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Announcements

• Project #2 is due midnight next Monday
• Results for project #1 artifacts voting 



Project #1 artifact voting

• Total 141 votes
• 33 of 37 artifacts got votes



Honorable mention(8): 胡傳甡 高紹航



Honorable mention(8): 劉俊良



Honorable mention(10): 周伯相



Third place (13): 羅聖傑 鄭京恆



Second place (14): 葉蓉蓉 劉冠廷



First place (17): 梁彧 吳孟松



Outline

• Camera projection models
• Camera calibration
• Nonlinear least square methods



Camera projection models



Pinhole camera



Pinhole camera model
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Pinhole camera model

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
0100
000
000

~
1

Z
Y
X

f
f

Z
fY
fX

y
x

Z
fYy

Z
fXx

=

=

principal 
point



Pinhole camera model
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Principal point offset
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Intrinsic matrix

• non-square pixels (digital video)
• skew
• radial distortion
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Distortion

• Radial distortion of the image
– Caused by imperfect lenses
– Deviations are most noticeable for rays that pass 

through the edge of the lens

No distortion Pin cushion Barrel



Camera rotation and translation
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Two kinds of parameters

• internal or intrinsic parameters such as focal 
length, optical center, aspect ratio:
what kind of camera?

• external or extrinsic (pose) parameters 
including rotation and translation:
where is the camera?



Other projection models



Orthographic projection
• Special case of perspective projection

– Distance from the COP to the PP is infinite

– Also called “parallel projection”:  (x, y, z) → (x, y)

Image World



Other types of projections
• Scaled orthographic

– Also called “weak perspective”

• Affine projection
– Also called “paraperspective”



Illusion



Illusion



Fun with perspective



Perspective cues



Perspective cues



Fun with perspective

Ames room

Ames video BBC story



Forced perspective in LOTR



Camera calibration



Camera calibration

• Estimate both intrinsic and extrinsic parameters
• Mainly, two categories:
1. Photometric calibration: uses reference objects 

with known geometry
2. Self calibration: only assumes static scene, e.g. 

structure from motion



Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optimization



Chromaglyphs (HP research)



Multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/



Step 1: data acquisition



Step 2: specify corner order



Step 3: corner extraction



Step 3: corner extraction



Step 4: minimize projection error



Step 4: camera calibration



Step 4: camera calibration



Step 5: refinement



Optimized parameters



Camera calibration



Linear regression

[ ] MXXtRKx =~



Linear regression

• Directly estimate 11 unknowns in the M matrix 
using known 3D points (Xi,Yi,Zi) and measured 
feature positions (ui,vi)



Linear regression



Linear regression



Linear regression

Solve for Projection Matrix M using least-square 
techniques



Normal equation

Given an overdetermined system

bAx =

bAAxA TT =

the normal equation is that which minimizes the 
sum of the square differences between left and 
right sides



Linear regression

• Advantages:
– All specifics of the camera summarized in one matrix
– Can predict where any world point will map to in the 

image

• Disadvantages:
– Doesn’t tell us about particular parameters
– Mixes up internal and external parameters

• pose specific: move the camera and everything breaks

– More unknowns than true degrees of freedom



Nonlinear optimization

• A probabilistic view of least square
• Feature measurement equations

• Probability of M given {(ui,vi)}

P



Optimal estimation

• Likelihood of M given {(ui,vi)} 

• It is a least square problem (but not necessarily 
linear least square)

• How do we minimize L?

PL



Optimal estimation

• Non-linear regression (least squares), because 
the relations between ûi and ui are non-linear 
functions M

• We can use Levenberg-Marquardt method to 
minimize it

[ ]XtRKuuu −− ~ˆ

known constant

We could have terms like             in thisθcosf

unknown parameters



Nonlinear least square methods



Least square fitting

number of data points

number of parameters



Linear least square fitting
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Linear least square fitting
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Linear least square fitting
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Linear least square fitting
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Linear least square fitting
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Nonlinear least square fitting
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Function minimization

It is very hard to solve in general. Here, we only consider 
a simpler problem of finding local minimum. 

Least square is related to function minimization. 



Function minimization



Quadratic functions

Approximate the function with 
a quadratic function within 
a small neighborhood



Quadratic functions

A is positive definite.
All eigenvalues
are positive.
For all x, 
xTAx>0. 

negative definite

A is indefiniteA is singular



Function minimization

Why?
By definition, if     is a local minimizer,

h )F(xh)F(x ** >+

*x

)hO()(xF'h)F(xh)F(x 2*T** ++=+

is small enough



Function minimization



Function minimization



Descent methods



Descent direction



Steepest descent method

the decrease of F(x) per 
unit along h direction

→

hsd is a descent direction because hT
sd F’(x) = -F’(x)2 <0



Line search

minumum is
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Line search
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Steepest descent method

isocontour gradient



Steepest descent method

It has good performance in the initial stage of the iterative 
process. Converge very slow with a linear rate.



Newton’s method

It has good performance in the final stage of the iterative 
process, where x is close to x*. 

→

→

→

→



Hybrid method

This needs to calculate second-order derivative which 
might not be available. 



Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method. 
When the current solution is far from the 
correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
method.



Nonlinear least square 
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Levenberg-Marquardt method



Levenberg-Marquardt method

• μ=0 → Newton’s method
• μ→∞ → steepest descent method

• Strategy for choosing μ
– Start with some small μ
– If F is not reduced, keep trying larger μ until it does
– If F is reduced, accept it and reduce μ for the next 

iteration 



How is calibration used?

• Good for recovering intrinsic parameters; It is 
thus useful for many vision applications

• Since it requires a calibration pattern, it is 
often necessary to remove or replace the 
pattern from the footage or utilize it in some 
ways…



Example of calibration



Example of calibration



Example of calibration

• Videos from GaTech


