Image stitching

Digital Visual Effects, Spring 2008
Yung-Yu Cbuang
2008/3/25
with slides by Richard Szeliski, Steve Seitz, Matthew Brown and Vaclav Hlavac

Image stitching

- Stitching = alignment + blending

$$
\begin{array}{lc}
\uparrow & \uparrow \\
\text { geometrical } & \text { photometric } \\
\text { registration } & \text { registration }
\end{array}
$$

Applications of image stitching

- Video stabilization
- Video summarization
- Video compression
- Video matting
- Panorama creation

Video summarization

DigjVFX

Video compression

DigivFX

Object removal

input video

Object removal

remove foreground

Object removal

estimate background

Object removal

background estimation

Panorama creation

Why panorama?

- Are you getting the whole picture?
- Compact Camera FOV $=50 \times 35^{\circ}$

Why panorama?

- Are you getting the whole picture?
- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$

Why panorama?

- Are you getting the whole picture?
- Compact Camera FOV $=50 \times 35^{\circ}$
- Human FOV $=200 \times 135^{\circ}$
- Panoramic Mosaic $=360 \times 180^{\circ}$

Panorama examples

- Like HDR, it is a topic of computational photography, seeking ways to build a better camera mostly in software.
- Most consumer cameras have a panorama mode
- Mars:
http:/ / www. panoramas. dk/ fullscreen3/ f2 mars97. html
- Earth:
http:// www. panoramas. dk/ new-year-2006/ taipei. html

What can be globally aligned?

- In image stitching, we seek for a matrix to globally warp one image into another. Are any two images of the same scene can be aligned this way?
- Images captured with the same center of projection
- A planar scene or far-away scene

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Mosaic as an image reprojection

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Changing camera center

- Does it still work?

Planar scene (or far away)

- PP3 is a projection plane of both centers of projection, so we are OK!
- This is how big aerial photographs are made

Motion models

- Parametric models as the assumptions on the relation between two images.

2D Motion models

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\checkmark
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Motion models

Translation

2 unknowns

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

A case study: cylindrical panorama

- What if you want a 360° field of view?

Cylindrical panoramas

- Steps
- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical panorama

1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinate
3. Compute pairwise alignments
4. Fix up the end-to-end alignment
5. Blending
6. Crop the result and import into a viewer

Taking pictures

Kaidan panoramic tripod head

Translation model

Try to align this in PaintShop Pro

Where should the synthetic camera beidivex

- The projection plan of some camera
- Onto a cylinder

Cylindrical projection

Cylindrical projection

Cylindrical projection

Cylindrical projection

unwrapped cylinder

$(\sin \theta, h, \cos \theta) \propto(x, y, f)$

$$
\theta=\tan ^{-1} \frac{x}{f}
$$

Cylindrical projection

$(\sin \theta, h, \cos \theta) \propto(x, y, f)$

Cylindrical projection

Cylindrical reprojection

Focal length - the dirty secret...

$\mathrm{f}=\mathbf{2 8 0}$

$\mathrm{f}=\mathbf{3 8 0}$

A simple method for estimating f

Or, you can use other software, such as AutoStich, to help.

Input images

DigjVFX

Cylindrical warping

DigjvFX

Blending

- Why blending: parallax, lens distortion, scene motion, exposure difference

Blending

Blending

Blending

DigjvFX

Assembling the panorama

- Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
- small errors accumulate over time

Problem: Drift

- add another copy of first image at the end
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- compute a global warp: $y^{\prime}=y+a x$
- run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adj ustment"

End-to-end alignment and crop

DigjvFX

Viewer: panorama

Viewer: texture mapped model

example: http://www.panoramas.dk/

Cylindrical panorama

1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinate
3. Compute pairwise alignments
4. Fix up the end-to-end alignment
5. Blending
6. Crop the result and import into a viewer

Determine pairwise alignment?

- Feature-based methods: only use feature points to estimate parameters
- We will study the "Recognising panorama" paper published in ICCV 2003
- Run SIFT for each image, find feature matches.

Determine pairwise alignment

- $\mathrm{p}^{\prime}=\mathrm{Mp}$, where M is a transformation matrix, p and p^{\prime} are feature matches
- It is possible to use more complicated models such as affine or perspective
- For example, assume M is a 2×2 matrix

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{x}{y}
$$

- Find M with the least square error

$$
\sum_{i=1}^{n}\left(M p-p^{\prime}\right)^{2}
$$

Determine pairwise alignment

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)\binom{x}{y} \quad \begin{aligned}
& x_{1} m_{11}+y_{1} m_{12}=x_{1}^{\prime} \\
& x_{1} m_{21}+y_{1} m_{22}=y_{1}^{\prime}
\end{aligned}
$$

- Overdetermined system

$$
\left(\begin{array}{cccc}
x_{1} & y_{1} & 0 & 0 \\
0 & 0 & x_{1} & y_{1} \\
x_{2} & y_{2} & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
x_{n} & y_{n} & 0 & 0 \\
0 & 0 & x_{n} & y_{n}
\end{array}\right)\left(\begin{array}{l}
m_{11} \\
m_{12} \\
m_{21} \\
m_{22}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right)
$$

Normal equation

Given an overdetermined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Why?

Normal equation

$$
\begin{aligned}
& E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2} \\
& {\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
: & & : \\
: & & : \\
: & & : \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
: \\
: \\
\vdots \\
b_{n}
\end{array}\right]} \\
& n x m, n \text { equations, } m \text { variables }
\end{aligned}
$$

Normal equation

$$
\begin{gathered}
\mathbf{A x}-\mathbf{b}=\left[\begin{array}{c}
\sum_{j=1}^{m} a_{1 j} x_{j} \\
: \\
\sum_{j=1}^{m} a_{i j} x_{j} \\
\vdots \\
\sum_{j=1}^{m} a_{n j} x_{j}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
: \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
\left(\sum_{j=1}^{m} a_{1 j} x_{j}\right)-b_{1} \\
: \\
\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i} \\
\vdots \\
\left(\sum_{j=1}^{m} a_{n j} x_{j}\right)-b_{n}
\end{array}\right] \\
E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2}=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right]^{2}
\end{gathered}
$$

Normal equation

$$
\begin{aligned}
& E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2}=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right]^{2} \\
& 0=\frac{\partial E}{\partial x_{1}}= \sum_{i=1}^{n} 2\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right] a_{i 1} \\
&= 2 \sum_{i=1}^{n} a_{i 1} \sum_{j=1}^{m} a_{i j} x_{j}-2 \sum_{i=1}^{n} a_{i 1} b_{i} \\
& 0=\frac{\partial E}{\partial \mathbf{x}}=2\left(\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\mathbf{A}^{\mathrm{T}} \mathbf{b}\right) \rightarrow \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Normal equation

$$
\begin{aligned}
& (\mathbf{A x}-\mathbf{b})^{2} \\
& =(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A x}-\mathbf{b}) \\
& =\left((\mathbf{A x})^{T}-\mathbf{b}^{T}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\left(\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}-\mathbf{b}^{\mathrm{T}}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A x}-\mathbf{b}^{\mathrm{T}} \mathbf{A x}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{b}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& \frac{\partial E}{\partial \mathbf{x}}=2 \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Determine pairwise alignment?

- $\mathrm{p}^{\prime}=\mathrm{Mp}$, where M is a transformation matrix, p and p^{\prime} are feature matches
- For translation model, it is easier.

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left[\left(m_{1}+x_{i}-x_{i}^{\prime}\right)^{2}+\left(m_{2}+y_{i}-y_{i}^{\prime}\right)^{2}\right] \\
0 & =\frac{\partial E}{\partial m_{1}}
\end{aligned}
$$

- What if the match is false? Avoid impact of outliers.
- RANSAC = Random Sample Consensus
- An algorithm for robust fitting of models in the presence of many data outliers
- Compare to robust statistics
- Given N data points x_{i}, assume that mj ority of them are generated from a model with parameters Θ, try to recover Θ.

RANSAC algorithm

Run k times: How many times?
(1) drawn samples randomly $\begin{aligned} & \text { How big? } \\ & \text { Smaller is better }\end{aligned}$
(2) fit parameters Θ with these n samples
(3) for each of other N-n points, calculate its distance to the fitted model, count the number of inlier points c
Output Θ with the largest c

How to define?
Depends on the problem.

How to determine \mathbf{k}

p : probability of real inliers
P : probability of success after k trials

$$
\begin{aligned}
& P=1-(1-\underbrace{p^{n}})^{k} \\
& \text { n samples are all inliers }
\end{aligned}
$$

$$
k=\frac{\log (1-P)}{\log \left(1-p^{n}\right)}
$$

for $P=0.99$

n	$l l$	k
3	0.5	35
6	0.6	97
6	0.5	293

Example: line fitting

DigjvFX

Example: line fitting

Model fitting

Measure distances

Count inliers

Another trial

The best model

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Applications of panorama in VFX

- Background plates
- Image-based lighting

Troy (image-based lighting)

http:/ / www. cgnetworks. com/ story_custom. php?story_id=2195\&page=4

Spiderman 2 (background plate)

