Features

Digital Visual Effects, Spring 2008

Yung-Yu Chuang

2008/3/18

with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim

Announcements

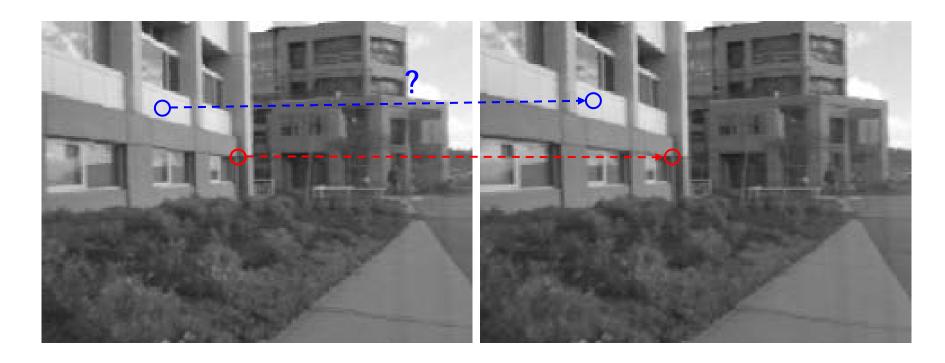
- Project #1 was due at midnight Friday. You have a total of 10 delay days without penalty, but you are advised to use them wisely.
- We reserve the rights for not including late homework for artifact voting.
- Project #2 handout will be available on the web later this week.

Outline

- Features
- Harris corner detector
- SIFT

Features

 Also known as interesting points, salient points or keypoints. Points that you can easily point out their correspondences in multiple images using only local information.



Desired properties for features

- Distinctive: a single feature can be correctly matched with high probability.
- Invariant: invariant to scale, rotation, affine, illumination and noise for robust matching across a substantial range of affine distortion, viewpoint change and so on. That is, it is repeatable.

Applications

- Object or scene recognition
- Structure from motion
- Stereo
- Motion tracking
- •

Components

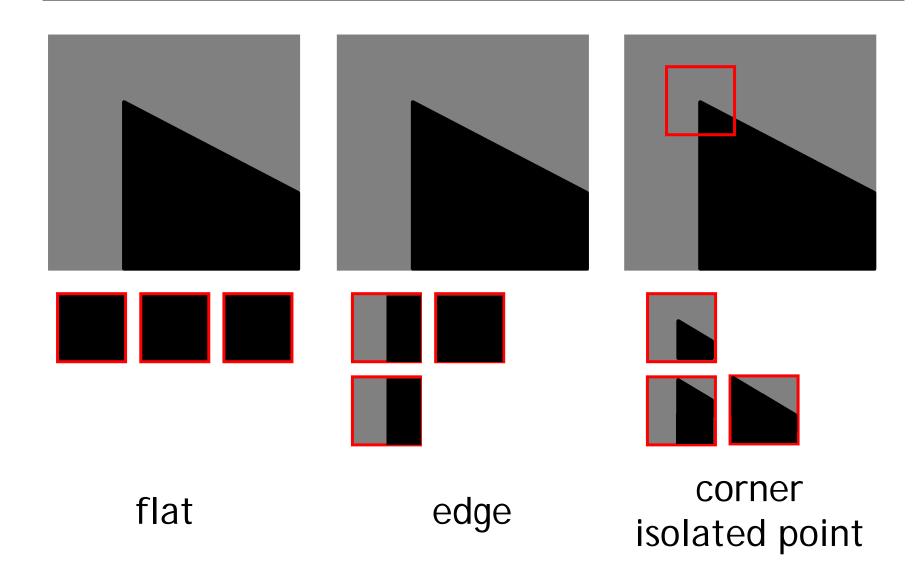
- Feature detection: locate where they are
- Feature description: describe what they are
- Feature matching: decide whether two are the same one

Harris corner detector

Moravec corner detector (1980)

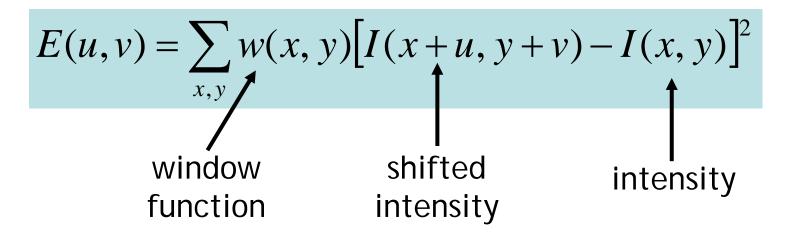
- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

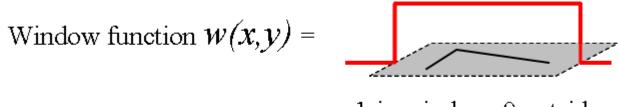
Moravec corner detector



Moravec corner detector

Change of intensity for the shift [u, v]:





1 in window, 0 outside

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)Look for local maxima in $min\{E\}$

Problems of Moravec detector

- Noisy response due to a binary window function
- Only a set of shifts at every 45 degree is considered
- Only minimum of E is taken into account
- ⇒ Harris corner detector (1988) solves these problems.

Noisy response due to a binary window function

> Use a Gaussian function

$$w(x,y) = \exp\left(-\frac{(x^2 + y^2)}{2\sigma^2}\right)$$

Window function
$$w(x,y) =$$

Gaussian

Harris corner detector

Only a set of shifts at every 45 degree is considered

> Consider all small shifts by Taylor's expansion

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$= \sum_{x,y} w(x,y) [I_{x}u + I_{y}v + O(u^{2},v^{2})]^{2}$$

$$E(u,v) = Au^{2} + 2Cuv + Bv^{2}$$

$$A = \sum_{x,y} w(x,y)I_{x}^{2}(x,y)$$

$$B = \sum_{x,y} w(x,y)I_{y}^{2}(x,y)$$

$$C = \sum_{x,y} w(x,y)I_{x}(x,y)I_{y}(x,y)$$

Harris corner detector

Equivalently, for small shifts [u, v] we have a *bilinear* approximation:

$$E(u,v) \cong [u,v] \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

, where M is a 2×2 matrix computed from image derivatives:

$$\mathbf{M} = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Harris corner detector (matrix form)

$$E(\mathbf{u}) = |I(\mathbf{x_0} + \mathbf{u}) - I(\mathbf{x_0})|^2$$

$$= \left| \left(I_0 + \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u} \right) - I_0 \right|^2$$

$$= \left| \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u} \right|^2$$

$$= \mathbf{u}^T \frac{\partial I}{\partial \mathbf{u}} \frac{\partial I}{\partial \mathbf{u}}^T \mathbf{u}$$

$$= \mathbf{u}^T \mathbf{M} \mathbf{u}$$

Harris corner detector

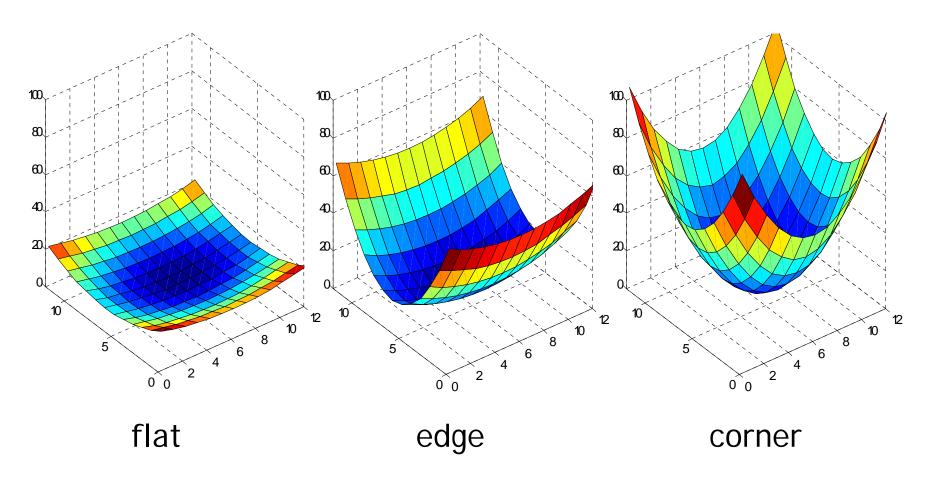
Only minimum of E is taken into account

➤ A new corner measurement by investigating the shape of the error function

 $\mathbf{u}^T \mathbf{M} \mathbf{u}$ represents a quadratic function; Thus, we can analyze E's shape by looking at the property of \mathbf{M}

Harris corner detector

High-level idea: what shape of the error function will we prefer for features?



DigiVFX

Quadratic forms

 Quadratic form (homogeneous polynomial of degree two) of n variables x_i

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j$$

$$i \le j$$

Examples

$$4x_1^2 + 5x_2^2 + 3x_3^2 + 2x_1x_2 + 4x_1x_3 + 6x_2x_3$$

$$= (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 4 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Symmetric matrices

Quadratic forms can be represented by a real

symmetric matrix
$$\mathbf{A}$$
 where
$$a_{ij} = \begin{cases} c_{ij} & \text{if } i = j, \\ \frac{1}{2}c_{ij} & \text{if } i < j, \\ \frac{1}{2}c_{ji} & \text{if } i > j. \end{cases}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}x_ix_j = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j$$

$$= (x_1 \dots x_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \mathbf{x}^t A \mathbf{x}$$

Eigenvalues of symmetric matrices

suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, *i.e.*, $A = A^T$ fact: the eigenvalues of A are real

suppose
$$Av=\lambda v$$
, $v\neq 0$, $v\in \mathbf{C}^n$
$$\overline{v}^TAv=\overline{v}^T(Av)=\lambda\overline{v}^Tv=\lambda\sum_{i=1}^n|v_i|^2$$

$$\overline{v}^T A v = \overline{(Av)}^T v = \overline{(\lambda v)}^T v = \overline{\lambda} \sum_{i=1}^{\infty} |v_i|^2$$

we have $\lambda = \overline{\lambda}$, *i.e.*, $\lambda \in \mathbf{R}$

(hence, can assume $v \in \mathbf{R}^n$)

Eigenvectors of symmetric matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, i.e., $A = A^T$

fact: there is a set of orthonormal eigenvectors of A

$$A = Q\Lambda Q^T$$
$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$$

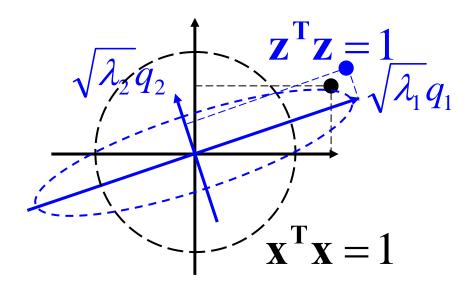
$$= \mathbf{x}^{\mathrm{T}} \mathbf{Q} \, \mathbf{\Lambda} \, \mathbf{Q}^{\mathrm{T}} \mathbf{x}$$

$$= \left(\mathbf{Q}^{\mathsf{T}}\mathbf{x}\right)^{\mathsf{T}}\mathbf{\Lambda}\left(\mathbf{Q}^{\mathsf{T}}\mathbf{x}\right)$$

$$= \mathbf{y}^{\mathrm{T}} \mathbf{\Lambda} \mathbf{y}$$

$$= \left(\Lambda^{\frac{1}{2}} \mathbf{y} \right)^{T} \left(\Lambda^{\frac{1}{2}} \mathbf{y} \right)$$

$$=\mathbf{z}^{\mathrm{T}}\mathbf{z}$$



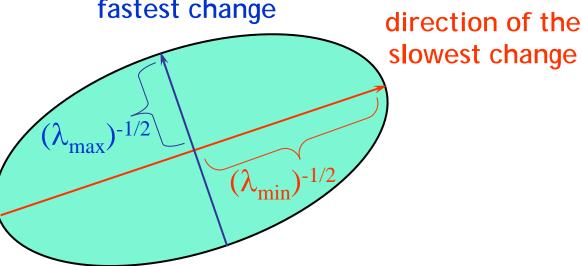
Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong [u,v] \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

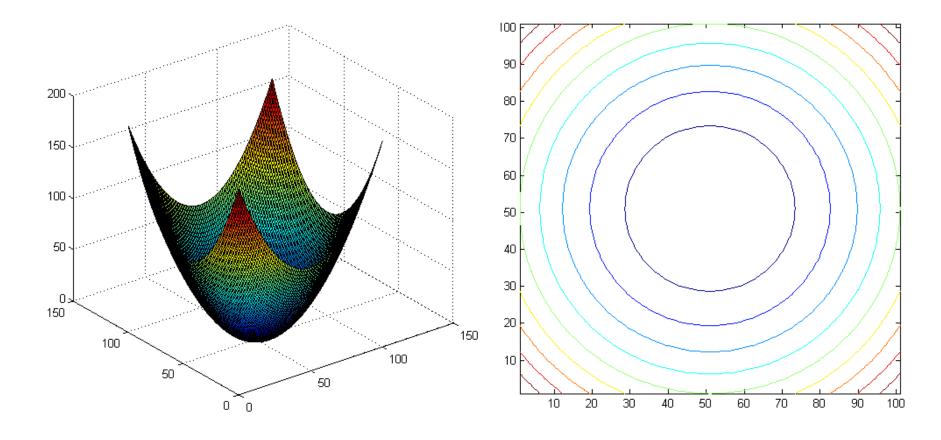
$$\lambda_1, \lambda_2$$
 – eigenvalues of ${f M}$

Ellipse E(u, v) = const

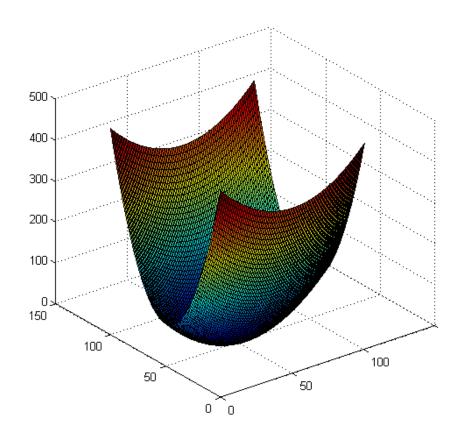
direction of the fastest change

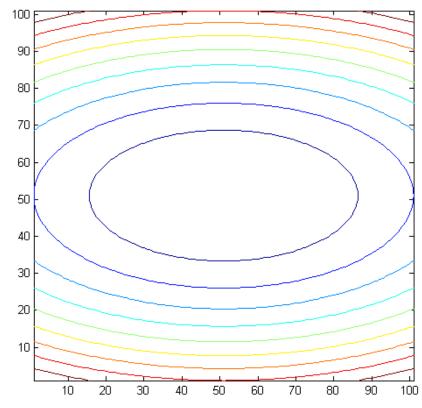


$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T$$

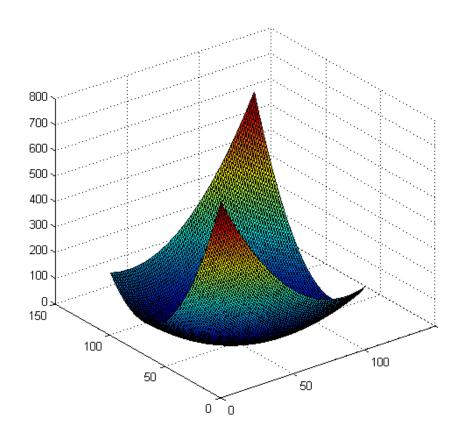


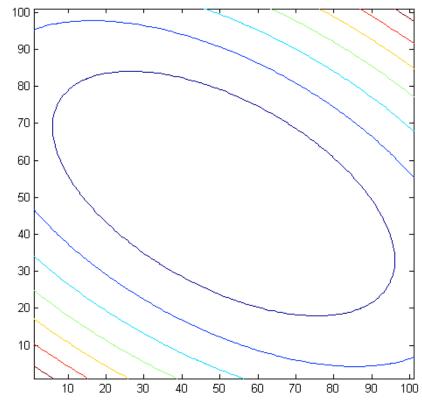
$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^T$$



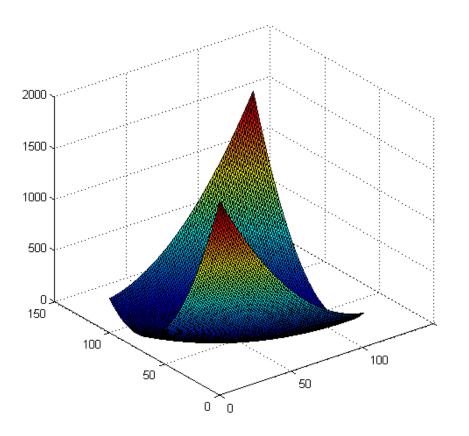


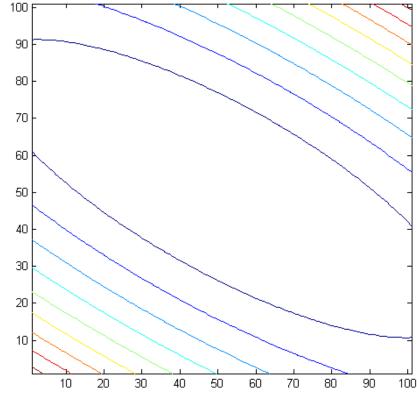
$$\mathbf{A} = \begin{bmatrix} 3.25 & 1.30 \\ 1.30 & 1.75 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$





$$\mathbf{A} = \begin{bmatrix} 7.75 & 3.90 \\ 3.90 & 3.25 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^T$$





Harris corner detector

Classification of image points using eigenvalues of **M**:

 $\frac{edge}{\lambda_2} >> \lambda_1$ Corner λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions flat

 λ_1 and λ_2 are small; E is almost constant in all directions

$$\lambda = \frac{a_{00} + a_{11} \pm \sqrt{(a_{00} - a_{11})^2 + 4a_{10}a_{01}}}{2}$$
 Only for reference you do not need them to compute

Only for reference, them to compute R

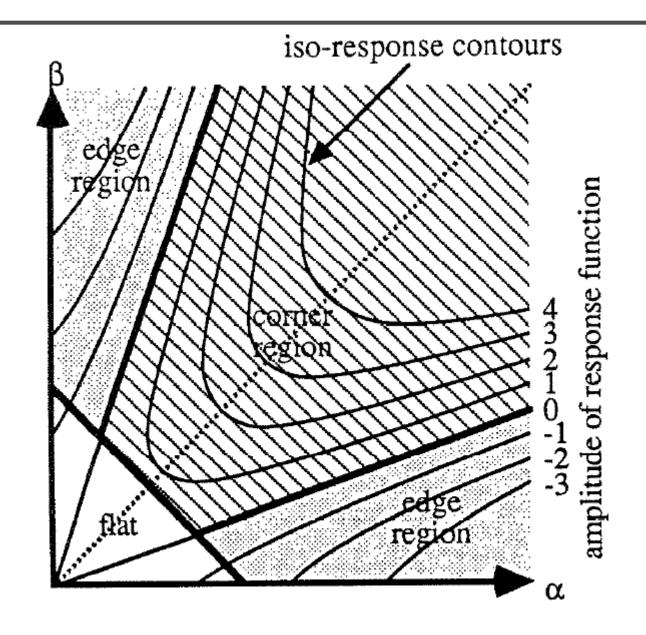
Measure of corner response:

$$R = \det \mathbf{M} - k (\operatorname{trace} \mathbf{M})^2$$

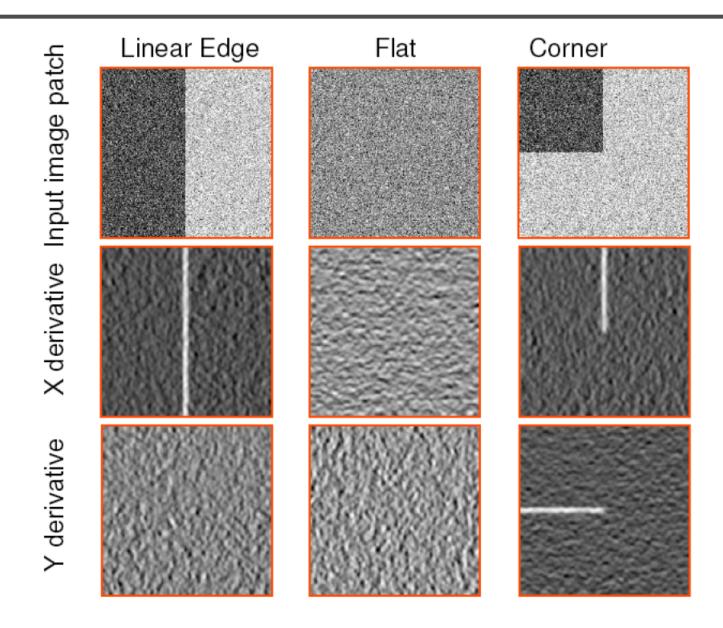
$$\det \mathbf{M} = \lambda_1 \lambda_2$$
$$\operatorname{trace} \mathbf{M} = \lambda_1 + \lambda_2$$

(k - empirical constant, k = 0.04-0.06)

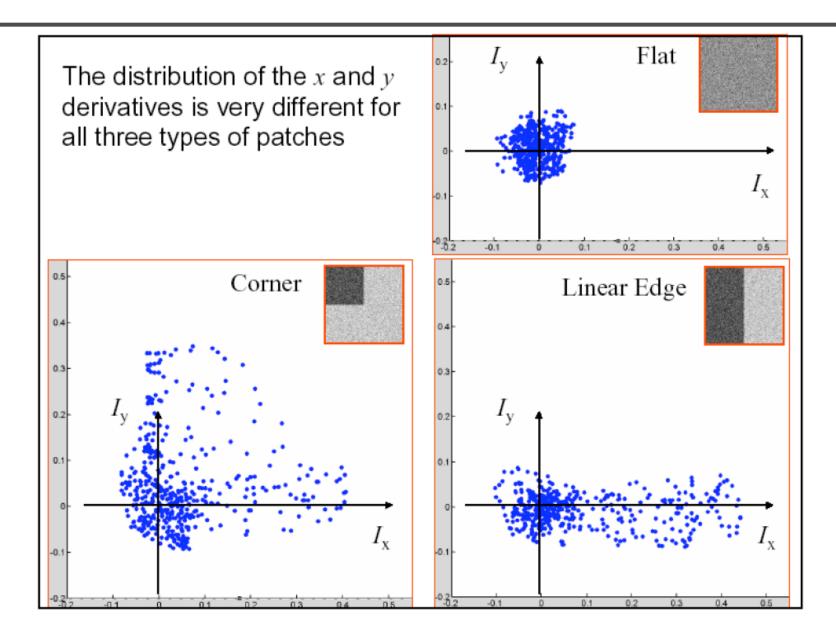
Harris corner detector



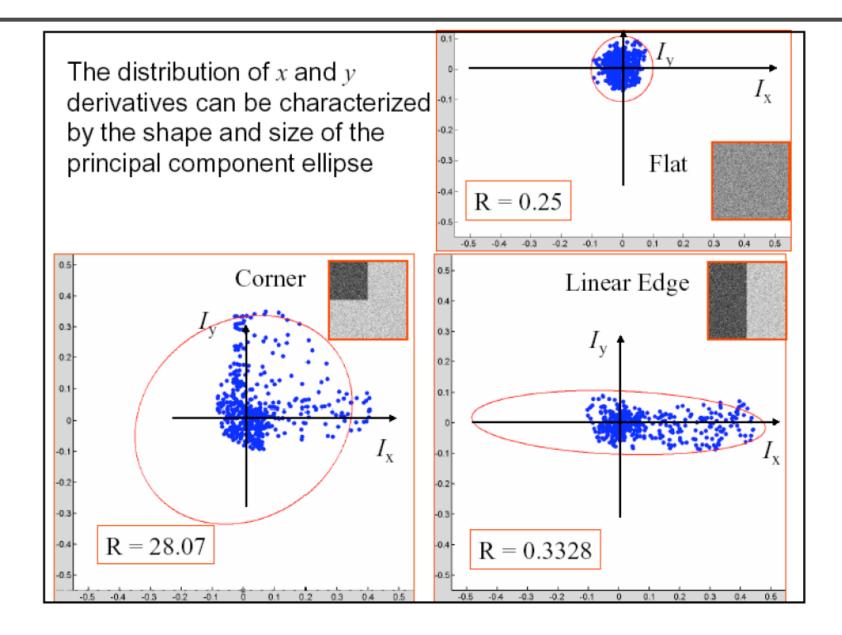
Another view



Another view



Another view



Summary of Harris detector

1. Compute x and y derivatives of image

$$I_{x} = G_{\sigma}^{x} * I \qquad I_{y} = G_{\sigma}^{y} * I$$

2. Compute products of derivatives at every pixel

$$I_{x^2} = I_x \cdot I_x$$
 $I_{y^2} = I_y \cdot I_y$ $I_{xy} = I_x \cdot I_y$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

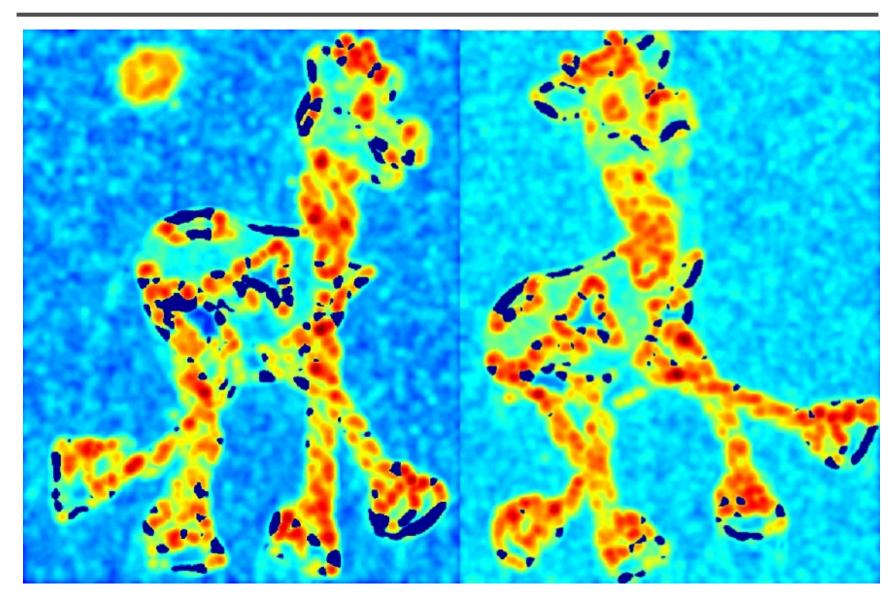
Summary of Harris detector

4. Define the matrix at each pixel

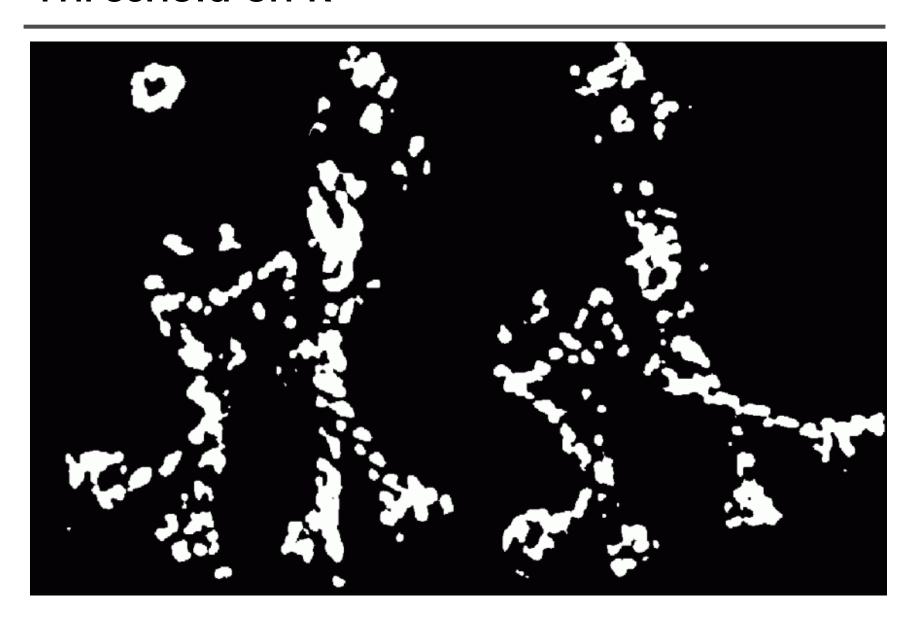
$$M(x, y) = \begin{bmatrix} S_{x^2}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y^2}(x, y) \end{bmatrix}$$

- 5. Compute the response of the detector at each pixel $R = \det M k(\operatorname{trace} M)^2$
- 6. Threshold on value of R; compute nonmax suppression.

Harris corner detector (input)



Threshold on R



Harris corner detector

Harris detector: summary

• Average intensity change in direction [u, v] can be expressed as a bilinear form:

$$E(u,v) \cong [u,v] \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

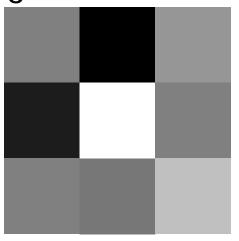
• Describe a point in terms of eigenvalues of *M*: measure of corner response

$$R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

 A good (corner) point should have a large intensity change in all directions, i.e. R should be large positive

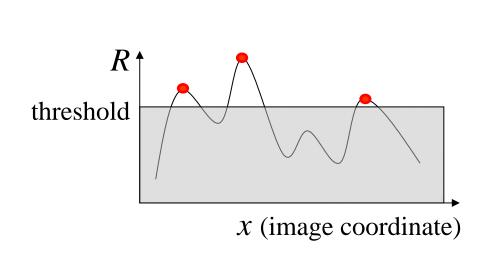
Now we know where features are

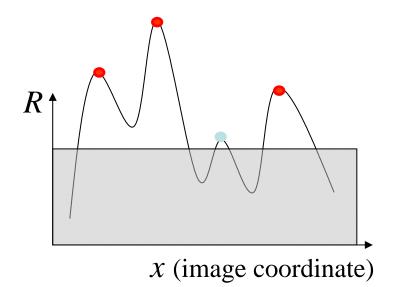
- But, how to match them?
- What is the descriptor for a feature? The simplest solution is the intensities of its spatial neighbors. This might not be robust to brightness change or small shift/rotation.



Harris detector: some properties

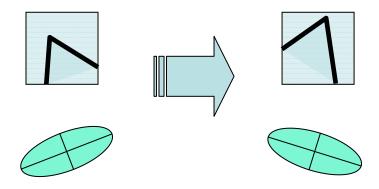
- Partial invariance to affine intensity change
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow aI$





Harris Detector: Some Properties

Rotation invariance



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

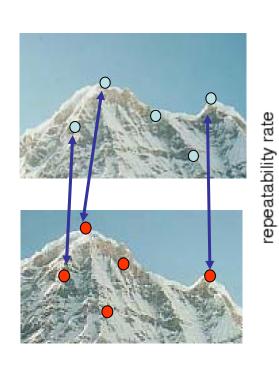
Corner response R is invariant to image rotation

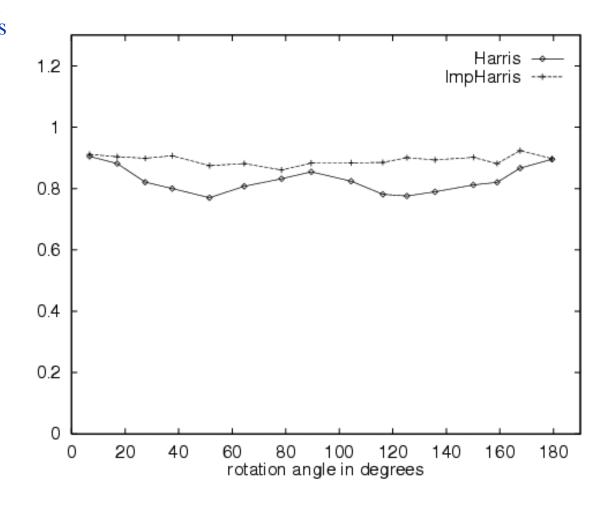
Harris Detector is rotation invariant

Repeatability rate:

correspondences

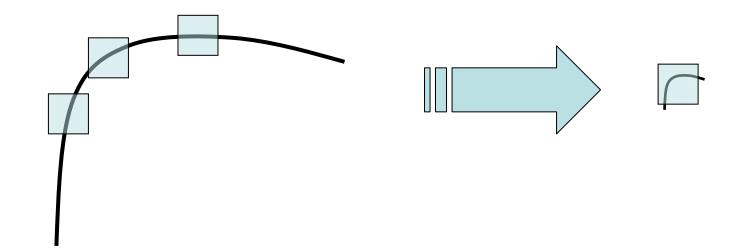
possible correspondences





Harris Detector: Some Properties

• But: non-invariant to *image scale*!

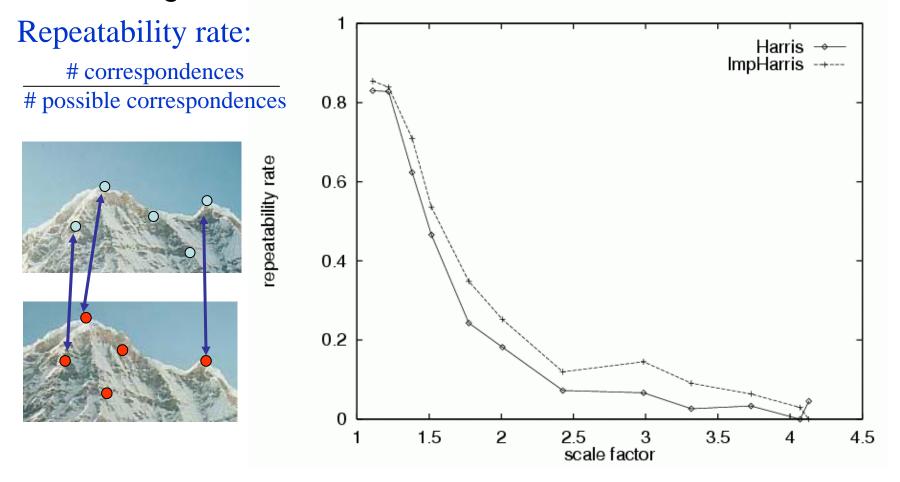


All points will be classified as edges

Corner!

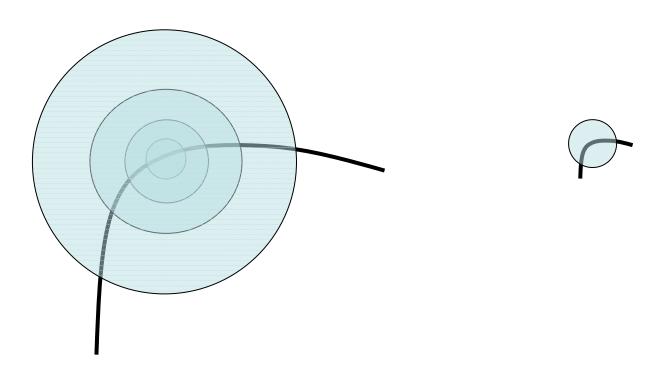
Harris detector: some properties

Quality of Harris detector for different scale changes



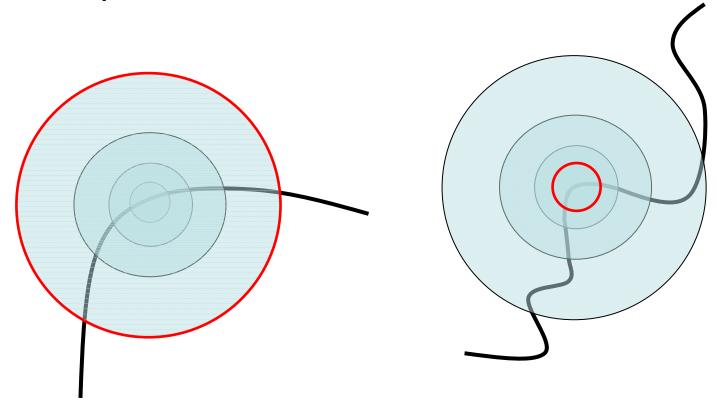
Scale invariant detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



Scale invariant detection

- The problem: how do we choose corresponding circles independently in each image?
- Aperture problem



SIFT (Scale Invariant Feature Transform)

SIFT

 SIFT is an carefully designed procedure with empirically determined parameters for the invariant and distinctive features.

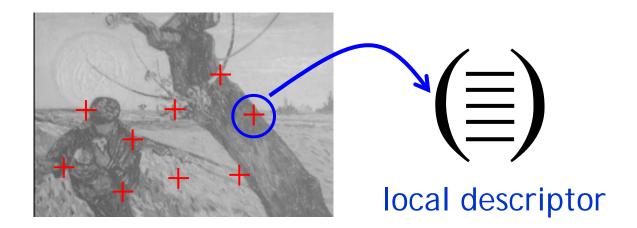
SIFT stages:

• Scale-space extrema detection

detector

- Keypoint localization
- Orientation assignment
- Keypoint descriptor

descriptor



A 500x500 image gives about 2000 features

1. Detection of scale-space extrema

- For scale invariance, search for stable features across all possible scales using a continuous function of scale, scale space.
- SIFT uses DoG filter for scale space because it is efficient and as stable as scale-normalized Laplacian of Gaussian.

DoG filtering

Convolution with a variable-scale Gaussian

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y),$$

$$G(x, y, \sigma) = 1/(2\pi\sigma^2) \exp^{-(x^2 + y^2)/\sigma^2}$$

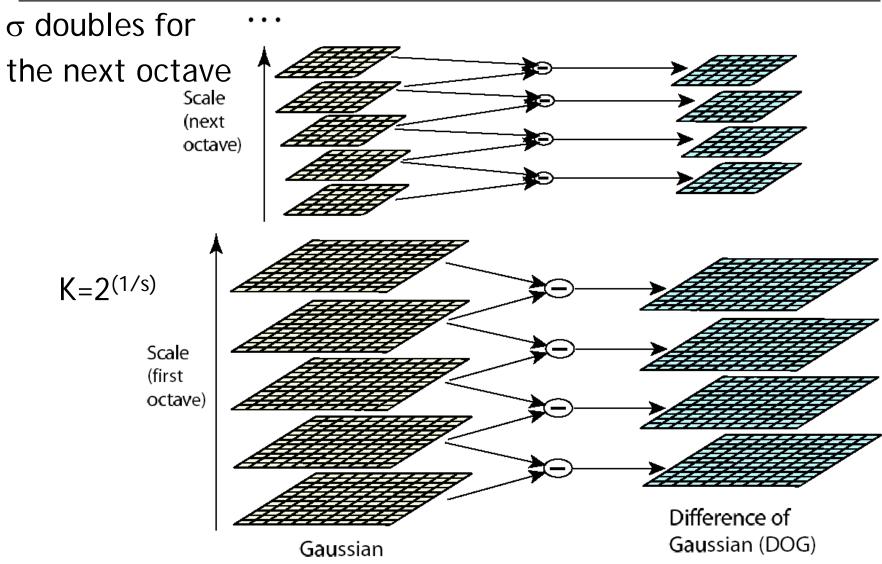
Difference-of-Gaussian (DoG) filter

$$G(x, y, k\sigma) - G(x, y, \sigma)$$

Convolution with the DoG filter

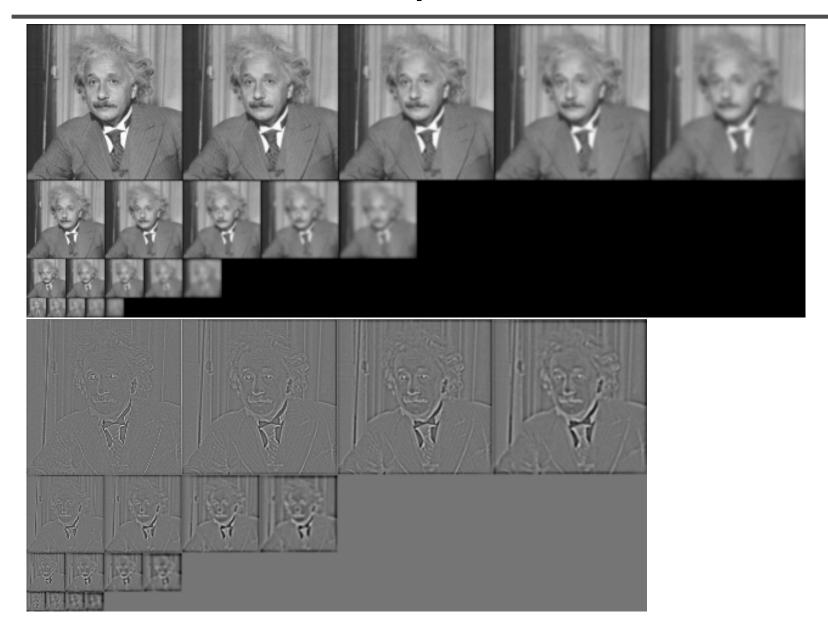
$$D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$$
$$= L(x, y, k\sigma) - L(x, y, \sigma).$$

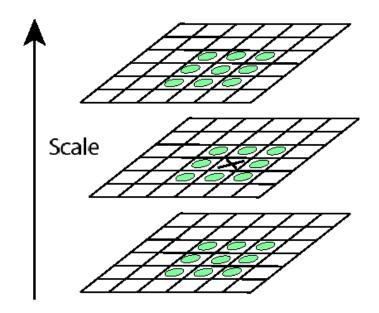
Scale space



Dividing into octave is for efficiency only.

Detection of scale-space extrema





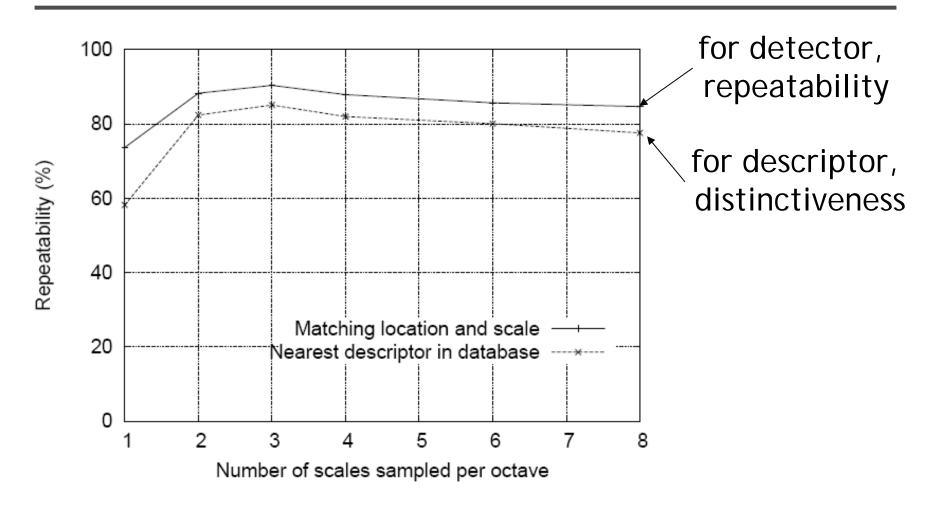
X is selected if it is larger or smaller than all 26 neighbors

Decide scale sampling frequency

- It is impossible to sample the whole space, tradeoff efficiency with completeness.
- Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations. (rotation, scaling, affine stretch, brightness and contrast change, adding noise...)

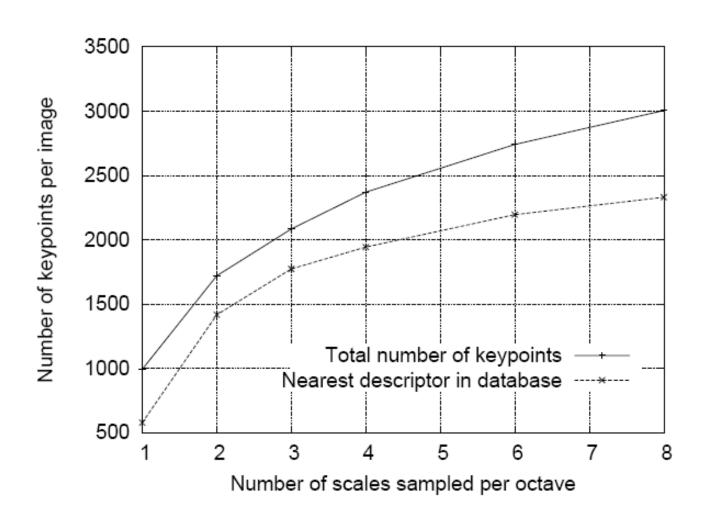
Digi<mark>VFX</mark>

Decide scale sampling frequency

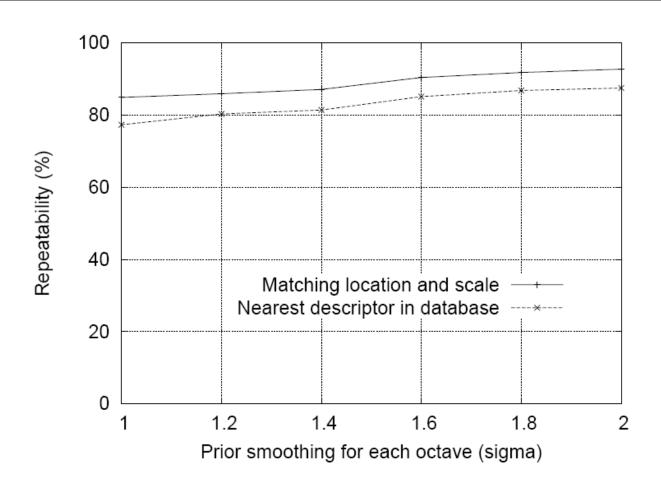


s=3 is the best, for larger s, too many unstable features

Decide scale sampling frequency

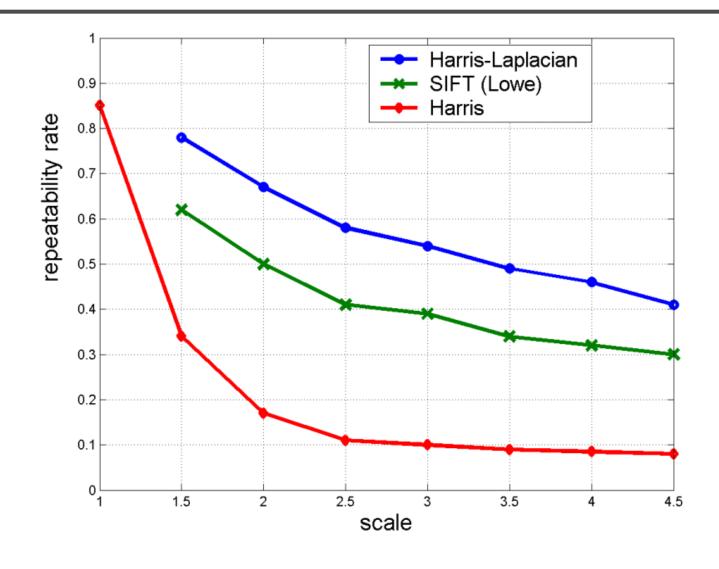


Pre-smoothing



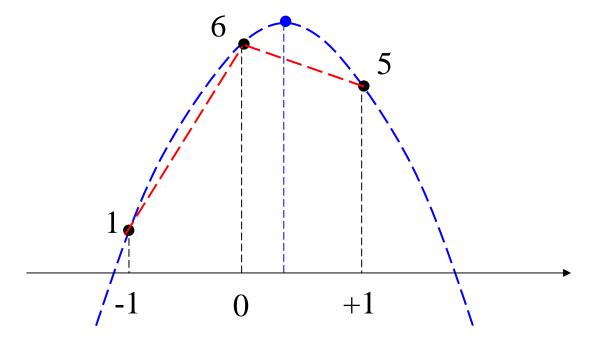
 σ =1.6, plus a double expansion

Scale invariance



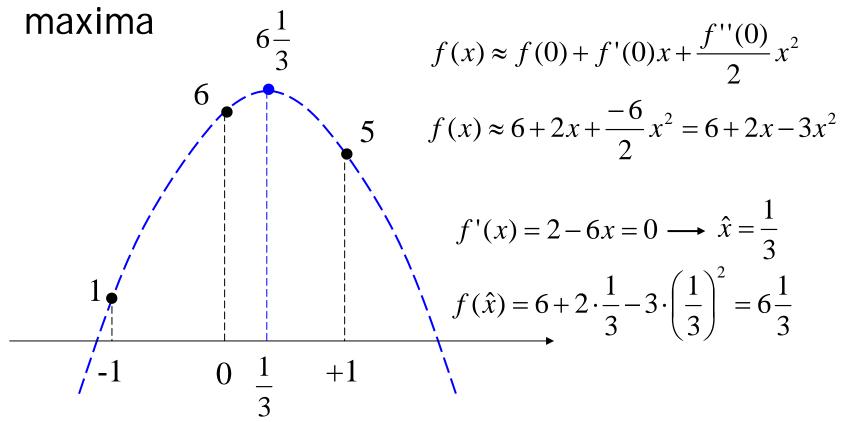
2. Accurate keypoint localization

- Reject points with low contrast (flat) and poorly localized along an edge (edge)
- Fit a 3D quadratic function for sub-pixel maxima



2. Accurate keypoint localization

- Reject points with low contrast and poorly localized along an edge
- Fit a 3D quadratic function for sub-pixel



2. Accurate keypoint localization

Taylor series of several variables

$$T(x_1,\cdots,x_d) = \sum_{n_1=0}^{\infty}\cdots\sum_{n_d=0}^{\infty}\frac{\partial^{n_1}}{\partial x_1^{n_1}}\cdots\frac{\partial^{n_d}}{\partial x_d^{n_d}}\frac{f(a_1,\cdots,a_d)}{n_1!\cdots n_d!}(x_1-a_1)^{n_1}\cdots(x_d-a_d)^{n_d}$$

Two variables

$$f(x,y) \approx f(0,0) + \left(\frac{\partial f}{\partial x}x + \frac{\partial f}{\partial y}y\right) + \frac{1}{2}\left(\frac{\partial^2 f}{\partial x \partial x}x^2 + 2\frac{\partial^2 f}{\partial x \partial y}xy + \frac{\partial^2 f}{\partial y \partial y}y^2\right)$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) \approx f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) + \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right]\begin{bmatrix} x \\ y \end{bmatrix} + \frac{1}{2}\begin{bmatrix} x \quad y \end{bmatrix}\begin{bmatrix} \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y \partial y} \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$$

$$f(\mathbf{x}) \approx f(\mathbf{0}) + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2}\mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

Accurate keypoint localization

Taylor expansion in a matrix form, x is a vector,

$$f \text{ maps } \mathbf{x} \text{ to a scalar}$$

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x} \quad \text{Hessian matrix (often symmetric)}$$

$$\begin{cases} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{cases} \qquad \begin{cases} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{cases}$$

2D illustration

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$f_{-1,1}$	$f_{0,1}$	$f_{1,1}$
$f_{-1,0}$	$f_{0,0}$	$f_{1,0}$
$\boxed{f_{-1,-1}}$	$f_{0,-1}$	$f_{1,-1}$

$$\frac{\partial f}{\partial x} = (f_{1,0} - f_{-1,0})/2$$

$$\frac{\partial f}{\partial y} = (f_{0,1} - f_{0,-1})/2$$

$$\frac{\partial^2 f}{\partial x^2} = f_{1,0} - 2f_{0,0} + f_{-1,0}$$

$$\frac{\partial^2 f}{\partial y^2} = f_{0,1} - 2f_{0,0} + f_{0,-1}$$

$$\frac{\partial^2 f}{\partial x \partial y} = (f_{-1,-1} - f_{-1,1} - f_{1,-1} + f_{1,1})/4$$

2D example

$f(\mathbf{x}) = f -$	$+rac{\partial f}{\partial \mathbf{x}}^T$:	$\mathbf{x} + \frac{1}{2}\mathbf{x}^2$	$T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$
	$O\mathbf{X}$	_	UX^-

-17	-1	-1
-9	7	7
-9	7	7

Digi<mark>VFX</mark>

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{g}^{\mathsf{T}} \mathbf{x}$$

$$= (g_1 \quad \cdots \quad g_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad \frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial h}{\partial x_1} \\ \vdots \\ \frac{\partial h}{\partial x_n} \end{pmatrix} = \begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix} = \mathbf{g}$$

$$= \sum_{i=1}^{n} g_i x_i$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^{T} \mathbf{x} + \frac{1}{2} \mathbf{x}^{T} \frac{\partial^{2} f}{\partial \mathbf{x}^{2}} \mathbf{x}$$

$$h(\mathbf{x}) = \mathbf{x}^{T} \mathbf{A} \mathbf{x} = (x_{1} \cdots x_{n})^{T} \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j}$$

$$\frac{\partial h}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial h}{\partial x_{1}} \\ \vdots \\ \frac{\partial h}{\partial x_{n}} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} a_{i1} x_{i} + \sum_{j=1}^{n} a_{1j} x_{j} \\ \vdots \\ \sum_{i=1}^{n} a_{in} x_{i} + \sum_{j=1}^{n} a_{nj} x_{j} \end{pmatrix} = \mathbf{A}^{T} \mathbf{x} + \mathbf{A} \mathbf{x}$$

$$= (\mathbf{A}^{T} + \mathbf{A}) \mathbf{x}$$

Derivation of matrix form

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\frac{\partial h}{\partial \mathbf{x}} = \frac{\partial f}{\partial \mathbf{x}}^T + \frac{1}{2} \left(\frac{\partial^2 f}{\partial \mathbf{x}^2} + \frac{\partial^2 f}{\partial \mathbf{x}^2} \right) x = \frac{\partial f}{\partial \mathbf{x}}^T + \frac{\partial^2 f}{\partial \mathbf{x}^2} x$$

$$\mathbf{x}_m = -\frac{\partial^2 f}{\partial \mathbf{x}^2}^{-1} \frac{\partial f}{\partial \mathbf{x}}$$

Accurate keypoint localization

$$f(\mathbf{x}) = f + \frac{\partial f}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 f}{\partial \mathbf{x}^2} \mathbf{x}$$

- x is a 3-vector
- Change sample point if offset is larger than 0.5
- Throw out low contrast (<0.03)

Accurate keypoint localization

• Throw out low contrast $|D(\hat{\mathbf{x}})| < 0.03$

$$D(\hat{\mathbf{x}}) = D + \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}} + \frac{1}{2} \hat{\mathbf{x}}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \hat{\mathbf{x}}$$

$$= D + \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}} + \frac{1}{2} \left(-\frac{\partial^{2} D}{\partial \mathbf{x}^{2}}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \left(-\frac{\partial^{2} D}{\partial \mathbf{x}^{2}}^{-1} \frac{\partial D}{\partial \mathbf{x}} \right)$$

$$= D + \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}}^{-T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

$$= D + \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^{T} \frac{\partial^{2} D}{\partial \mathbf{x}^{2}}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

$$= D + \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}} + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^{T} (-\hat{\mathbf{x}})$$

$$= D + \frac{1}{2} \frac{\partial D}{\partial \mathbf{x}}^{T} \hat{\mathbf{x}}$$

Eliminating edge responses

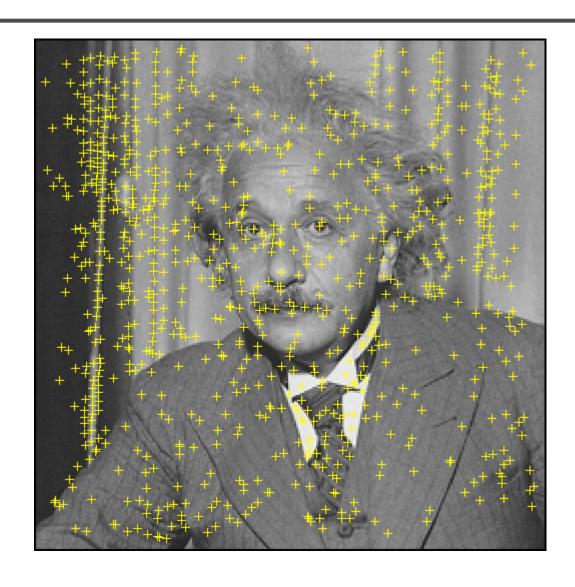
$$\mathbf{H} = \left[egin{array}{ccc} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{array}
ight]$$
 Hessian matrix at keypoint location

$$Tr(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$
$$Det(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$

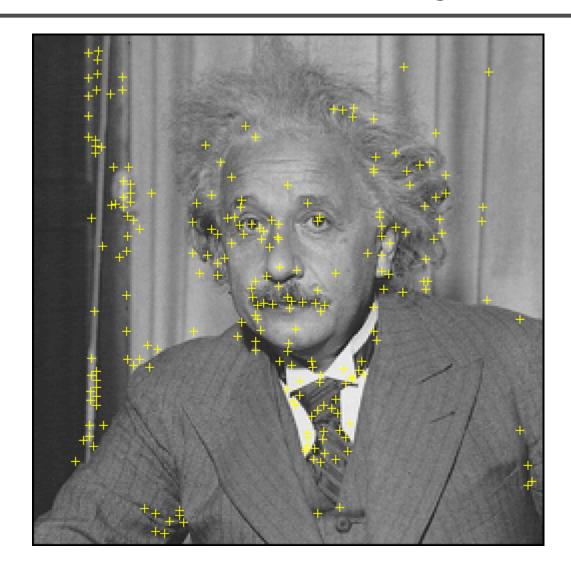
Let
$$\alpha = r\beta$$
 $\frac{\text{Tr}(\mathbf{H})^2}{\text{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r}$

Keep the points with
$$\frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} < \frac{(r+1)^2}{r}$$
. r=10

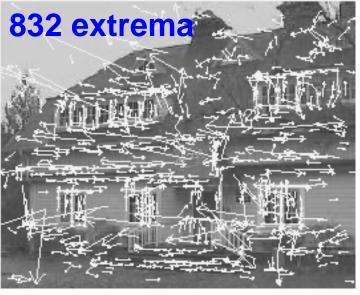
Maxima in D

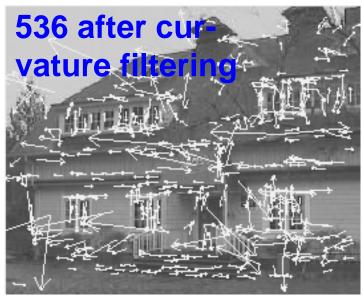


Remove low contrast and edges



Keypoint detector





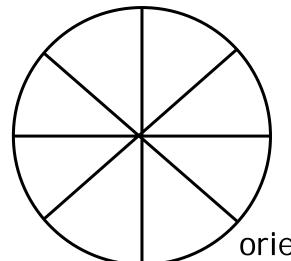
DigiVFX

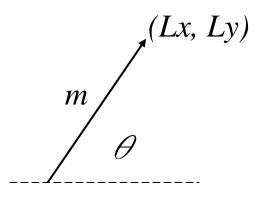
3. Orientation assignment

- By assigning a consistent orientation, the keypoint descriptor can be orientation invariant.
- For a keypoint, L is the Gaussian-smoothed image with the closest scale,

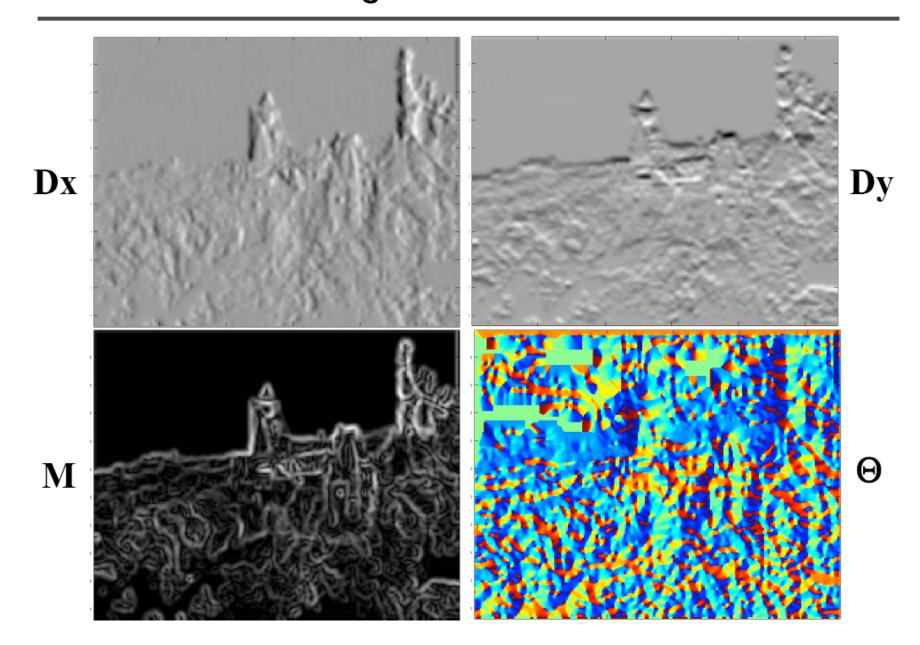
$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

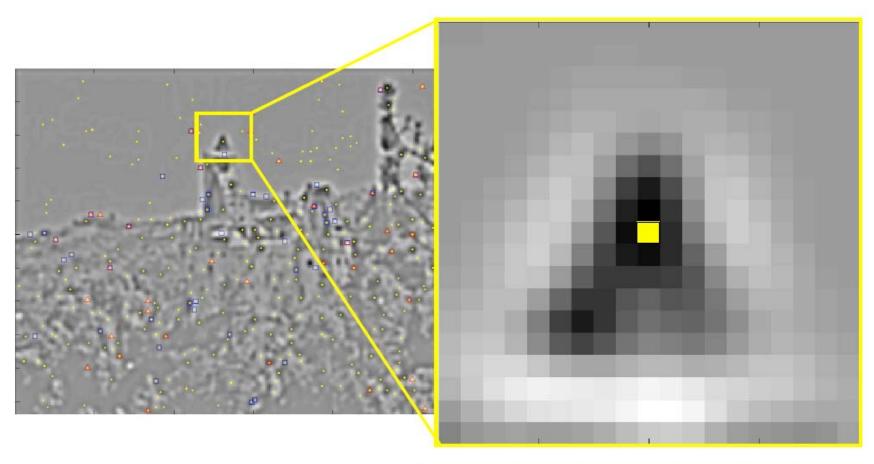
$$\theta(x,y) = \tan^{-1}((L(x,y+1) - L(x,y-1))/(L(x+1,y) - L(x-1,y)))$$



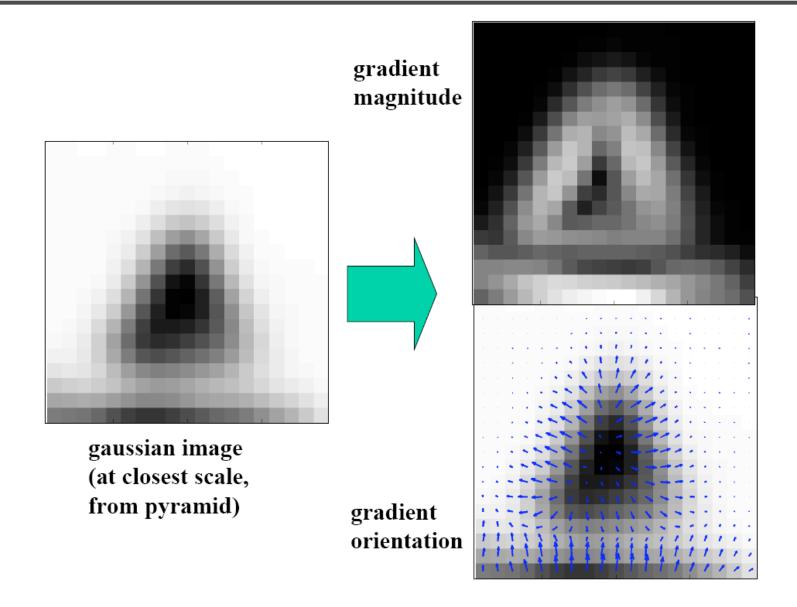


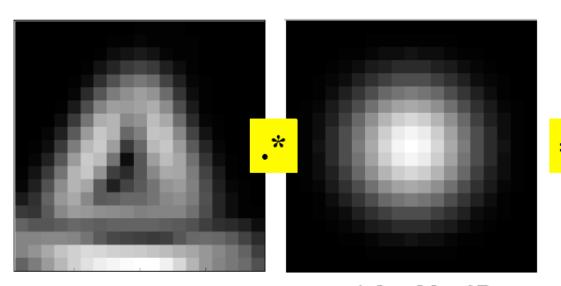
orientation histogram (36 bins)





- •Keypoint location = extrema location
- •Keypoint scale is scale of the DOG image

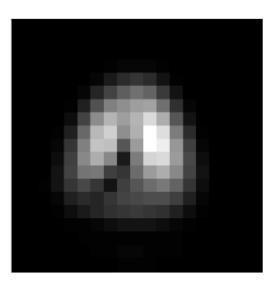




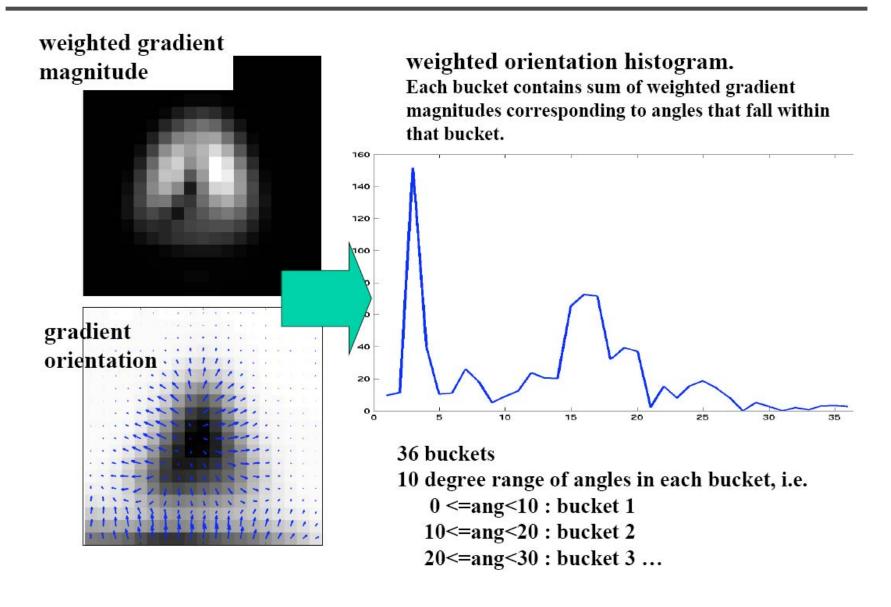
gradient magnitude

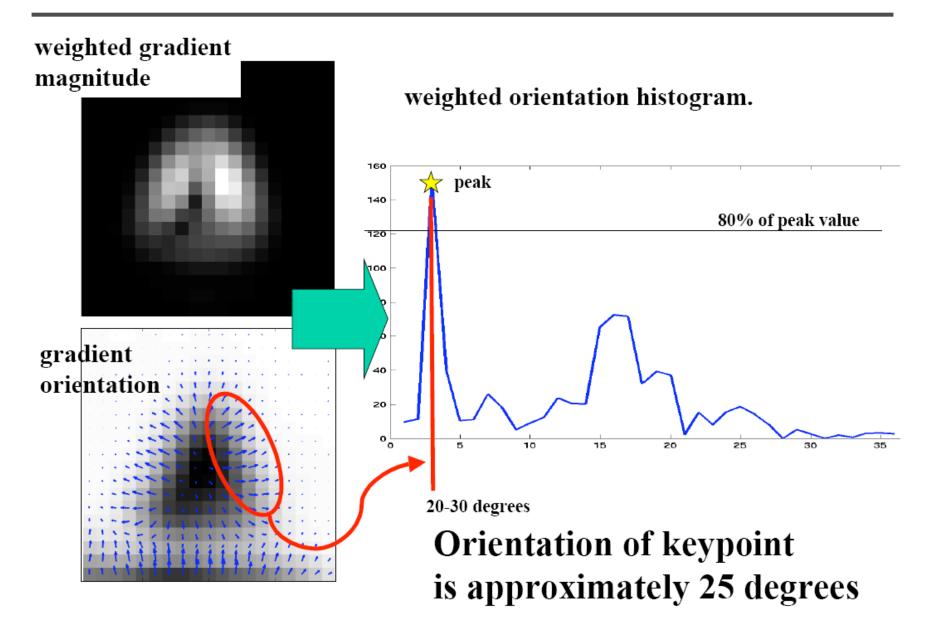
weighted by 2D gaussian kernel

 σ =1.5*scale of the keypoint



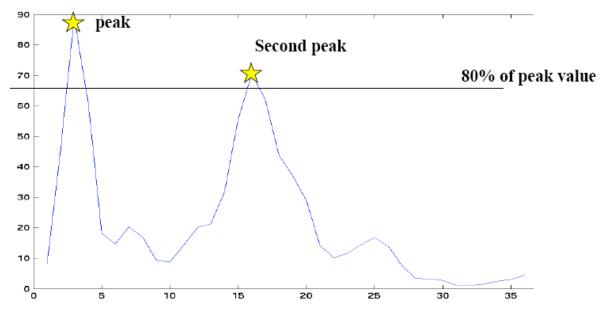
weighted gradient magnitude





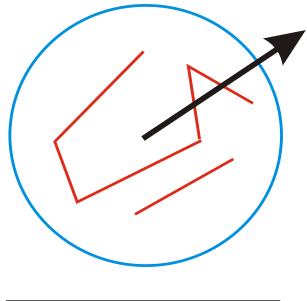
There may be multiple orientations.

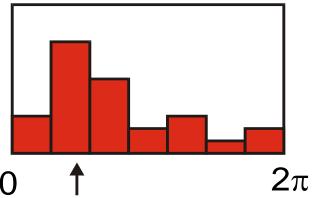
accurate peak position is determined by fitting



In this case, generate duplicate keypoints, one with orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of possible multiple peaks to two.



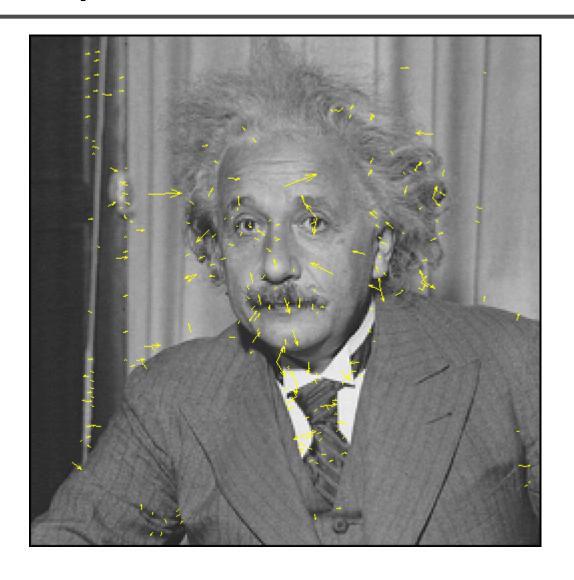


36-bin orientation histogram over 360°, weighted by m and 1.5*scale falloff Peak is the orientation

Local peak within 80% creates multiple orientations

About 15% has multiple orientations and they contribute a lot to stability

SIFT descriptor



4. Local image descriptor

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms (w.r.t. key orientation)
- 8 orientations x 4x4 histogram array = 128 dimensions
- Normalized, clip values larger than 0.2, renormalize

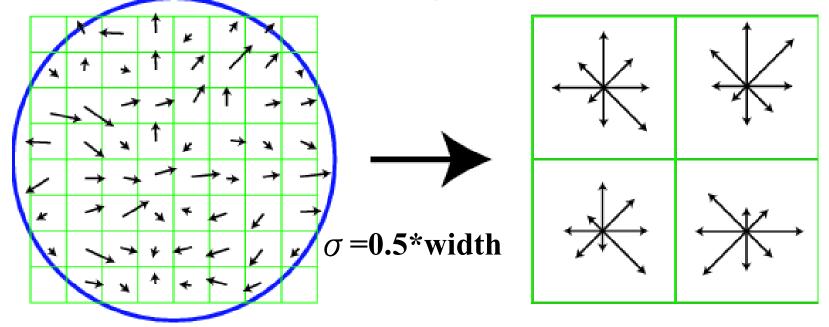
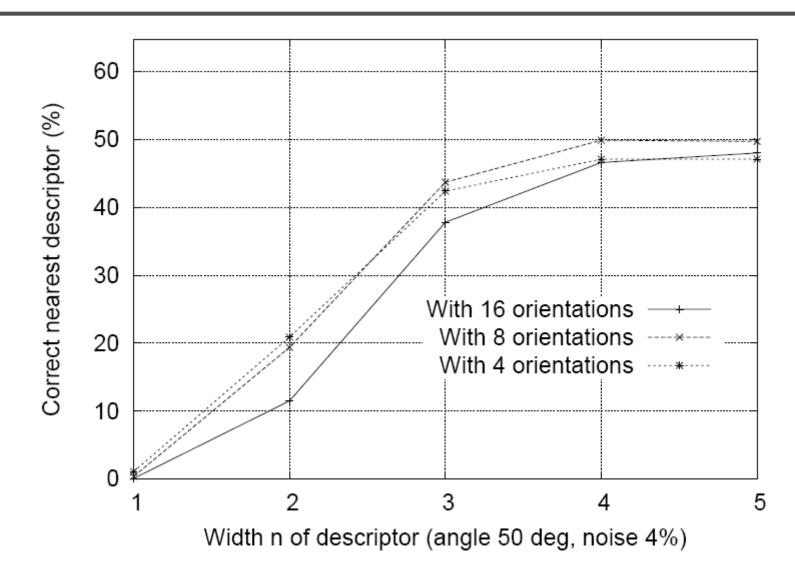


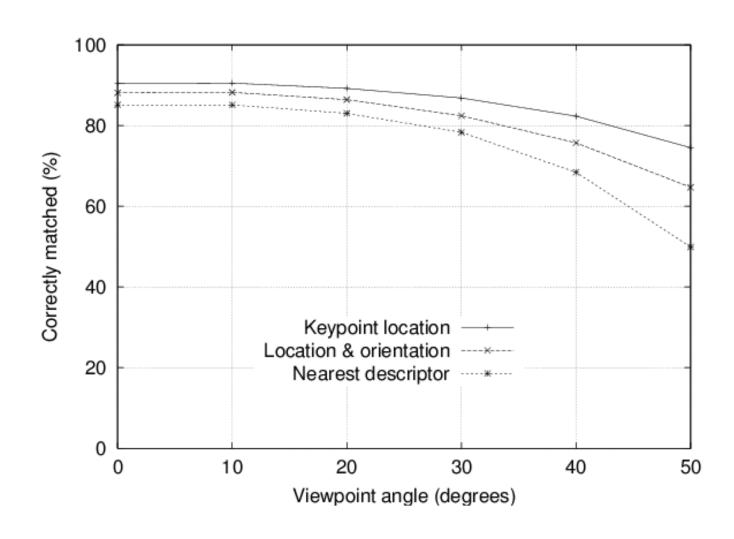
Image gradients

Keypoint descriptor

Why 4x4x8?



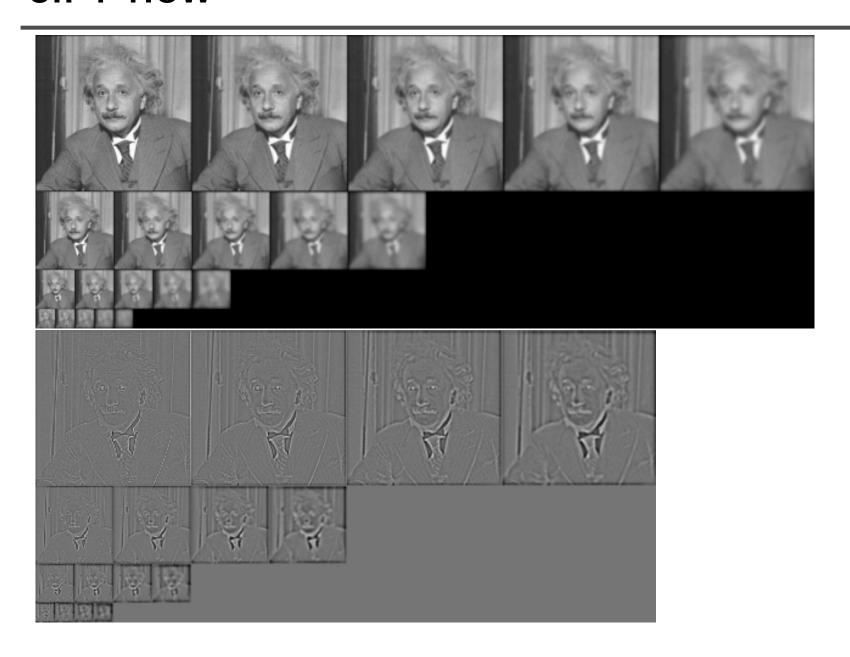
Sensitivity to affine change



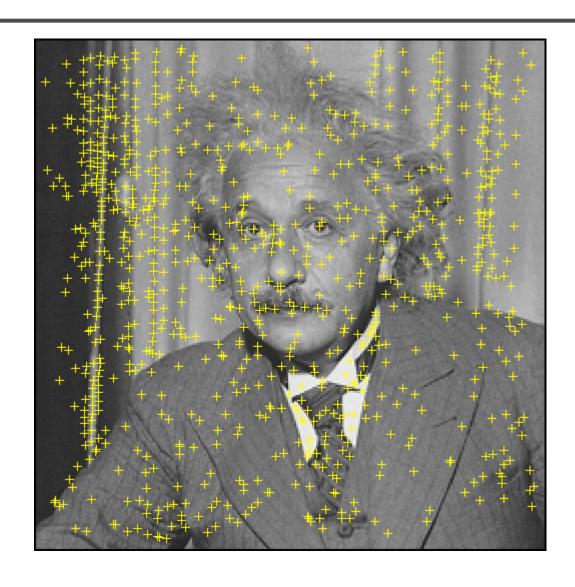
Feature matching

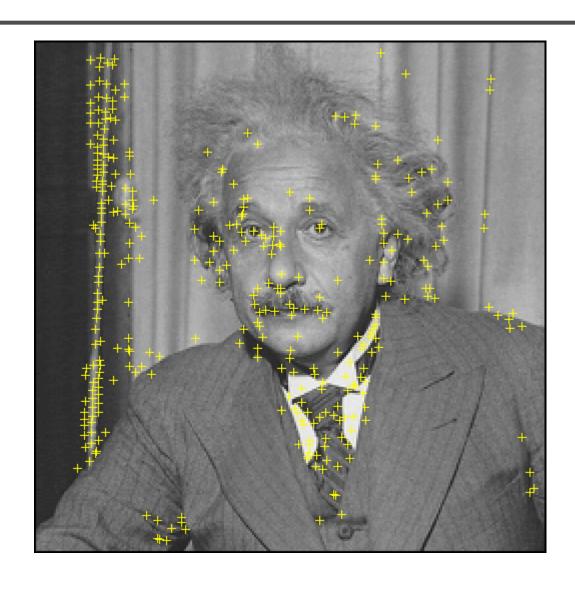
• for a feature x, he found the closest feature x_1 and the second closest feature x_2 . If the distance ratio of $d(x, x_1)$ and $d(x, x_1)$ is smaller than 0.8, then it is accepted as a match.

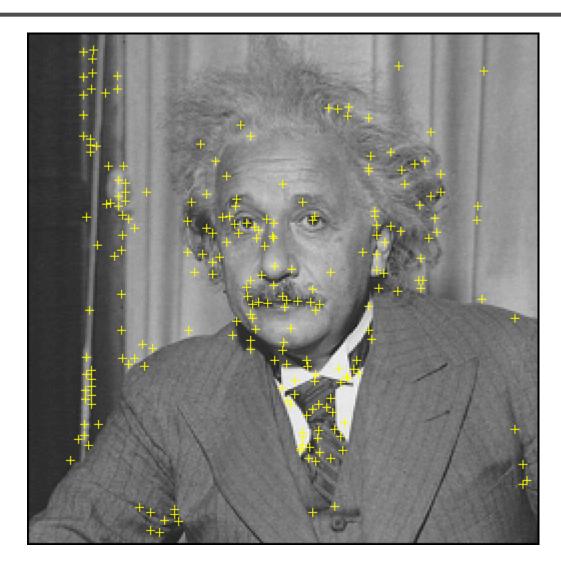
SIFT flow



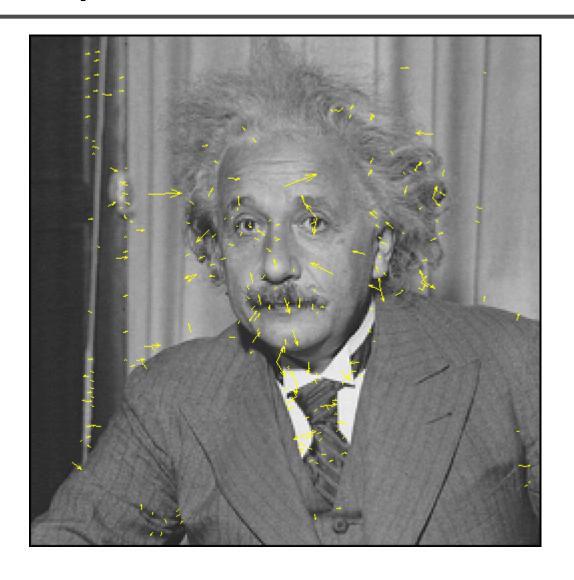
Maxima in D

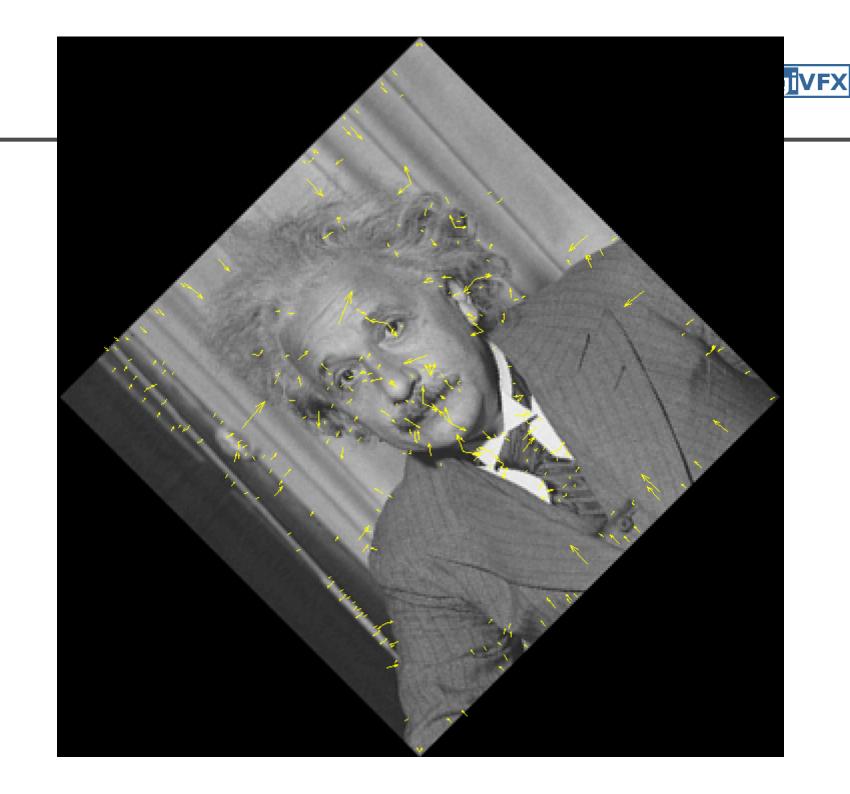






SIFT descriptor





DigiVFX

Estimated rotation

Computed affine transformation from rotated image to original image:

```
0.7060 -0.7052 128.4230
0.7057 0.7100 -128.9491
0 0 1.0000
```

 Actual transformation from rotated image to original image:

```
0.7071 -0.7071 128.6934
0.7071 0.7071 -128.6934
0 0 1.0000
```

Reference

- Chris Harris, Mike Stephens, <u>A Combined Corner and Edge Detector</u>,
 4th Alvey Vision Conference, 1988, pp147-151.
- David G. Lowe, <u>Distinctive Image Features from Scale-Invariant</u> <u>Keypoints</u>, International Journal of Computer Vision, 60(2), 2004, pp91-110.
- SIFT Keypoint Detector, David Lowe.
- Matlab SIFT Tutorial, University of Toronto.