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Announcements

e Project #1 was due at midnight Friday. You
have a total of 10 delay days without penalty,
but you are advised to use them wisely.

« We reserve the rights for not including late
homework for artifact voting.

» Project #2 handout will be available on the web
later this week.
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Features LIEIVEX

» Also known as interesting points, salient points
or keypoints. Points that you can easily point
out their correspondences in multiple images
using only local information.

Desired properties for features

« Distinctive: a single feature can be correctly
matched with high probability.

e Invariant: invariant to scale, rotation, affine,
illumination and noise for robust matching
across a substantial range of affine distortion,
viewpoint change and so on. That is, it is
repeatable.

Applications

e Object or scene recognition
Structure from motion
Stereo

Motion tracking

Components TRV

e Feature detection: locate where they are
e Feature description: describe what they are

e Feature matching: decide whether two are the
same one




Harris corner detector

Moravec corner detector (1980)

e We should easily recognize the point by looking
through a small window

« Shifting a window in any direction should give a
large change in intensity

Digil24
Moravec corner detector .

corner
isolated point

flat edge
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Moravec corner detector .

Change of intensity for the shift [u,v]:

E(u,v) =Y w(x, Y)[1(x+u,y+v)—1(x,y)[

7
window shifted intensity
function intensity

Window function W( x,y) =

1 in window, 0 outside

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)
Look for local maxima in min{E}




Problems of Moravec detector

» Noisy response due to a binary window function

e Only a set of shifts at every 45 degree is
considered

e Only minimum of E is taken into account

= Harris corner detector (1988) solves these
problems.

Harris corner detector

Noisy response due to a binary window function
» Use a Gaussian function

wx,y) = exp[— %}

Window function W( x,y) =

Gaussian

Harris corner detector

Harris corner detector

Only a set of shifts at every 45 degree is considered
» Consider all small shifts by Taylor’s expansion

E(u,v) = > w(x, y)[I(x+u, y+v) = 1(x, )
= > w(x, y)[lxu + va+O(u2,v2)]2

E(u,v) = Au® + 2Cuv + Bv®
A= w(x,y)I{(xy)
X,y

B=> w(x,y)IZ(x,y)

C =2 wix L&, (xY)

Equivalently, for small shifts [u,v] we have a bilinear
approximation:

E(u,v) = [u,v]M m

, Wwhere M is a 2x2 matrix computed from image derivatives:

IZ

I 1
m-gw) 5

X"y




Harris corner detector (matrix form)

E(u) = 1(x, +u)—1(x,) |2

. il
Harris corner detector

Only minimum of E is taken into account

»A new corner measurement by investigating the
shape of the error function

u' Mu represents a quadratic function; Thus, we
can analyze E’s shape by looking at the property
of M

. il
Harris corner detector

High-level idea: what shape of the error function
will we prefer for features?

corner

Quadratic forms

e Quadratic form (homogeneous polynomial of
degree two) of n variables x;

n 7
E E (ff?jjil).';il?j

=1 j=1

i<j
e Examples
422 4 522 4 322 + 27170 + 42 23 + 62023
4 1 2 I
Z(:L“l o iL‘g) 1 5 3 o
2 3 3 I3




Symmetric matrices

e Quadratic forms can be represented by a real

- - - gi\j
Eigenvalues of symmetric matrices

suppose A € R"*" is symmetric, i.e., A = AT

symmetric matrix A where cij iti=7, fact: the eigenvalues of A are real
Qij = %(".;J' if1 <7, n
| suppose Av = v, v #0, v e C
n n n n l(».. if i > }; n
3 Cji J- _ . _ .
Z Z(:;J;r;;v_; = Z Zu.,-_’,-:u,-:;:;j- 7l A =7 (Av) = \olo = A E v |2
i=1 j=1 i=1 j=1 i—1
i<j - - n
air ... Qip £ ?TA‘U _ (A‘U) v — ()\‘U) v — \ E : I,Ul_lz
=(xy ... x,) _ 1
. we have A = A, i.e., A€ R
" dp1  --. Onn Ln
—x"Ax (hence, can assume v € R")
Brad Osgood

. - - il
Eigenvectors of symmetric matrices

suppose A € R"*" is symmetric, s.e., A = AT
fact: there is a set of orthonormal eigenvectors of A

A=QAQT
X' AX
=x"QAQ"x 1. z'z=1
T VAt 0 A,

-(Q"x)' A[Q") i e s
=y Ay i

1 \I 1 S~— "//XTX = 1
= (aty) aty)

T
=7 Z

Harris corner detector

Intensity change in shifting window: eigenvalue analysis

E(u,v) = [U,V]M |:U:| A1, A, —eigenvalues of M
\Y
direction of the

fastest change direction of the
slowest change

Ellipse E(u,v) = const




Visualize quadratic functions
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Visualize quadratic functions

A 325 1.30] [ 050 -087]1 0] 050 —0.87T
1130 1.75| |-087 -050|0 4[-087 -050

100
% E
ail //’/ - - Ry 1
o | . .
| A ™
Hll ‘\ ™ A
", "\I
™ N
= " N
. \
4n 4
s
# -
/I
- n — - i
0},
. 1 ’ Al ki 40 All ) Kl /0 Hl €« 1o

Visualize quadratic functions

\_|775 390) [050 -087[1 07050 -087|
13.90 3.25| |-0.87 —-050[0 10[|-0.87 —050

]

]

S - L L - i S i a
WA @ 40 A0 R/ R W10




Harris corner detector

DigiY2%

Classification of
image points
using eigenvalues
of M:

A4 and A, are small;

E is almost constant
in all directions

A

L4
edge

A, >>\ /@ Corner

A4 and A, are large,
A~ Ay

E increases in all
directions

- Digill24
Harris corner detector

n a2 Only for reference,
1= oo 8y —\/(aoo a;;)” +4a,,3y you do not need

2 them to compute R
Measure of corner response:

R = detM — k(traceM )’

detM = A4,
traceM =4, + 4,

M (k - empirical constant, k = 0.04-0.06)
. |:"0”UFX - |]!0”UFX
Harris corner detector Another view

iso-response contours 5 Linear Corner

E £ o _
(4]
2
- E
S °
4 3 g
3§ 2
4 :
=1 >

9

@
33 &
: [=9 é
@O
8 3




Another view

Flat
The distribution of the x and »

derivatives is very different for =
all three types of patches
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Another view

R = 28.07
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The distribution of x and v
derivatives can be characterized '
by the shape and size of the
principal component ellipse
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Summary of Harris detector

Summary of Harris detector

1. Compute x and y derivatives of image

— X — Y
I, =Gkxl  1,=G)*I

2. Compute products of derivatives at every pixel

l,=11 l.=1,-1 I, =1 -1

x2 T TxTx L xy — Ix o ly

3. Compute the sums of the products of
derivatives at each pixel
S,=G_*I,

X X

= %k —
S,=G,*l, S =G xl,

4. Define the matrix at each pixel
SXZ (Xl y) Sxy (X1 y)

M (X,

y) =

Sy(Xy) S,(xY)

5. Compute the response of the detector at each

pixel

R = det M —k(traceM )’

6. Threshold on value of R; compute nonmax
suppression.




Corner response R

Local maximum of R

Harris corner detector (input)

Threshold on R




Harris corner detector

- Digi
Harris detector: summary =

« Average intensity change in direction [u,v] can be
expressed as a bilinear form:

E(u,v);[u,v]Mm

e Describe a point in terms of eigenvalues of M:
measure of corner response

R=44,—k(4+4,)

= A good (corner) point should have a large intensity
change in all directions, i.e. R should be large
positive

—
Now we know where features are LV

e But, how to match them?

» What is the descriptor for a feature? The
simplest solution is the intensities of its spatial
neighbors. This might not be robust to
brightness change or small shift/rotation.

(M. . )

Harris detector: some properties DigilTad

e Partial invariance to affine intensity change

v Only derivatives are used =>
invariance to intensity shift | > I +b

v Intensity scale: | —» al

RN M N
FEEN R

X (image coordinate) X (image coordinate)




Harris Detector: Some Properties

Harris Detector is rotation invariant LIEIVEX

e Rotation invariance

™ HH:>/\
&z B

Ellipse rotates but its shape (i.e. eigenvalues) remains
the same

Corner response R is invariant to image rotation

Repeatability rate:

# correspondences
# possible correspondences

I Harris —-— |
12 ImpHarris -+

08 f

06 |

repeatability rate

04 |

02

0 20 40 60 80 100 120 140 160 180
rotation angle in degrees

Harris Detector: Some Properties PIFTVEX

Harris detector: some properties TRV

e But: non-invariant to image scale!

=) &

All points will be Corner !
classified as edges

e Quality of Harris detector for different scale

changes
TH | 1
Repeatability rate: Harrts
# correspondences R Imphlanisheay
# possible correspondences 0.8 -
£
g 06 |
z
2
©
2  o4f
@
02}
q . . . . ‘
1 15 2 25 3 35 4 45

scale factor




Scale invariant detection

» Consider regions (e.g. circles) of different sizes
around a point

» Regions of corresponding sizes will look the
same in both images

=

Scale invariant detection

* The problem: how do we choose corresponding
circles independently in each image?

» Aperture problem

SIFT
(Scale Invariant Feature Transform)

SIFT

e SIFT is an carefully designed procedure with
empirically determined parameters for the
invariant and distinctive features.




SIFT stages:
= Scale-space extrema detection
. o detector
» Keypoint localization
= Orientation assignment _
= Keypoint descriptor descriptor

local descriptor

A 500x500 image gives about 2000 features

1. Detection of scale-space extrema

» For scale invariance, search for stable features
across all possible scales using a continuous
function of scale, scale space.

« SIFT uses DoG filter for scale space because it is
efficient and as stable as scale-normalized
Laplacian of Gaussian.

DoG filtering

Convolution with a variable-scale Gaussian

L(z,y,0) = G(a,y,0) * I(z,y),
G(z,y,0) =1/(2m0?) exp_(;1"2+yz)/‘72
Difference-of-Gaussian (DoG) filter
G(x,y, ko) — G(z,y,0)

Convolution with the DoG filter
D(z.y.0) = (Gla,y.ko) — G(z,y.0)) « I(z,y)

Scale space

o doubles for

th t oct = >
e next oc ?CZE »
(next ﬁ:

octave)

K=20/9)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Dividing into octave is for efficiency only.




- DigilV 24
Detection of scale-space extrema
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Keypoint localization Digi[24

X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency X

e It is impossible to sample the whole space,
tradeoff efficiency with completeness.

» Decide the best sampling frequency by
experimenting on 32 real image subject to
synthetic transformations. (rotation, scaling,
affine stretch, brightness and contrast change,
adding noise...)

Decide scale sampling frequency RIFIVFX

100 for detector,
— | repeatability

80

\ for descriptor,
80 ¢ distinctiveness

40

Repeatability (%)

Matching location and scale ——
20 earest descriptor in database ----*--- ]

1 2 3 4 5 8 7 8
Number of scales sampled per octave

s=3 is the best, for larger s, too many unstable features




. ; DigiYl2d . DigiI24

Decide scale sampling frequency Pre-smoothing

100 .

3500 . -
> 3000 — 80 i
o] T —_
% 1 ) |
g 2500 o g\ 60 SRS SRS ......................
2 =z i
s :
8 2000 S 40 |
e & Matching location and scale ——
5 1500 Nearest descriptor in database
© 20 |
E= P
% Total number of keypoints —
= 1000 7 . ; ]
Nearest descriptor in database —-= 0 | |
1 12 14 16 18 2
500 ) ) : ‘ : Prior smoothing for each octave (sigma)
1 2 3 4 5 6 7 8
Number of scales sampled per octave i
o =1.6, plus a double expansion
BIFTVEX BIFTVEX

Scale invariance

1 T I T T
—e— Harris-Laplacian
09l =~ SIFT (Lowe)
| =+ Harris

repeatability rate

4.5

2. Accurate keypoint localization

e Reject points with low contrast (flat) and
poorly localized along an edge (edge)

« Fit a 3D quadratic function for sub-pixel
maxima

N
AL N
TIN5
| ~
2R =
/71 P
// I I o\
// P LA
1/ P oo
// P 3 \
| | \
1 A
/] - 1 \
1 \
/- + \
/ 1 0 1 \




2. Accurate keypoint localization

» Reject points with low contrast and poorly
localized along an edge

e Fit a 3D quadratic function for sub-pixel

2. Accurate keypoint localization

e Taylor series of several variables

o0 anl and ._‘__.‘.)
( I‘d) = z z 81«"1 - SI? f(al_ ag) (Tl_a'l)nl L. (Id_a_d)nd

ny=0 ng=0

ny!ong!

maxima 1 " )
65 f(x)~ f(0)+ f'(0)x+ f 2(0) NG e Two variables
6 < 1 82f o’ f
| -6 o ot 2
/’ \\\5 F(0 =6+ 2x+—x* =6+ 2x-3%° f(xy)= f(00)+( X+ y 2(6x8x axayxy oy j
Job N . ot o°f
/// \\\ F()=2-6x=0 — k= quD“ f([OD {af af} } 1 a)éax a)éay [x}
. ! f o°f
1y P i N f(0=6 2-1—3-(1]2:61 y 2 0 gy
/i | } \\\ (X)=6+ 3 3 3 I xdy oydy
/-1 0l + \ f(x)~ f(0)+— x+=
/ 3 \ (X) ( ) ox 2
- - - gi\' - - gi\'
Accurate keypoint localization “Tved 2D illustration “Tved
= Taylor expansion in a matrix form, x is a vector, flx) = f+ oft Ll 0 f
f maps x to a scalar ' ox x ‘>X c)x-X
. Coft 1 L0
f(x)=f+ Ix X + 53X 552X Hessian matrix foia| for | fia of S
' = | (often symmetric) a0 = o= fa0)/2
gradient [ o’f o't o' I-10| foo | fro L~ o= o2
oX, x> Ox,0x, OX,0X., a3 A
of 82 f 82 f 62 f Ffo11| fo1| f11 el Jio0—2fo0+ f-10
o P , o,
a?(l 6)(2.6)(1 8)(22 ' 8)(2.8)(n 3 Joa =200+ fo
: : : .. : 0* f
of aZf aZf 621: (.;‘“.‘i; = (for-1—faa— fia+ fin)/4
oX, Ox OX, OXx, X

n




2D example Derivation of matrix form
o of! 1,0 f . of! 1 O f
fx) =T+ 50 ¥+ 3% 5raX fx) = [+ 50 X+ 3% 52X
17| -1 | -1 h(x)=g'x oh
X ox 9
. oh 1 ;
'9 7 7 :(gl gn . - = : = :g
X Ox 8_h g
'9 7 7 N n axn n
:zgixi
i=1
Derivation of matrix form pioi Derivation of matrix form RIFIVFX
L oft ;O f _oft 1O f
fx)=f+ ox X+ 2X ()X"X fx)=f+ ox X+ 2X ()X"X
PPN X
; . S oh of " 1(a%f &2f' | of T 8%
h(x)=x"Ax =(x, - x)| ¢ . | —=— 2| =5ty [X=— +—X
Oox Ox 2| 0x 1) 1) ¢ 1) ¢
_ZZa a‘nl a‘nn Xn
R 9 p—1
;hj_l n n X, = — ﬁ g
— Z A X + Z & X; . ox?  0x
oh || |H '
_— : = :ATX+AX
OX | oh
87 Zam |+Zanj i Z(AT+A)X




Accurate keypoint localization

* x is a 3-vector
e Change sample point if offset is larger than 0.5
e Throw out low contrast (<0.03)

Accurate keypoint localization

e Throw out low contrast | D(x)|<0.03
T 2
p® =D+ 341520
ox 2 ox
]
oD, 1( aZDlaDJ aZD[ aZDlaD]

=D+— X+-|-—— —| | —— —
ox 2| Ox Ox | Ox 15).4 Ox

X

_p,®'§, 1D D DD D
Ox 20x ox*  ox® ox*  Ox
oD". 16D" °D ‘D

=D+— X+-— — —
ox | 20x ox* ox

T T
=D+@ §+1@ (%)
1%)¢ 2 0x

10D" .
+ X

Eliminating edge responses —

H= [ g” Day } Hessian matrix at keypoint location
Ty yy

Tr(H) = Dyp + Dy = a4+ 3,
Det(H) = Dy Dy — (Diy)? = af3.

leta=r3 1X(H)? _ (a+0)? @4+8° (r+1)°
Det(H) o3 32 r

Tr(H)? _ (r+1)?

r=10
Det(H) D

Keep the points with

Maxima in D

P ++i+‘¢'tr¢ TR e
+ + -
+ 4 8 . Gh
raitting & $+++t' ot
s e +
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Remove low contrast and edges Keypoint detector

233x89 B8 832 extrema

729 after cos o
trast fi i

3. Orientation assignment

e By assigning a consistent orientation, the
keypoint descriptor can be orientation invariant.

e For a keypoint, L is the Gaussian-smoothed
Image with the closest scale,

miz,y) =L+ Ly)— Lz — Ly)? + (Llwy+ 1) — Llx,y— 1)

B(r.y) = tan " ((L(a,y + 1) — Liay — 1)/(L{x + Ly) - Lz — 1,y)))
(Lx, Ly)

orientation histogram (36 bins)




Orientation assignment ALy

«Keypoint location = extrema location
«Keypoint scale is scale of the DOG image

Orientation assignment ALy

gradient
magnitude

gaussian image
(at closest scale,
from pyramid) gradient

orientation

Orientation assignment e

gradient weighted by 2D weighted gradient
magnitude gaussian kernel magnitude

o =1.5*scale of
the keypoint

Orientation assignment e

weighted gradient
magnitude

weighted orientation histogram.

Each bucket contains sum of weighted gradient
magnitudes corresponding to angles that fall within
that bucket.

graflient

a0 n n n 0 In an

36 buckets

10 degree range of angles in each bucket, i.e.
0 <=ang<10 : bucket 1
10==ang=20 : bucket 2
20==ang=30 : bucket 3 ...




Orientation assignment ALy

weighted gradient
magnitude

weighted orientation histogram.

o peak

80% of peak value

gradient
orientation - \ Vi 0

K 20-30 degrees
R~ Orientation of keypoint
- is approximately 25 degrees

Orientation assignment

There may be multiple orientations. accurate p eak position

® Sk
o peak
b i\ Second peak
il .I ] w 80% of peak value
a0
0 / II
20- |.I |
w0 /
%a 5 16 an ) = 30 as

In this case, generate duplicate keypoints, one with
orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of
possible multiple peaks to two.

is determined by fitting

Orientation assignment e

36-bin orientation histogram over 360°,
weighted by m and 1.5*scale falloff
Peak is the orientation

Local peak within 80% creates multiple
orientations

About 15% has multiple orientations
and they contribute a lot to stability

SIFT descriptor

CIFTVEX




4. Local image descriptor

» Thresholded image gradients are sampled over 16x16
array of locations in scale space

» Create array of orientation histograms (w.r.t. key
orientation)

= 8 orientations x 4x4 histogram array = 128 dimensions

« Normalized, clip values larger than 0.2, renormalize

[t

®

A
AN AN
Fa

&+~

Why 4x4x8?
60
50
40 ‘,.,_,_.—’"'"' £ /’ o i
30 )

With 16 orientations +

Correct nearest descriptor (%)

1 :k ;‘k 20 P With 8 orientations < |
BN With 4 orientations =
-— N Y s R
P e s T | > — 10
£ T ANz ey T .
_ . 0¥
~, > : e |y K U_O-S*Wldth 1 ’ 3 P s
SR REAR N~ Width n of descriptor (angle 50 deg, noise 4%)
Image gradients Keypoint descriptor
el . . DigiYl2d . DigiYI24
Sensitivity to affine change “Tved Feature matching “Tved
100 = for a feature x, he found the closest feature x;
____________________ — and the second closest feature x,. If the
) e e T T distance ratio of d(x, x,) and d(x, x,) is smaller
S ;. than 0.8, then it is accepted as a match.
;E; 60
£
§ 40 |
§ Keypoint location ——
Location & orientation
20 | Nearest descriptor -
0 1 1 1 L
0 10 20 30 40 50

Viewpoint angle (degrees)




SIFT flow Maxima in D
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SIFT descriptor

Estimated rotation

Reference

e Computed affine transformation from rotated
Image to original image:
0.7060 -0.7052 128.4230
0.7057 0.7100 -128.9491
0 0 1.0000

» Actual transformation from rotated image to
original image:
0.7071 -0.7071 128.6934
0.7071 0.7071 -128.6934
0 0 1.0000

Chris Harris, Mike Stephens, A Combined Corner and Edge Detector,
4th Alvey Vision Conference, 1988, pp147-151.

David G. Lowe, Distinctive Image Features from Scale-Invariant
Keypoints, International Journal of Computer Vision, 60(2), 2004,
pp91-110.

SIFT Keypoint Detector, David Lowe.
Matlab SIFT Tutorial, University of Toronto.




