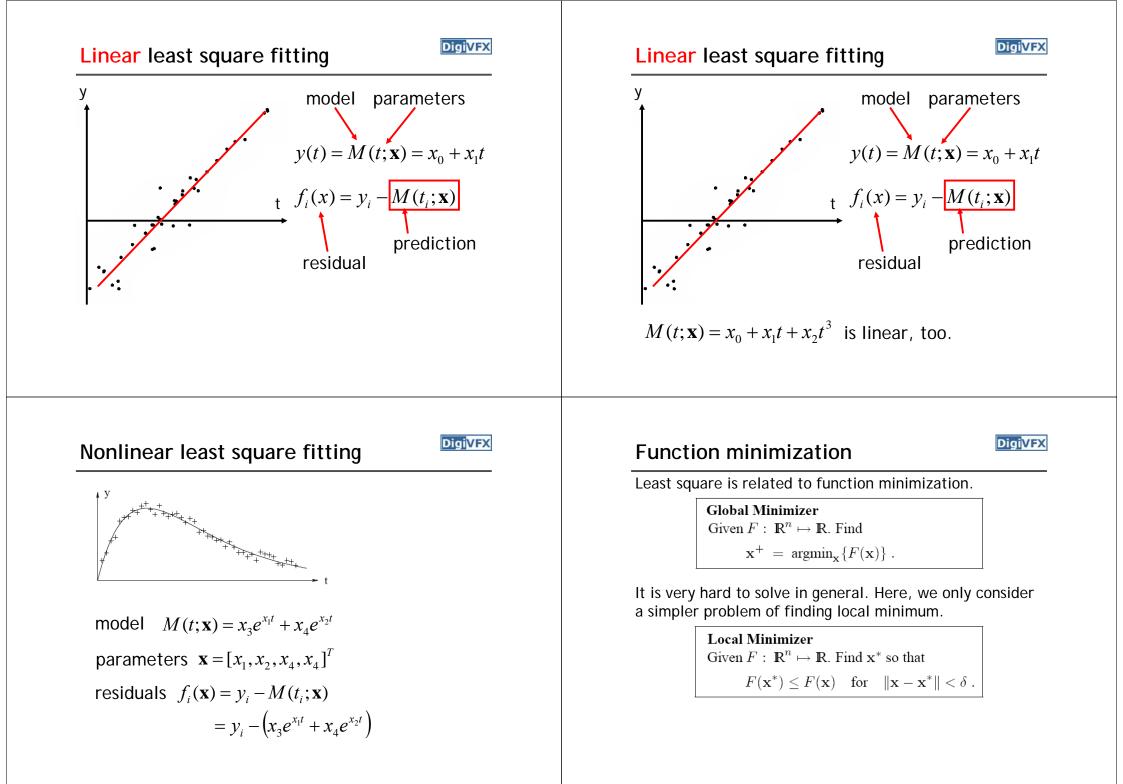
We could have terms like $f \cos \theta$ in this

$\mathbf{u} - \hat{\mathbf{u}} \sim \mathbf{u} - \mathbf{K} \begin{bmatrix} \mathbf{R} | \mathbf{t} \end{bmatrix} \mathbf{X}$

• We can use Levenberg-Marquardt method to minimize it

Nonlinear least square methods





Function minimization

We assume that the cost function F is differentiable and so smooth that the following *Taylor expansion* is valid,²⁾

DigiVFX

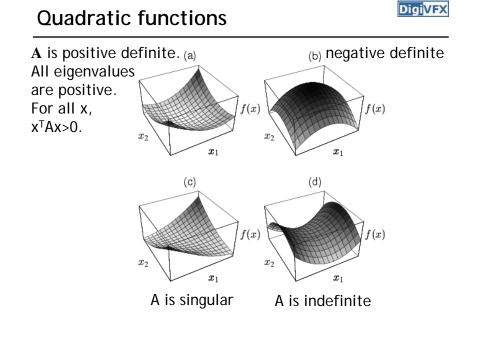
$$F(\mathbf{x}+\mathbf{h}) = F(\mathbf{x}) + \mathbf{h}^{\mathsf{T}}\mathbf{g} + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}\mathbf{h} + O(\|\mathbf{h}\|^{3}),$$

where g is the gradient,

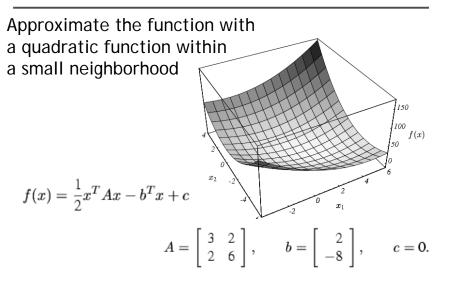
$$\mathbf{g} \equiv \mathbf{F}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial F}{\partial x_n}(\mathbf{x}) \end{bmatrix},$$

and H is the Hessian,

$$\mathbf{H} \equiv \mathbf{F}''(\mathbf{x}) = \left[\frac{\partial^2 F}{\partial x_i \partial x_j}(\mathbf{x})\right] \,.$$



Quadratic functions



Function minimization

Digi<mark>VFX</mark>

Theorem 1.5. Necessary condition for a local minimizer. If x^* is a local minimizer, then $g^* \equiv F'(x^*) = 0$.

Why?

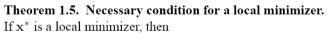
By definition, if \mathbf{x}^* is a local minimizer,

 $\|\mathbf{h}\|$ is small enough $\longrightarrow F(\mathbf{x}^* + \mathbf{h}) > F(\mathbf{x}^*)$

$$\mathbf{F}(\mathbf{x}^* + \mathbf{h}) = \mathbf{F}(\mathbf{x}^*) + \mathbf{h}^{\mathrm{T}}\mathbf{F}'(\mathbf{x}^*) + \mathbf{O}(\|\mathbf{h}\|^2)$$

Function minimization

```
Digi<mark>VFX</mark>
```



 ${f g}^* \;\equiv\; {f F}\,'({f x}^*) \;=\; {f 0}\;.$

Definition 1.6. Stationary point. If

$$\mathbf{g}_s~\equiv~\mathbf{F}^{\,\prime}(\mathbf{x}_s)~=~\mathbf{0}$$

then \mathbf{x}_s is said to be a *stationary point* for *F*.

$$F(\mathbf{x}_{s}{+}\mathbf{h}) = F(\mathbf{x}_{s}) + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}_{s}\,\mathbf{h} + O(\|\mathbf{h}\|^{3})$$

b) maximum

H_s is positive definite

a) minimum

c) saddle point

Descent methods

DigiVFX

 $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \to \mathbf{x}^* \text{ for } k \to \infty$

- 1. Find a descent direction h_d
- 2. find a step length giving a good decrease in the *F*-value.

```
Algorithm Descent method
begin
   k := 0; \mathbf{x} := \mathbf{x}_0; found := false
                                                                              {Starting point}
   while (not found) and (k < k_{\max})
       \mathbf{h}_{d} := \text{search}_{direction}(\mathbf{x})
                                                                   {From x and downhill}
       if (no such h exists)
          found := true
                                                                             \{\mathbf{x} \text{ is stationary}\}\
       else
          \alpha := \text{step\_length}(\mathbf{x}, \mathbf{h}_{d})
                                                                  {from x in direction \mathbf{h}_d}
          \mathbf{x} := \mathbf{x} + \alpha \mathbf{h}_{\mathbf{d}}; \quad k := k+1
                                                                                  {next iterate}
end
```

Function minimization

Theorem 1.8. Sufficient condition for a local minimizer.

Assume that x_s is a stationary point and that $F''(x_s)$ is positive definite. Then x_s is a local minimizer.

$$\begin{aligned} F(\mathbf{x}_{s}+\mathbf{h}) &= F(\mathbf{x}_{s}) + \frac{1}{2}\mathbf{h}^{\mathsf{T}}\mathbf{H}_{s}\mathbf{h} + O(\|\mathbf{h}\|^{3}) \\ \text{with } \mathbf{H}_{s} &= \mathbf{F}^{\prime\prime}(\mathbf{x}_{s}) \end{aligned}$$

If we request that \mathbf{H}_{s} is *positive definite*, then its eigenvalues are greater than some number $\delta > 0$

```
\mathbf{h}^{\!\!\top}\mathbf{H}_{\!\!\mathbf{s}}\,\mathbf{h} > \delta \,\|\mathbf{h}\|^2
```

Descent direction

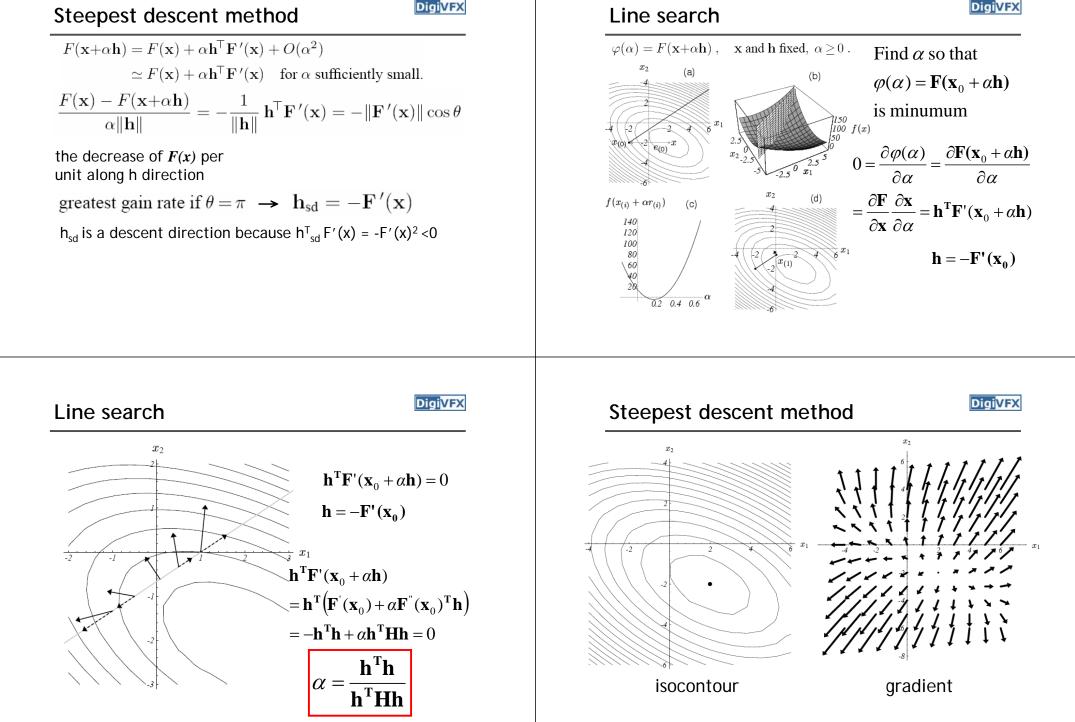
DigiVFX

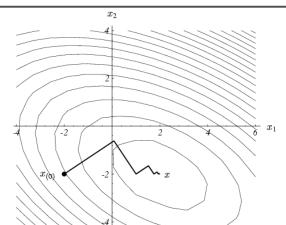
$$F(\mathbf{x}+\alpha\mathbf{h}) = F(\mathbf{x}) + \alpha\mathbf{h}^{\mathsf{T}}\mathbf{F}'(\mathbf{x}) + O(\alpha^2)$$

\$\sim F(\mathbf{x}) + \alpha\mathbf{h}^{\mathsf{T}}\mathbf{F}'(\mathbf{x})\$ for \$\alpha\$ sufficiently small.

Definition Descent direction.

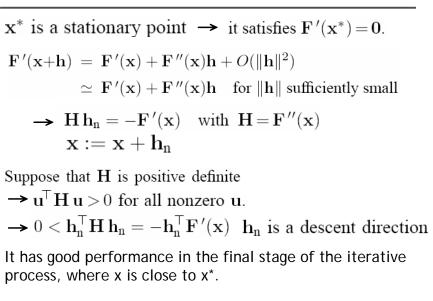
h is a descent direction for F at **x** if $\mathbf{h}^{\top} \mathbf{F}'(\mathbf{x}) < 0$.





It has good performance in the initial stage of the iterative process. Converge very slow with a linear rate.

Newton's method



Hybrid method

DigiVFX

DigiVFX

if $\mathbf{F}''(\mathbf{x})$ is positive definite $\mathbf{h} := \mathbf{h}_n$ else $\mathbf{h} := \mathbf{h}_{sd}$ $\mathbf{x} := \mathbf{x} + \alpha \mathbf{h}$

This needs to calculate second-order derivative which might not be available.

Levenberg-Marquardt method

 LM can be thought of as a combination of steepest descent and the Newton method.
 When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge. When the current solution is close to the correct solution, it becomes a Newton's method.

Nonlinear least square

DigiVFX

Given a set of measurements **x**, try to find the best parameter vector **p** so that the squared distance $\varepsilon^T \varepsilon$ is minimal. Here, $\varepsilon = \mathbf{x} - \hat{\mathbf{x}}$, with $\hat{\mathbf{x}} = f(\mathbf{p})$.

Levenberg-Marquardt method

 \mathbf{it}

For a small
$$||\delta_{\mathbf{p}}||$$
, $f(\mathbf{p} + \delta_{\mathbf{p}}) \approx f(\mathbf{p}) + \mathbf{J}\delta_{\mathbf{p}}$
 \mathbf{J} is the Jacobian matrix $\frac{\partial f(\mathbf{p})}{\partial \mathbf{p}}$
it is required to find the $\delta_{\mathbf{p}}$ that minimizes the quantity
 $||\mathbf{x} - f(\mathbf{p} + \delta_{\mathbf{p}})|| \approx ||\mathbf{x} - f(\mathbf{p}) - \mathbf{J}\delta_{\mathbf{p}}|| = ||\epsilon - \mathbf{J}\delta_{\mathbf{p}}||$
 $\mathbf{J}^{T}\mathbf{J}\delta_{\mathbf{p}} = \mathbf{J}^{T}\epsilon$
 $\mathbf{N}\delta_{\mathbf{p}} = \mathbf{J}^{T}\epsilon$
 $\mathbf{N}_{ii} = \mu + [\mathbf{J}^{T}\mathbf{J}]_{ii}$
 $damping term$

Levenberg-Marquardt method

- $\mu = 0 \rightarrow$ Newton's method
- $\mu \rightarrow \infty \rightarrow$ steepest descent method
- Strategy for choosing μ
 - Start with some small μ
 - If F is not reduced, keep trying larger μ until it does
 - If F is reduced, accept it and reduce μ for the next iteration

How is calibration used?

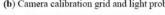
- Good for recovering intrinsic parameters; It is thus useful for many vision applications
- Since it requires a calibration pattern, it is often necessary to remove or replace the pattern from the footage or utilize it in some ways...

Example of calibration

(a) Background photograph

(b) Camera calibration grid and light probe

(c) Objects and local scene matched to background



(g) Final result with differential rendering

Example of calibration



Example of calibration

• Videos from GaTech