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Announcements

e Project #2 is due midnight next Monday
e Results for project #1 artifacts voting

Project #1 artifact voting

e Total 141 votes
e 33 of 37 artifacts got votes

Honorable mention(8): #* &4 % &




Honorable mention(8): & &

Honorable mention(10): % a4




Outline LIEIVEX

e Camera projection models
e Camera calibration
e Nonlinear least square methods

Camera projection models

Pinhole camera
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Intrinsic matrix

Is this form of K good enough? f 0 x,
K=l0 f
0 0 1

e non-square pixels (digital video)

Distortion e
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. ske\_/v | _ fa s x
= radial distortion K=| 0 f « Radial distortion of the image
0 0 1 — Caused by imperfect lenses
— Deviations are most noticeable for rays that pass
through the edge of the lens
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Camera rotation and translation sl Two kinds of parameters sl
e internal or intrinsic parameters such as focal
‘ length, optical center, aspect ratio:
what kind of camera?
v e external or extrinsic (pose) parameters
including rotation and translation:
where is the camera?
x ~ K[R[t]X
H—l

extrinsic matrix




Other projection models

Orthographic projection

» Special case of perspective projection
— Distance from the COP to the PP is infinite

— Also called “parallel projection”: (x, Yy, z) = (X, Y)

Other types of projections

» Scaled orthographic
— Also called “weak perspective”

HH

» Affine projection
— Also called “paraperspective”
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Fun with perspective

gy

Perspective cues Rl

Perspective cues
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Fun with

perspective

Forced perspective in LOTR

Ames room

Ames video

BBC story

.
viewing point

Camera calibration

. . gi\'J
Camera calibration

e Estimate both intrinsic and extrinsic parameters
e Mainly, two categories:
1. Photometric calibration: uses reference objects

with known geometry

2. Self calibration: only assumes static scene, e.g.

structure from motion




Camera calibration approaches ALy

Chromaglyphs (HP research) ALy

1. linear regression (least squares)
2. nonlinear optimization
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Step 1: data acquisition

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
e Only requires a plane
< Don’t have to know positions/orientations
* Good code available online!

- Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

- Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

- Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/
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Step 2: specify corner order ALy

Click an the four extreme comars of the rectanguiar pattem [irst comar = origin). . Image 1 lick on the four extreme comers of the ectangular pattem (irst comes = origin. . Image 1
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Step 3: corner extraction

DigiY2%

The red crosses should be close to the image cormers
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Step 3: corner extraction e
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Step 4: minimize projection error

Reprajection error (in pixel) - To exit: right buttan
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Calibration res *
Focal Length: fc = [ 657.46298  657.94673 ] + [ B.31819 8.34846 ]
Principal point: cc = [ 303.13665 242.56935 ] = [ B.64682 08.59218 ]
Skeuw: alpha_c = [ 9.686668 ] + [ 6.68686888 ] => angle of pixel axes =
Distortion: ke = [ -08.25483 8.12143  -0.608021 a.88082
Pixel error: err = [ B.11689 8.11588 ]
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Step 4: camera calibration Step 4: camera calibration
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Step 5: refinement Optimized parameters

Reprajection error (in pixel) - To exit: right buttan Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated (DEI
i Principal point optimized {center_optim=1) - {(DEFAULT). To reject principal point, set ci

' ' Skew not optinized (est_alpha=8) - (DEFAULT)
o4k i Distortion not fully estimated (defined by the variable est_dist):
. + $ixth order distortion not estimated {est_dist(5)=8) - (DEFAULT) .
03F 1 HMain calibration optimization procedure - Number of images: 28
Gradient descent iterations: 1...2...3...4...5...done
02k i Estimation of uncertainties...done
01r 7 Calibration results after optimization (with uncertainties):
= D_+ 4 Focal Length: fc = [ 657.46298 657.94673 ] =+ [ B.31819 8.34046 ]
Principal point: cc = [ 303.13665 242.56935 ] + [ B.64682 8.59218 ]
Skew: alpha_c = [ 08.80888 ] + [ B.8086888 ] => angle of pixel axes = 98.888
01 T Distortion: kc = [ —-8.25403 B.12143 -8.88821 0.00802 o0.00000 ] = [ A.m
Pixel error: err = [ B8.11689 a.11588 ]
0.2r B
Hote: The numerical errors are approximately three times the standard deviations {for rei
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Linear regression :

x ~ K[Rt]x = MX

X
U moo 1M01 M02 ™03 v
] ] v |~ | mo M1 M12 M13 7
Camera calibration 1 mpg mp1 Mo 1 1
Linear regression TRV Linear regression TRV

 Directly estimate 11 unknowns in the M matrix mooX; + mo1Y; + moaZ; + mos
using known 3D points (X;,Y;,Z;) and measured Ui = mo0X; + mo1Y; + monZ; + 1
feature positions (u;,Vv;)

m10X; +m11Y; + mi12Z; + mi3

mooX; + mo1Y; + monZ; + 1

v; =

ui(mooX; + mo1Y; + mooZ; + 1) = mooX; + mo1Y; + mo2Z; + mo3

vi(mogX; + mo1Y; + mosZ; + 1) = m1oX; + m11Y; + mi2Z; + mi3




Linear regression Linear regression
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Solve for Projection Matrix M using least-square
techniques

Normal equation

Given an overdetermined system
AX=Db

the normal equation is that which minimizes the
sum of the square differences between left and
right sides

A'Ax=A"b

Linear regression

e Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the
image
« Disadvantages:
- Doesn’t tell us about particular parameters

- Mixes up internal and external parameters
» pose specific: move the camera and everything breaks

— More unknowns than true degrees of freedom




Nonlinear optimization

Optimal estimation

* A probabilistic view of least square
» Feature measurement equations

up = f,xi)+nz-=az-+nz-, n; ~ N(0,0)
v; = g(Mix;) +m; =v; +my, m; ~ N(0,0)

* Probability of M given {(u,,v,)}
P = [[p(u|a;)p(v|v;)
i

=11 o (ui=1;)? /02 —(v;—7;)? /0>

* Likelihood of M given {(u;v,)}
L =—log P=3 (ui—@)*/of + (vi = 0:)°/of

7
 Itis a least square problem (but not necessarily
linear least square)

e How do we minimize L?

Optimal estimation DigiY[eX

* Non-linear regression (least squares), because
the relations between #; and u; are non-linear

functions M
unknown parameters

We could have terms like f cosé in this

u—0 ~lTJ—K[R‘t])1(

known constant

* We can use Levenberg-Marquardt method to
minimize it

Nonlinear least square methods
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Least square fitting “Tved Linear least square fitting “Tved
Least Squares Problem y
Find x*, a local minimizer for ¢
F(x) = £ (fi(x)? L
i=1 -
where f; : R" +— R, i=1,...,m are given functions, and m > n. L .
o A ’ t
number of data points ..
number of parameters ’ .

- .- IV - -y IV
Linear least square fitting “Tved Linear least square fitting “Tved
y model parameters y model parameters

y(t)=M(t;X) = x, + x,t




Linear least square fitting

y model parameters

y(t) =M (t;X) = x, + x;t

t fi(x):yi_M(ti;X)

Linear least square fitting

y model parameters

y(t) =M (t;X) = x, + x,t

t fz(x) =i _M(Zi;x)

Nonlinear least square fitting

model M (#;X) = x,e™ + x,e™
parameters X =[x, x,,x,,x,]
residuals f;(X) =y, —M(t;;X)

_ _ Xt Xot

\ prediction \ prediction
residual residual
M (t;X) = x, +x,t+x,t° is linear, too.
Digill[33

Function minimization

Least square is related to function minimization.

Global Minimizer
Given F' : R" — R. Find

xt = argmin {F(x)} .

It is very hard to solve in general. Here, we only consider
a simpler problem of finding local minimum.

Local Minimizer
Given ' : R — R. Find x* so that

F(x") < F(x) for |x—x"|<4d.
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Function minimization LIEIVEX

We assume that the cost function F' 1s differentiable and so smooth that the
following Taylor expansion is valid,?

F(x+h) = F(x)+h'g + ih"Hh + O(/|u|*),

where g 1s the gradient,

aF
E(X)
g = Flix) = :
OF
. (x)
and H 1s the Hessian,
" O*F
H=F'(x) = [@;1’-2-0:{7] (X)J

Quadratic functions

Approximate the function with
a quadratic function within
a small neighborhood

Quadratic functions

A is positive definite. (a)
All eigenvalues 4
are positive. |
For all x, s
XTAx>0. _—e

(b) Negative definite

A is singular A is indefinite

Function minimization

Theorem 1.5. Necessary condition for a local minimizer.
If x* is a local minimizer, then

g =F/(x') =0,

Why?
By definition, if X" is a local minimizer,

||| is small enough —— F(x" +h) > F(x")

F(x"+h) =F(x")+h"F (x")+O(|n|")




Function minimization

If x* 1s a local minimizer, then
g = F'(x") = 0.

f=1

Theorem 1.5. Necessary condition for a local minimizer.

Definition 1.6. Stationary point. If
g = F'(x) =0,

then x, is said to be a stationary point for F'.

F(x,+h) = F(x,) + sh'

H; 1s positive definite

a) minimum b) maximum

H.h+O(|h*)

- - . - - gi\'
Function minimization

Theorem 1.8. Sufficient condition for a local minimizer.
Assume that X, is a stationary point and that F "/ (x.) is positive definite.
Then xs is a local minimizer.

F(xs+h) = F(xs) + %hTHS h + O(||h||3)
with Hy = F”(x,)

If we request that Hy 1s positive definite, then its eigenvalues are

greater than some number 9§ > 0

h'"H;h > § |h)?

Descent methods

Xp, X1, X295 o004 Xk — X"
1. Find a descent direction hy

for k — ~

2. find a step length giving a good decrease 1n the F'-value.

Algorithm Descent method

begin
k:=0; x:=xp; found := false
while (not found) and (k < kpax)
hg := search_direction(x)
if (no such h exists)
Sfound := true
else
a = step_length(x, hy)
x:=x+ahyg; ki=k+1

end

{Starting point}
{From x and downhill }
{x 1s stationary}

{from x in direction hy}
{next iterate }

Descent direction

F(x4+ah) = F(x) + ah"F/(x) + O(a?)
~ F(x)+ ah"F/(x) for a sufficiently small.

Definition Descent direction.

h is a descent direction for F atx if h'F’(x) < 0.




Steepest descent method

F(x+ah) = F(x) + ahTF'(x) + O(a?)
~ F(x) + ah'F’(x) for a sufficiently small.

F(x) — F(x+ah) 1 h'F'(x) = —|[F/(x)|| cos
a|h) [h

. gi\'
Line search LIEIVeX

o(e) = F(x+ah), xandhfixed, v >0. Find o so that
p(a) = F(X, +ah)
is minumum

the decrease of F(x) per
unit along h direction oa ox
eatest ain rate if @ — 7 - _F! oF ox
greatest gainrate if 6 =7 — g F'(x) =T X _hTF(x, +ah)
hyy is a descent direction because h™, F’(x) = -F’(x)? <0 OX Oct
h=-F (Xo)
a2 04 06 @
DigiYl2d
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Line search LIEIVEX

h"F'(x, +ah) =0
h=—F"(x,)
thF'(xo +ah)
=hT(F (X,) +aF (x,)"h)
= —h"h+ah"™Hh =0
h'h
h"Hh

o =

Steepest descent method
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Steepest descent method
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It has good p\\p ce in the initial stage of the iterative

process. Converge very sléw with a linear rate.

Newton’s method

x" 1s a stationary pomt —> it satisfies F/(x*) =0.
F'(x+h) = F'(x) + F”(x)h + O(|[h||*)
~ F/(x) +F”(x)h for ||h|| sufficiently small
— Hh, = —F'(x) with H=F"(x)
X := X+ h,
Suppose that H 1s positive definite
— u' H u > 0 for all nonzero u.
— 0<h/Hh, = —h] F'(x) h, is a descent direction

It has good performance in the final stage of the iterative
process, where x is close to x*.

Hybrid method
if F'”(x) is positive definite
h:= h,
else
h:= hsd
X := X + ah

This needs to calculate second-order derivative which
might not be available.

Levenberg-Marquardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton’s
method.
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Nonlinear least square

Given a set of measurements X, try to find
the best parameter vector p so that the
squared distance ¢ ¢ is minimal. Here,
&=X-X,withX = f(p).

Levenberg-Marquardt method

For a small ||dp||, f(p+dp) =~ f(p) + Jdp

J is the Jacobian matrix ﬂ-";'ijp:'

it is required to find the 4, that minimizes the quantity

x — f(p + ﬁ|:n]|| = ||x - .fl:P} - Jﬁp” = ||LF _JEPH
I35, =J"e
Nop = J7e

N;; = ;1L+ [JTJ]H

damping term

Levenberg-Marquardt method

e =0 — Newton’s method
e [ —o0 — steepest descent method

= Strategy for choosing u«
- Start with some small g
- If Fis not reduced, keep trying larger 1 until it does

- If F is reduced, accept it and reduce ¢ for the next
iteration

- - - gi\'J
How is calibration used?

e Good for recovering intrinsic parameters; It is
thus useful for many vision applications

« Since it requires a calibration pattern, it is
often necessary to remove or replace the
pattern from the footage or utilize it in some
ways...




Example of calibration

(c) Objects and local scene matched to background

(g) Final result with differential rendenng

Example of calibration

DigiY2%

Example of calibration

CIFTVEX

« Videos from GaTech




