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Announcements

• Project #1 was due at midnight Friday. You 
have a total of 10 delay days without penalty, 
but you are advised to use them wisely. 

• We reserve the rights for not including late 
homework for artifact voting. 

• Project #2 handout will be available on the web 
later this week. 

Outline

• Features
• Harris corner detector
• SIFT

Features



Features

• Also known as interesting points, salient points 
or keypoints. Points that you can easily point 
out their correspondences in multiple images 
using only local information.

?

Desired properties for features

• Distinctive: a single feature can be correctly 
matched with high probability.

• Invariant: invariant to scale, rotation, affine, 
illumination and noise for robust matching 
across a substantial range of affine distortion, 
viewpoint change and so on. That is, it is 
repeatable.

Applications

• Object or scene recognition
• Structure from motion
• Stereo
• Motion tracking
• …

Components

• Feature detection: locate where they are
• Feature description: describe what they are
• Feature matching: decide whether two are the 

same one



Harris corner detector

Moravec corner detector (1980)

• We should easily recognize the point by looking 
through a small window

• Shifting a window in any direction should give a 
large change in intensity

Moravec corner detector

flat edge
corner

isolated point
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Moravec corner detector

Change of intensity for the shift [u,v]:

window 
function

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}

intensityshifted 
intensity



Problems of Moravec detector

• Noisy response due to a binary window function
• Only a set of shifts at every 45 degree is 

considered
• Only minimum of E is taken into account

Harris corner detector (1988) solves these 
problems.

Harris corner detector

Noisy response due to a binary window function
Use a Gaussian function

Harris corner detector

Only a set of shifts at every 45 degree is considered
Consider all small shifts by Taylor’s expansion
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Harris corner detector

Equivalently, for small shifts [u,v] we have a bilinear
approximation:

, where M is a 2×2 matrix computed from image derivatives:
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Harris corner detector (matrix form)
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Harris corner detector

Only minimum of E is taken into account
A new corner measurement by investigating the 

shape of the error function

represents a quadratic function; Thus, we 
can analyze E’s shape by looking at the property 
of M

MuuT

Harris corner detector

High-level idea: what shape of the error function 
will we prefer for features?
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flat edge corner

Quadratic forms

• Quadratic form (homogeneous polynomial of 
degree two) of n variables xi

• Examples

=



Symmetric matrices

• Quadratic forms can be represented by a real 
symmetric matrix A where

Eigenvalues of symmetric matrices

Brad Osgood

Eigenvectors of symmetric matrices
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Harris corner detector

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const
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Visualize quadratic functions
T
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Visualize quadratic functions
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Visualize quadratic functions

T

⎥
⎦

⎤
⎢
⎣

⎡
−−
−

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

50.087.0
87.050.0

40
01

50.087.0
87.050.0

75.130.1
30.125.3

A

Visualize quadratic functions
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Harris corner detector

λ1

λ2

Corner
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

edge 
λ1 >> λ2

edge 
λ2 >> λ1

flat

Classification of 
image points 
using eigenvalues 
of M:

Harris corner detector

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)
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Only for reference, 
you do not need 
them to compute R

Harris corner detector Another view



Another view Another view

Summary of Harris detector

1. Compute x and y derivatives of image

2. Compute products of derivatives at every pixel

3. Compute the sums of the products of 
derivatives at each pixel

IGI x
x ∗= σ IGI y

y ∗= σ

xxx III ⋅=2 yyy III ⋅=2 yxxy III ⋅=

22 ' xx IGS ∗= σ 22 ' yy IGS ∗= σ xyxy IGS ∗= 'σ

Summary of Harris detector

4. Define the matrix at each pixel 

5. Compute the response of the detector at each 
pixel

6. Threshold on value of R; compute nonmax
suppression.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ),(),(

),(),(
),(

2

2

yxSyxS
yxSyxS

yxM
yxy

xyx

( )2tracedet MkMR −=



Harris corner detector (input) Corner response R

Threshold on R Local maximum of R



Harris corner detector Harris detector: summary

• Average intensity change in direction [u,v] can be 
expressed as a bilinear form: 

• Describe a point in terms of eigenvalues of M:
measure of corner response

• A good (corner) point should have a large intensity 
change in all directions, i.e. R should be large 
positive
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Now we know where features are

• But, how to match them?
• What is the descriptor for a feature? The 

simplest solution is the intensities of its spatial 
neighbors. This might not be robust to 
brightness change or small shift/rotation. 

( )

Harris detector: some properties
• Partial invariance to affine intensity change

 Only derivatives are used => 
invariance to intensity shift I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)



Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains 
the same

Corner response R is invariant to image rotation

Harris Detector is rotation invariant

Repeatability rate:
# correspondences

# possible correspondences

Harris Detector: Some Properties

• But: non-invariant to image scale!

All points will be 
classified as edges

Corner !

Harris detector: some properties

• Quality of Harris detector for different scale 
changes

Repeatability rate:
# correspondences

# possible correspondences



Scale invariant detection

• Consider regions (e.g. circles) of different sizes 
around a point

• Regions of corresponding sizes will look the 
same in both images

Scale invariant detection

• The problem: how do we choose corresponding 
circles independently in each image?

• Aperture problem

SIFT 
(Scale Invariant Feature Transform)

SIFT
• SIFT is an carefully designed procedure with 

empirically determined parameters for  the 
invariant and distinctive features.



SIFT stages:

• Scale-space extrema detection
• Keypoint localization
• Orientation assignment
• Keypoint descriptor

( )
local descriptor 

detector

descriptor

A 500x500 image gives about 2000 features

1. Detection of scale-space extrema

• For scale invariance, search for stable features 
across all possible scales using a continuous 
function of scale, scale space.

• SIFT uses DoG filter for scale space because it is 
efficient and as stable as scale-normalized 
Laplacian of Gaussian.

DoG filtering

Convolution with a variable-scale Gaussian

Difference-of-Gaussian (DoG) filter

Convolution with the DoG filter

Scale space
σ doubles for 
the next octave

K=2(1/s)

Dividing into octave is for efficiency only.



Detection of scale-space extrema Keypoint localization

X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency

• It is impossible to sample the whole space, 
tradeoff efficiency with completeness.

• Decide the best sampling frequency by 
experimenting on 32 real image subject to 
synthetic transformations. (rotation, scaling, 
affine stretch, brightness and contrast change, 
adding noise…)

Decide scale sampling frequency

s=3 is the best, for larger s, too many unstable features

for detector, 
repeatability

for descriptor, 
distinctiveness



Decide scale sampling frequency Pre-smoothing

σ =1.6, plus a double expansion

Scale invariance 2. Accurate keypoint localization

• Reject points with low contrast (flat) and 
poorly localized along an edge (edge)

• Fit a 3D quadratic function for sub-pixel 
maxima
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5

0-1 +1



2. Accurate keypoint localization

• Reject points with low contrast and poorly 
localized along an edge

• Fit a 3D quadratic function for sub-pixel 
maxima
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2. Accurate keypoint localization

• Taylor series of several variables

• Two variables
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Accurate keypoint localization

• Taylor expansion in a matrix form, x is a vector, 
f maps x to a scalar 
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Hessian matrix
(often symmetric)

gradient

2D illustration



2D example
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Derivation of matrix form
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Derivation of matrix form
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Accurate keypoint localization

• x is a 3-vector
• Change sample point if offset is larger than 0.5
• Throw out low contrast (<0.03)

Accurate keypoint localization

• Throw out low contrast 03.0|)ˆ(| <xD

x
x

x
x

x
x

xxx
x

x

xxxxx
x

x

xxxxx
x

x

x
x

xx
x

x

ˆ
2
1

)ˆ(
2
1ˆ

2
1ˆ

2
1ˆ

2
1ˆ

ˆˆ
2
1ˆ)ˆ(

1

2

2

1

2

2

2

2

2

2

1

2

2

2

21

2

2

2

2

T

TT

TT

TTT

T
T

T
T

DD

DDD

DDDDD

DDDDDDD

DDDDDDD

DDDD

∂
∂

+=

−
∂
∂

+
∂
∂

+=

∂
∂

∂
∂

∂
∂

+
∂
∂

+=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+
∂
∂

+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

−
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

−+
∂
∂

+=

∂
∂

+
∂
∂

+=

−

−−

−−

Eliminating edge responses

r=10

Let

Keep the points with 

Hessian matrix at keypoint location

Maxima in D



Remove low contrast and edges Keypoint detector

233x89 832 extrema

729 after con-
trast filtering

536 after cur-
vature filtering

3. Orientation assignment

• By assigning a consistent orientation, the 
keypoint descriptor can be orientation invariant.

• For a keypoint, L is the Gaussian-smoothed 
image with the closest scale,

orientation histogram (36 bins)

(Lx, Ly)

m
θ

Orientation assignment



Orientation assignment Orientation assignment

Orientation assignment

σ=1.5*scale of 
the keypoint

Orientation assignment



Orientation assignment Orientation assignment
accurate peak position 
is determined by fitting

Orientation assignment

0 2π

36-bin orientation histogram over 360°, 
weighted by m and 1.5*scale falloff
Peak is the orientation
Local peak within 80% creates multiple 

orientations
About 15% has multiple orientations 

and they contribute a lot to stability

SIFT descriptor



4. Local image descriptor
• Thresholded image gradients are sampled over 16x16 

array of locations in scale space
• Create array of orientation histograms (w.r.t. key 

orientation)
• 8 orientations x 4x4 histogram array = 128 dimensions
• Normalized, clip values larger than 0.2, renormalize

σ=0.5*width

Why 4x4x8?

Sensitivity to affine change Feature matching

• for a feature x, he found the closest feature x1
and the second closest feature x2. If the 
distance ratio of d(x, x1) and d(x, x1) is smaller 
than 0.8, then it is accepted as a match. 



SIFT flow Maxima in D

Remove low contrast Remove edges



SIFT descriptor

Estimated rotation

• Computed affine transformation from rotated 
image to original image:
0.7060   -0.7052  128.4230
0.7057    0.7100 -128.9491

0            0      1.0000

• Actual transformation from rotated image to 
original image:
0.7071   -0.7071  128.6934
0.7071    0.7071 -128.6934

0            0      1.0000
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