Features

Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/3/18

with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim

Outline

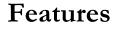
- Features
- Harris corner detector
- SIFT

Announcements

 Project #1 was due at midnight Friday. You have a total of 10 delay days without penalty, but you are advised to use them wisely.

DigiVFX

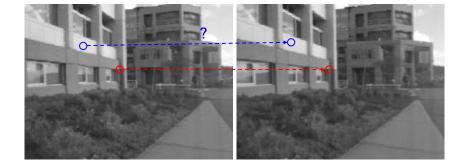
- We reserve the rights for not including late homework for artifact voting.
- Project #2 handout will be available on the web later this week.



Features

DigiVFX

 Also known as interesting points, salient points or keypoints. Points that you can easily point out their correspondences in multiple images using only local information.



Desired properties for features

- Distinctive: a single feature can be correctly matched with high probability.
- Invariant: invariant to scale, rotation, affine, illumination and noise for robust matching across a substantial range of affine distortion, viewpoint change and so on. That is, it is repeatable.

Applications

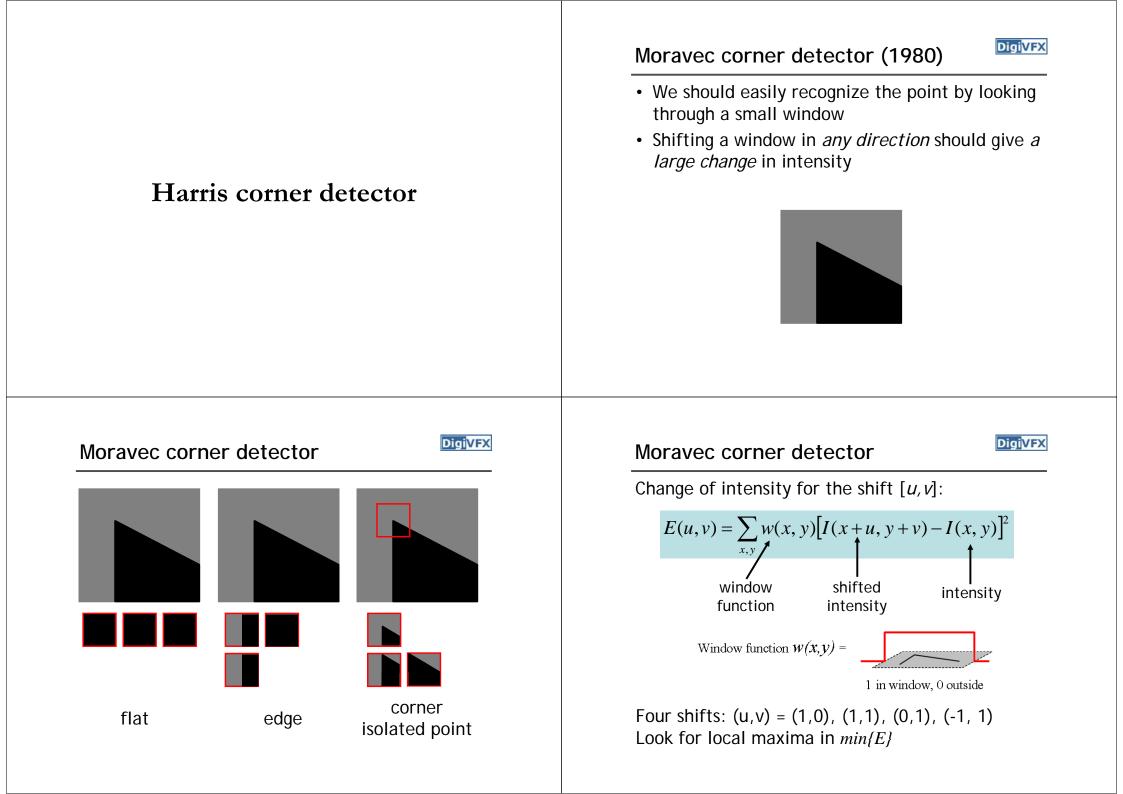
Digi<mark>VFX</mark>

- Object or scene recognition
- Structure from motion
- Stereo
- Motion tracking
- ...

Components

• Feature detection: locate where they are

- Feature description: describe what they are
- Feature matching: decide whether two are the same one



Problems of Moravec detector

Digi<mark>VFX</mark>

- Noisy response due to a binary window function
- Only a set of shifts at every 45 degree is considered
- Only minimum of E is taken into account
- ⇒ Harris corner detector (1988) solves these problems.

Harris corner detector

Noisy response due to a binary window function ➤ Use a Gaussian function

$$w(x, y) = \exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

Window function w(x, y) =

Harris corner detector

DigiVFX

Only a set of shifts at every 45 degree is considered

Consider all small shifts by Taylor's expansion

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u, y+v) - I(x,y)]^2$$

= $\sum_{x,y} w(x,y) [I_x u + I_y v + O(u^2, v^2)]^2$
 $E(u,v) = Au^2 + 2Cuv + Bv^2$
 $A = \sum_{x,y} w(x,y) I_x^2(x,y)$

$$B = \sum_{x,y} w(x, y) I_y^2(x, y)$$
$$C = \sum_{x,y} w(x, y) I_x(x, y) I_y(x, y)$$

Harris corner detector

Digi<mark>VFX</mark>

Equivalently, for small shifts [u, v] we have a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u, v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

, where \boldsymbol{M} is a 2×2 matrix computed from image derivatives:

$$\mathbf{M} = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

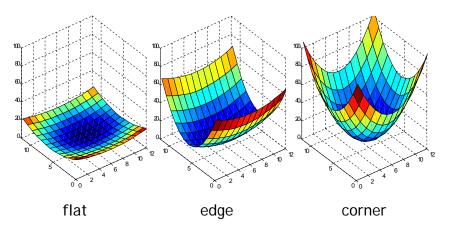
Harris corner detector (matrix form)

$$E(\mathbf{u}) = |I(\mathbf{x}_0 + \mathbf{u}) - I(\mathbf{x}_0)|^2$$
$$= \left| \left(I_0 + \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u} \right) - I_0 \right|^2$$
$$= \left| \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u} \right|^2$$
$$= \mathbf{u}^T \frac{\partial I}{\partial \mathbf{u}} \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u}$$
$$= \mathbf{u}^T \mathbf{M} \mathbf{u}$$

Harris corner detector

DigiVFX

High-level idea: what shape of the error function will we prefer for features?



Harris corner detector

Only minimum of *E* is taken into account ➤A new corner measurement by investigating the shape of the error function

 $\mathbf{u}^{T}\mathbf{M}\mathbf{u}$ represents a quadratic function; Thus, we can analyze *E*'s shape by looking at the property of \mathbf{M}

Quadratic forms

DigiVFX

 Quadratic form (homogeneous polynomial of degree two) of *n* variables x_i

$$\sum_{\substack{i=1\\i\leq j}}^{n} \sum_{\substack{j=1\\j\in j}}^{n} c_{ij} x_i x_j$$

Examples

$$4x_1^2 + 5x_2^2 + 3x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

= $\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

Symmetric matrices

DigiVFX

÷

DigiVFX

• Quadratic forms can be represented by a real symmetric matrix **A** where $\int c_{ij} \quad \text{if } i = j$,

$a_{ij} = \begin{cases} \frac{1}{2}c_{ij} & \text{if } i < j, \\ \\ \frac{1}{2}c_{ji} & \text{if } i > j. \end{cases}$ $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}x_{i}x_{j} = \sum_{i=1}^{n} \sum_{i=1}^{n} a_{ij}x_{i}x_{j}$

$$\overline{\underset{i\leq j}{\overset{i=1}{\underset{i\leq j}{j=1}}}} \quad \overline{\underset{i=1}{\overset{i=1}{\underset{j=1}{j=1}}}} \\ = (x_1 \quad \dots \quad x_n) \begin{pmatrix} a_{11} \quad \dots \quad a_{1n} \\ \vdots & \vdots \\ a_{n1} \quad \dots \quad a_{nn} \end{pmatrix} \\ = \mathbf{x}^t A \mathbf{x}$$

Eigenvectors of symmetric matrices

suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ fact: there is a set of orthonormal eigenvectors of A $A = QAQ^T$ $\mathbf{x}^T A \mathbf{x}$ $= (\mathbf{Q}^T \mathbf{x})^T A(\mathbf{Q}^T \mathbf{x})$ $= \mathbf{y}^T A \mathbf{y}$ $= (\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{y})^T (\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{y})$

$= \mathbf{z}^{\mathrm{T}}\mathbf{z}$

Eigenvalues of symmetric matrices

Digi<mark>VFX</mark>

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ fact: the eigenvalues of A are real

suppose
$$Av = \lambda v, v \neq 0, v \in \mathbf{C}^{n}$$

 $\overline{v}^{T}Av = \overline{v}^{T}(Av) = \lambda \overline{v}^{T}v = \lambda \sum_{i=1}^{n} |v_{i}|^{2}$
 $\overline{v}^{T}Av = \overline{(Av)}^{T}v = \overline{(\lambda v)}^{T}v = \overline{\lambda} \sum_{i=1}^{n} |v_{i}|^{2}$
we have $\lambda = \overline{\lambda}, i.e., \lambda \in \mathbf{R}$
(hence, can assume $v \in \mathbf{R}^{n}$)

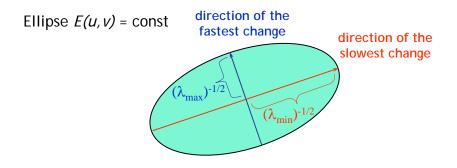
Brad Osgood

Harris corner detector

DigiVFX

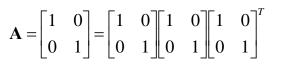
Intensity change in shifting window: eigenvalue analysis

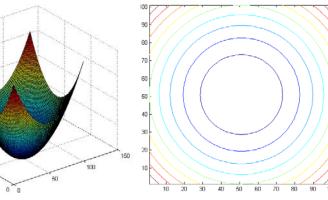
$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \mathbf{M} \begin{bmatrix} u\\v \end{bmatrix}$$
 λ_1, λ_2 - eigenvalues of \mathbf{M}

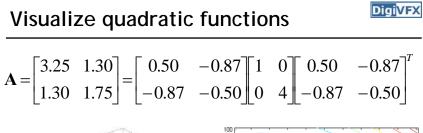


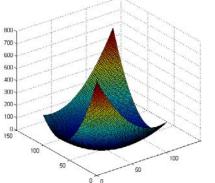
Visualize quadratic functions

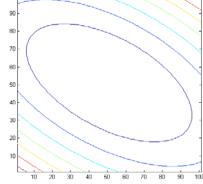
Digi<mark>VFX</mark>



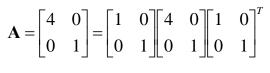


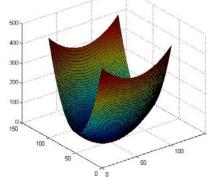


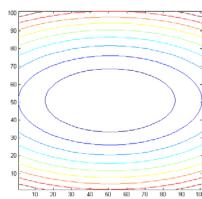


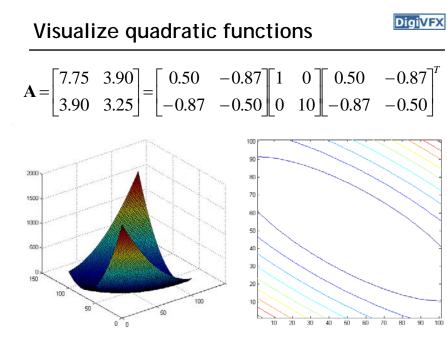


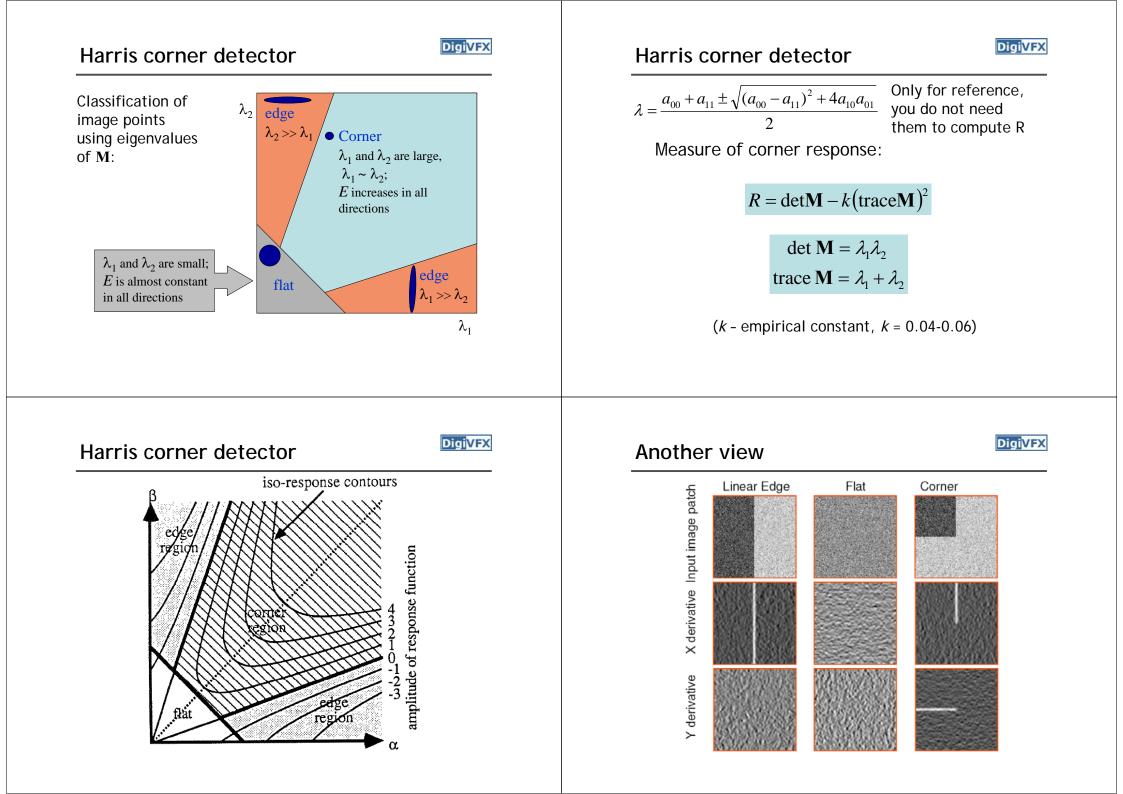
Visualize quadratic functions

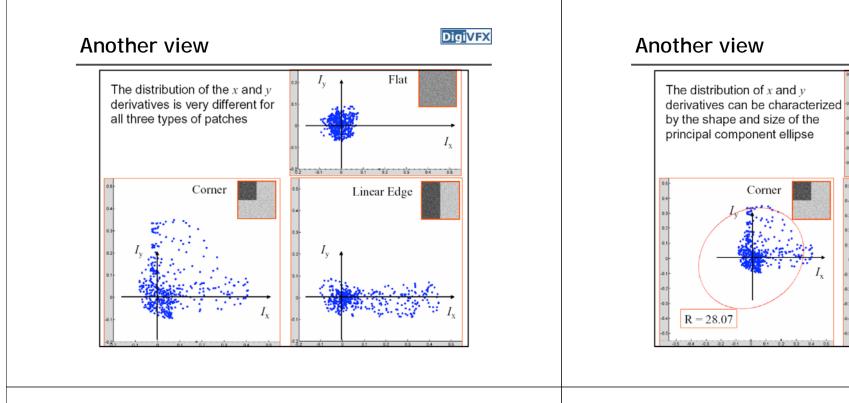












Summary of Harris detector

DigiVFX

1. Compute x and y derivatives of image

$$I_x = G_{\sigma}^x * I \qquad I_y = G_{\sigma}^y * I$$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x \qquad I_{y^2} = I_y \cdot I_y \qquad I_{xy} = I_x \cdot I_y$$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

Summary of Harris detector

Corner

DigiVFX

4. Define the matrix at each pixel

$$M(x, y) = \begin{bmatrix} S_{x^{2}}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y^{2}}(x, y) \end{bmatrix}$$

- 5. Compute the response of the detector at each pixel $R = \det M - k(\operatorname{trace} M)^2$
- 6. Threshold on value of R; compute nonmax suppression.

Flat

R = 0.25

R = 0.3328

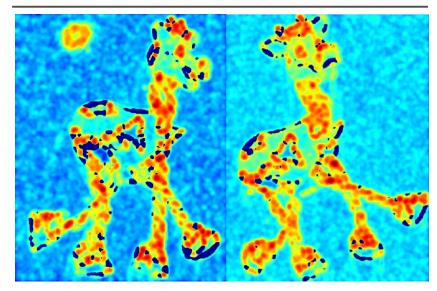
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

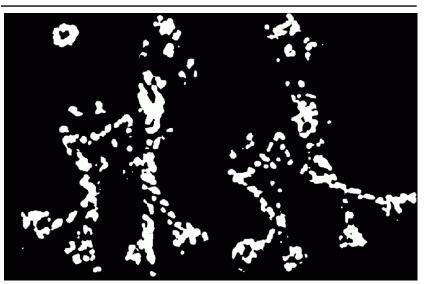
Linear Edge

Harris corner detector (input)

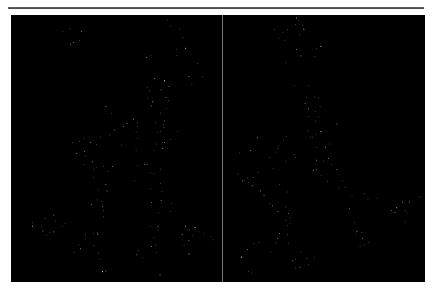
DigiVFX

Corner response R





Local maximum of R



Digi<mark>VFX</mark>

Harris corner detector

Harris detector: summary

• Average intensity change in direction [*u*, *v*] can be expressed as a bilinear form:

$$E(u,v) \cong \begin{bmatrix} u, v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

• Describe a point in terms of eigenvalues of *M*: *measure of corner response*

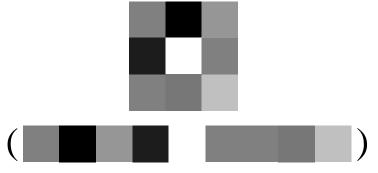
$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2$$

• A good (corner) point should have a *large intensity change* in *all directions*, i.e. *R* should be large positive

Now we know where features are

DigiVFX

- But, how to match them?
- What is the descriptor for a feature? The simplest solution is the intensities of its spatial neighbors. This might not be robust to brightness change or small shift/rotation.

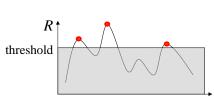


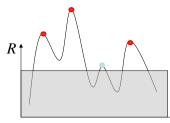
Harris detector: some properties

• Partial invariance to *affine intensity* change

 \checkmark Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

✓ Intensity scale: $I \rightarrow a I$



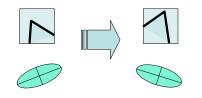


x (image coordinate)

x (image coordinate)

Harris Detector: Some Properties

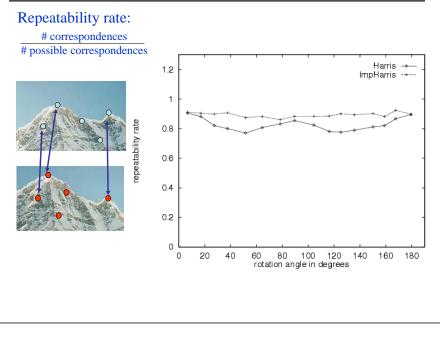
Rotation invariance



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

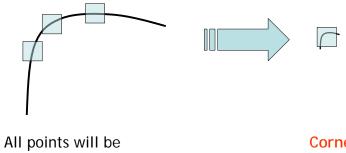
Corner response R is invariant to image rotation

Harris Detector is rotation invariant



Harris Detector: Some Properties

• But: non-invariant to *image scale*!

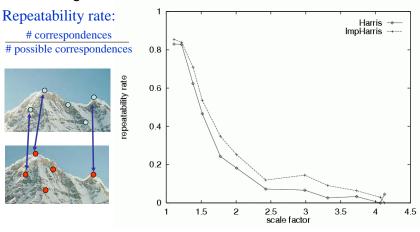


classified as edges

Corner !

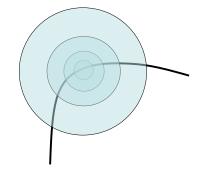
Harris detector: some properties

• Quality of Harris detector for different scale changes



Scale invariant detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



Scale invariant detection

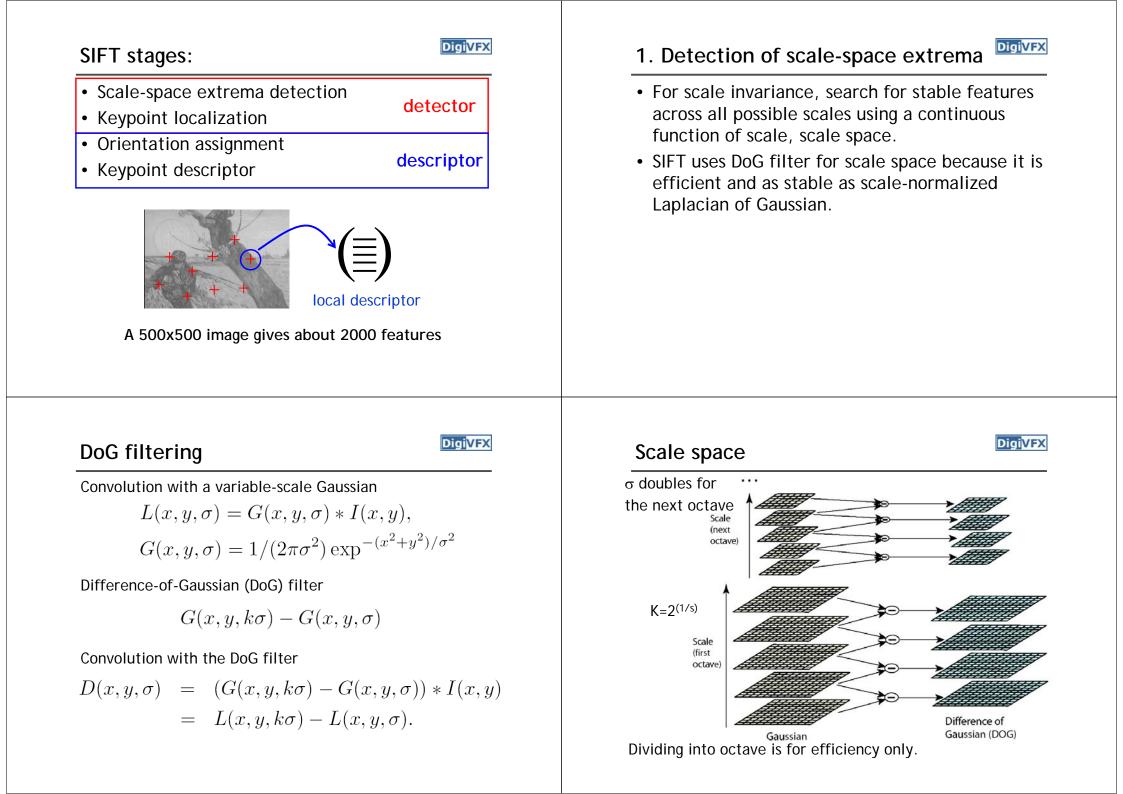
- The problem: how do we choose corresponding circles *independently* in each image?
- Aperture problem

Digi<mark>VFX</mark>

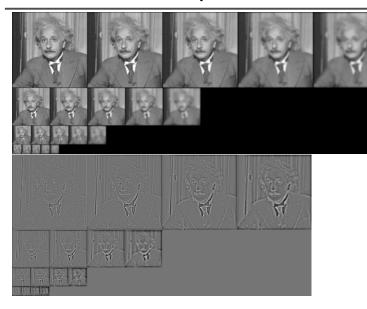
SIFT (Scale Invariant Feature Transform)

SIFT

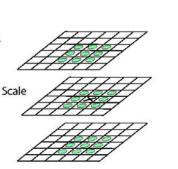
• SIFT is an carefully designed procedure with empirically determined parameters for the invariant and distinctive features.



Detection of scale-space extrema



Keypoint localization

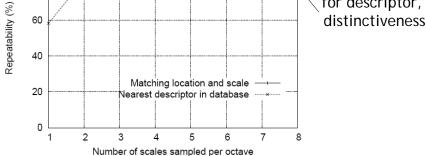


X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency

- It is impossible to sample the whole space, tradeoff efficiency with completeness.
- Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations. (rotation, scaling, affine stretch, brightness and contrast change, adding noise...)

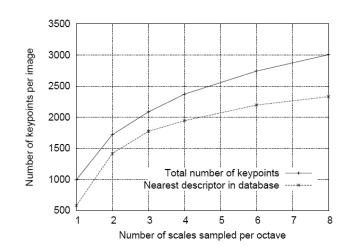
Decide scale sampling frequency



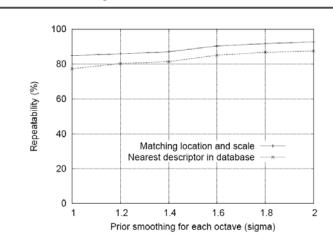
s=3 is the best, for larger s, too many unstable features

Decide scale sampling frequency

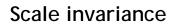
DigiVFX

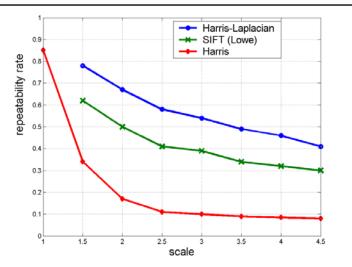


Pre-smoothing



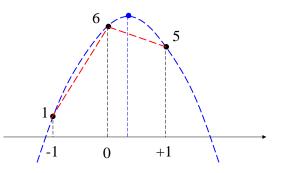
 σ =1.6, plus a double expansion





2. Accurate keypoint localization

- Reject points with low contrast (flat) and poorly localized along an edge (edge)
- Fit a 3D quadratic function for sub-pixel maxima



2. Accurate keypoint localization

DigiVFX

 $f(x) \approx 6 + 2x + \frac{-6}{2}x^2 = 6 + 2x - 3x^2$

 $f'(x) = 2 - 6x = 0 \longrightarrow \hat{x} = \frac{1}{3}$

 $f(\hat{x}) = 6 + 2 \cdot \frac{1}{3} - 3 \cdot \left(\frac{1}{3}\right)^2 = 6\frac{1}{3}$

- Reject points with low contrast and poorly localized along an edge
- Fit a 3D quadratic function for sub-pixel maxima $6\frac{1}{3}$ $f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2}x^2$

Accurate keypoint localization

+1

 $0 \frac{1}{3}$

/-1

Digi<mark>VFX</mark>

• Taylor expansion in a matrix form, **x** is a vector, *f* maps **x** to a scalar

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^{T} \mathbf{x} + \frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} f}{\partial \mathbf{x}^{2}} \mathbf{x} \quad \text{Hessian matrix} \text{(often symmetric)}$$

$$\text{gradient} \begin{pmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{1}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{pmatrix} \quad \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \end{pmatrix}$$

2. Accurate keypoint localization

• Taylor series of several variables

 $T(x_1,\cdots,x_d) = \sum_{n_1=0}^{\infty} \cdots \sum_{n_d=0}^{\infty} \frac{\partial^{n_1}}{\partial x_1^{n_1}} \cdots \frac{\partial^{n_d}}{\partial x_d^{n_d}} \frac{f(a_1,\cdots,a_d)}{n_1!\cdots n_d!} (x_1-a_1)^{n_1} \cdots (x_d-a_d)^{n_d}$

• Two variables

$$f(x, y) \approx f(0,0) + \left(\frac{\partial f}{\partial x}x + \frac{\partial f}{\partial y}y\right) + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x \partial x}x^2 + 2\frac{\partial^2 f}{\partial x \partial y}xy + \frac{\partial^2 f}{\partial y \partial y}y^2\right)$$
$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) \approx f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) + \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right]\begin{bmatrix}x\\y\end{bmatrix} + \frac{1}{2}\begin{bmatrix}x \quad y\end{bmatrix}\left[\frac{\partial^2 f}{\partial x \partial x} \quad \frac{\partial^2 f}{\partial x \partial y}\\\frac{\partial^2 f}{\partial x \partial y} \quad \frac{\partial^2 f}{\partial y \partial y}\right]\begin{bmatrix}x\\y\end{bmatrix}$$
$$f(\mathbf{x}) \approx f(\mathbf{0}) + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2}\mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

2D illustration

Digi<mark>VFX</mark>

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\frac{f_{-1,1} \quad f_{0,1} \quad f_{1,1}}{f_{-1,0} \quad f_{0,0} \quad f_{1,0}} \qquad \qquad \frac{\partial f}{\partial x} = (f_{1,0} - f_{-1,0})/2$$

$$\frac{\partial f}{\partial y} = (f_{0,1} - f_{0,-1})/2$$

$$\frac{\partial^2 f}{\partial y^2} = f_{1,0} - 2f_{0,0} + f_{-1,0}$$

$$\frac{\partial^2 f}{\partial y^2} = f_{0,1} - 2f_{0,0} + f_{0,-1}$$

$$\frac{\partial^2 f}{\partial x \partial y} = (f_{-1,-1} - f_{-1,1} - f_{1,-1} + f_{1,1})/4$$

DigiVFX

2D example

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$
$$\boxed{\begin{array}{c|c} -17 & -1 & \\ -9 & 7 & 7 \\ \hline -9 & 7 & 7 \\ \hline -9 & 7 & 7 \end{array}}$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{g}^{\mathrm{T}} \mathbf{x}$$

$$= \begin{pmatrix} g_{1} & \cdots & g_{n} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \qquad \frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial h}{\partial x_{1}} \\ \vdots \\ \frac{\partial h}{\partial x_{n}} \end{pmatrix} = \begin{pmatrix} g_{1} \\ \vdots \\ g_{n} \end{pmatrix} = \mathbf{g}$$

$$= \sum_{i=1}^{n} g_{i} x_{i}$$

Derivation of matrix form $f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$ $h(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = (x_1 \cdots x_n)^T \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $= \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$ $\frac{\partial h}{\partial \mathbf{x}_1} = \begin{pmatrix} \frac{\partial h}{\partial x_1} \\ \vdots \\ \frac{\partial h}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{i1} x_i + \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{i=1}^n a_{in} x_i + \sum_{j=1}^n a_{nj} x_j \end{pmatrix} = \mathbf{A}^T \mathbf{x} + \mathbf{A} \mathbf{x}$ $= (\mathbf{A}^T + \mathbf{A}) \mathbf{x}$

Derivation of matrix form $f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$ $\frac{\partial h}{\partial \mathbf{x}} = \frac{\partial f}{\partial \mathbf{x}}^T + \frac{1}{2} \left(\frac{\partial^2 f}{\partial \mathbf{x}^2} + \frac{\partial^2 f}{\partial \mathbf{x}^2}^T \right) \mathbf{x} = \frac{\partial f}{\partial \mathbf{x}}^T + \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$ $\mathbf{x}_m = -\frac{\partial^2 f}{\partial \mathbf{x}^2}^{-1} \frac{\partial f}{\partial \mathbf{x}}$

Accurate keypoint localization

DigiVFX

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

- x is a 3-vector
- Change sample point if offset is larger than 0.5
- Throw out low contrast (<0.03)

Accurate keypoint localization

• Throw out low contrast
$$|D(\hat{\mathbf{x}})| < 0.03$$

 $D(\hat{\mathbf{x}}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \hat{\mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \hat{\mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \left(-\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \left(-\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-T} \frac{\partial^2 D}{\partial \mathbf{x}^2} \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$
 $= D + \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T (-\hat{\mathbf{x}})$
 $= D + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^T \hat{\mathbf{x}}$

Eliminating edge responses

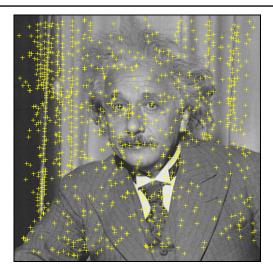
Digi<mark>VFX</mark>

 $\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix}$ Hessian matrix at keypoint location $\operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$ $\operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$

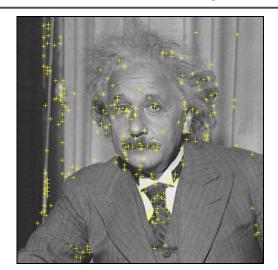
Let
$$\alpha = r\beta$$
 $\frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r\beta^2}$

Keep the points with $\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$. r=10

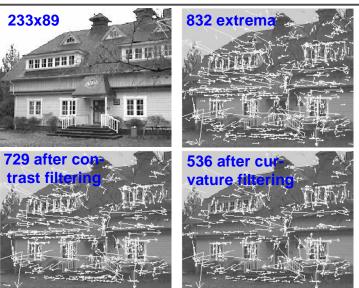
Maxima in D



Remove low contrast and edges



Keypoint detector



3. Orientation assignment

- By assigning a consistent orientation, the keypoint descriptor can be orientation invariant.
- For a keypoint, L is the Gaussian-smoothed image with the closest scale,

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

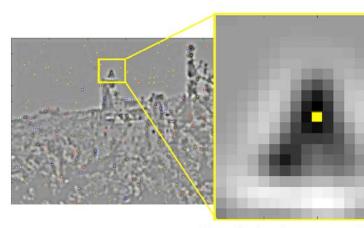
$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$

(Lx, Ly)
m
 θ
....
orientation histogram (36 bins)

DigiVFX Orientation assignment Dx Dy Μ

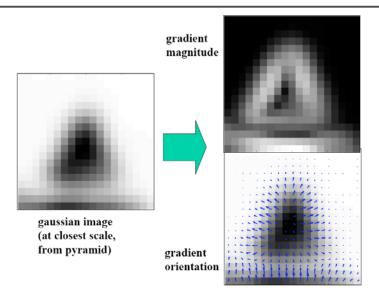
Orientation assignment

Digi<mark>VFX</mark>

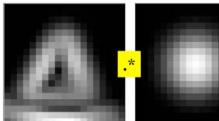


•Keypoint location = extrema location •Keypoint scale is scale of the DOG image

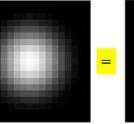
Orientation assignment



Orientation assignment

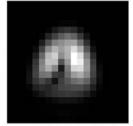


gradient magnitude



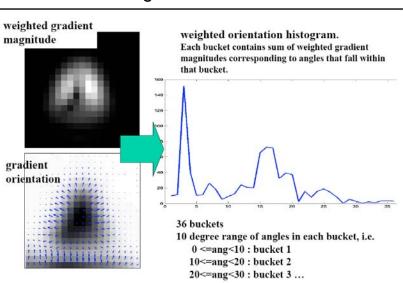
weighted by 2D gaussian kernel

 $\sigma = 1.5$ *scale of the keypoint



weighted gradient magnitude

Orientation assignment



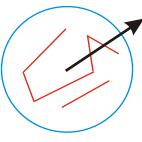
Orientation assignment

DigiVFX



Orientation assignment

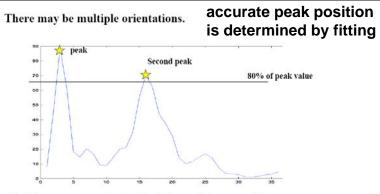
DigiVFX



36-bin orientation histogram over 360°,
weighted by m and 1.5*scale falloff
Peak is the orientation
Local peak within 80% creates multiple orientations
About 15% has multiple orientations

and they contribute a lot to stability

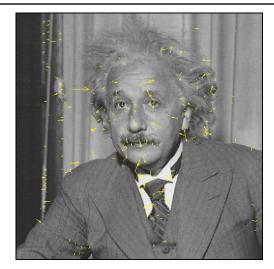
Orientation assignment



In this case, generate duplicate keypoints, one with orientation at 25 degrees, one at 155 degrees.

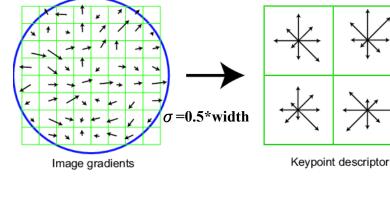
Design decision: you may want to limit number of possible multiple peaks to two.

SIFT descriptor

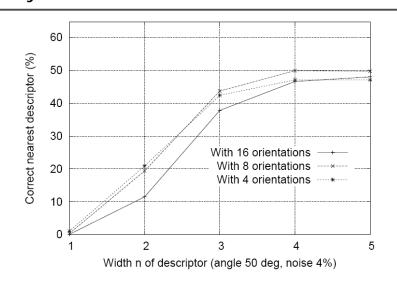


4. Local image descriptor

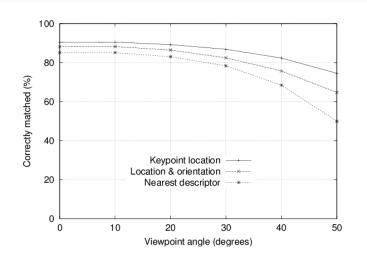
- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms (w.r.t. key orientation)
- 8 orientations x 4x4 histogram array = 128 dimensions
- Normalized, clip values larger than 0.2, renormalize



Why 4x4x8?



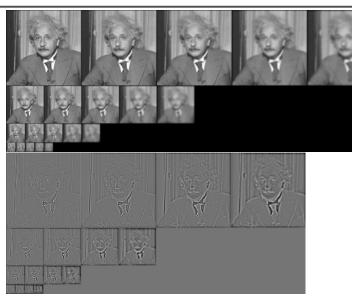
Sensitivity to affine change



Feature matching

for a feature x, he found the closest feature x₁ and the second closest feature x₂. If the distance ratio of d(x, x₁) and d(x, x₁) is smaller than 0.8, then it is accepted as a match.

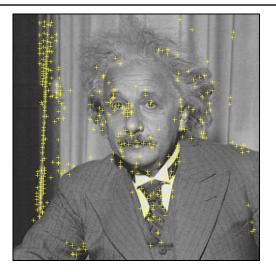
SIFT flow

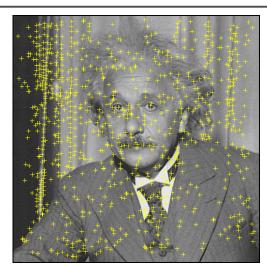


Remove low contrast

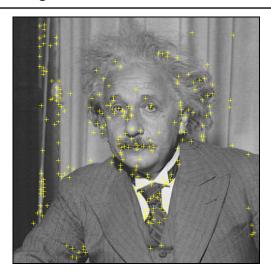
Digi<mark>VFX</mark>

DigiVFX

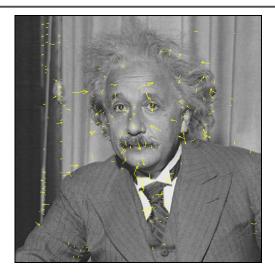


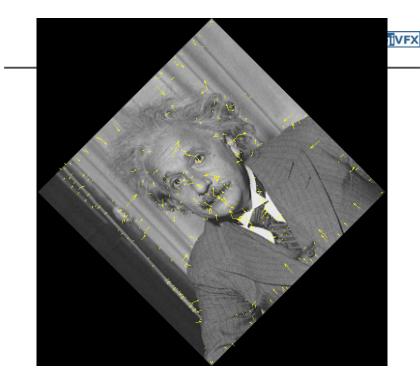


Remove edges



SIFT descriptor





Estimated rotation

DigiVFX

- Computed affine transformation from rotated image to original image: 0.7060 -0.7052 128.4230 0.7057 0.7100 -128.9491
 - 0 0 1.0000
- Actual transformation from rotated image to original image:

0.7071 -0.7071 128.6934

0.7071 0.7071 -128.6934

0 0 1.0000

Reference

• Chris Harris, Mike Stephens, <u>A Combined Corner and Edge Detector</u>, 4th Alvey Vision Conference, 1988, pp147-151.

- David G. Lowe, <u>Distinctive Image Features from Scale-Invariant</u> <u>Keypoints</u>, International Journal of Computer Vision, 60(2), 2004, pp91-110.
- <u>SIFT Keypoint Detector</u>, David Lowe.
- Matlab SIFT Tutorial, University of Toronto.