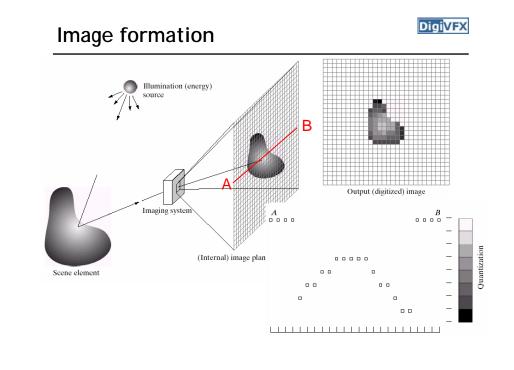
Image warping/morphing

Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/3/11

with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros



Sampling and quantization

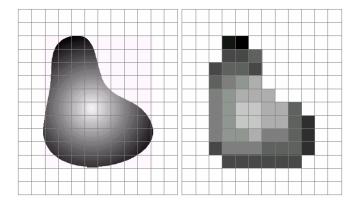


Image warping

What is an image

- We can think of an image as a function, $f: \mathbb{R}^2 \rightarrow \mathbb{R}$:
 - f(x, y) gives the intensity at position (x, y)
 - defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$



• A color image f ()

$$f(x, y) = \begin{bmatrix} F(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Image warping

DigiVFX

DigiVFX

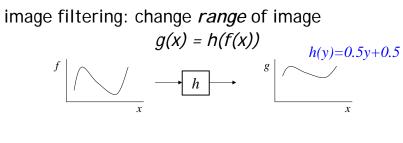
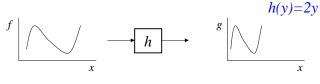


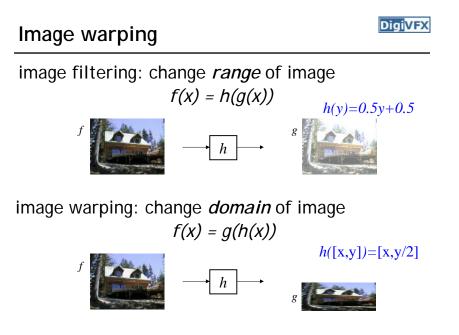
image warping: change *domain* of image g(x) = f(h(x))



A digital image

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are D apart, we can write this as:
 f[i, j] = Quantize{ f(i D, j D) }
- The image can now be represented as a matrix of integer values

	$j_{}$	→						
.	62	79	23	119	120	105	4	0
i	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30



Parametric (global) warping

DigiVFX

Examples of parametric warps:

aspect

translation

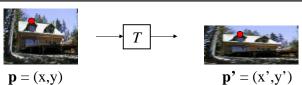
rotation

affine

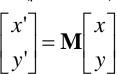
perspective

cylindrical

Parametric (global) warping



- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Represent *T* as a matrix: $p' = M^* p \begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y' \end{bmatrix}$



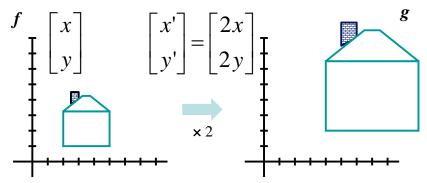
DigiVFX

DigiVFX

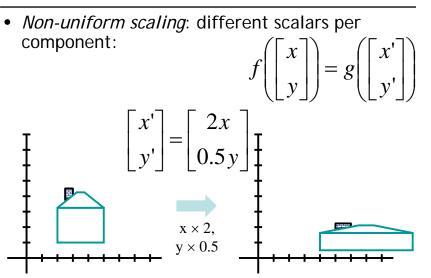
Scaling

DigiVFX

- *Scaling* a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling



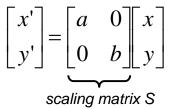
Scaling

DigiVFX

• Scaling operation: x' = ax

y' = by

• Or, in matrix form:



What's inverse of S?

2x2 Matrices

DigiVFX

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

 $\begin{array}{c} x' = x \\ y' = y \end{array} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

2D Scale around (0,0)?

$$\begin{array}{c} \mathbf{x}' = \mathbf{s}_{x} * \mathbf{x} \\ \mathbf{y}' = \mathbf{s}_{y} * \mathbf{y} \end{array} \qquad \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

• This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
R

- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by – $\!\theta$
 - For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$\begin{aligned} x' &= \cos\theta * x - \sin\theta * y \\ y' &= \sin\theta * x + \cos\theta * y \end{aligned} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{aligned}$$

2D Shear?

$$\begin{array}{c} \mathbf{x}' = \mathbf{x} + s\mathbf{h}_{x} * \mathbf{y} \\ \mathbf{y}' = s\mathbf{h}_{y} * \mathbf{x} + \mathbf{y} \end{array} \qquad \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_{x} \\ s\mathbf{h}_{y} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2x2 Matrices

DigiVFX

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$\begin{array}{l} x' = -x \\ y' = y \end{array}$	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & x \\ 1 & y \end{bmatrix}$

2D Mirror over (0,0)?

x' = -x	$\begin{bmatrix} x' \end{bmatrix} _ \begin{bmatrix} -1 \end{bmatrix}$	0] x]	
y' = -y	$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$	-1 y	

2x2 Matrices

DigiVFX

• What types of transformations can not be represented with a 2x2 matrix?

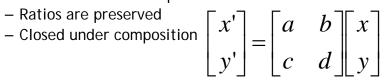
2D Translation?

 $x' = x + t_x$ NO! $y' = y + t_y$

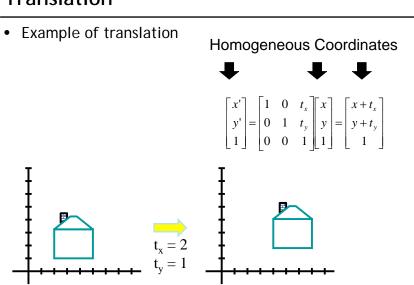
Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved



Translation



DigiVFX

Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition
 - Models change of basis
- $\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

Projective Transformations

- Projective transformations ...
 - Affine transformations, and
 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved

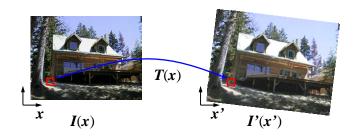
- Closed under composition $\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

Image warping

DigiVFX

DigiVFX

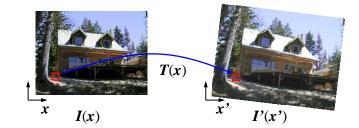
• Given a coordinate transform x' = T(x) and a source image I(x), how do we compute a transformed image I'(x') = I(T(x))?

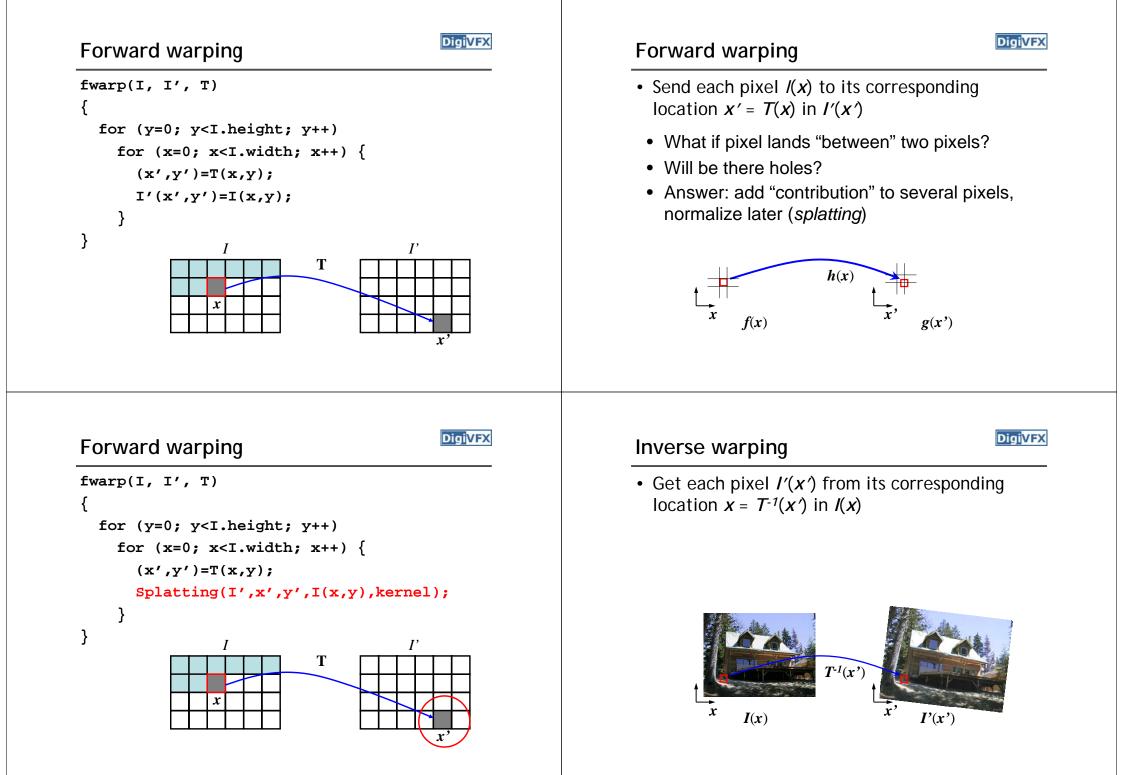


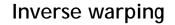
Forward warping

DigiVEX

• Send each pixel *I*(*x*) to its corresponding location x' = T(x) in I'(x')







x

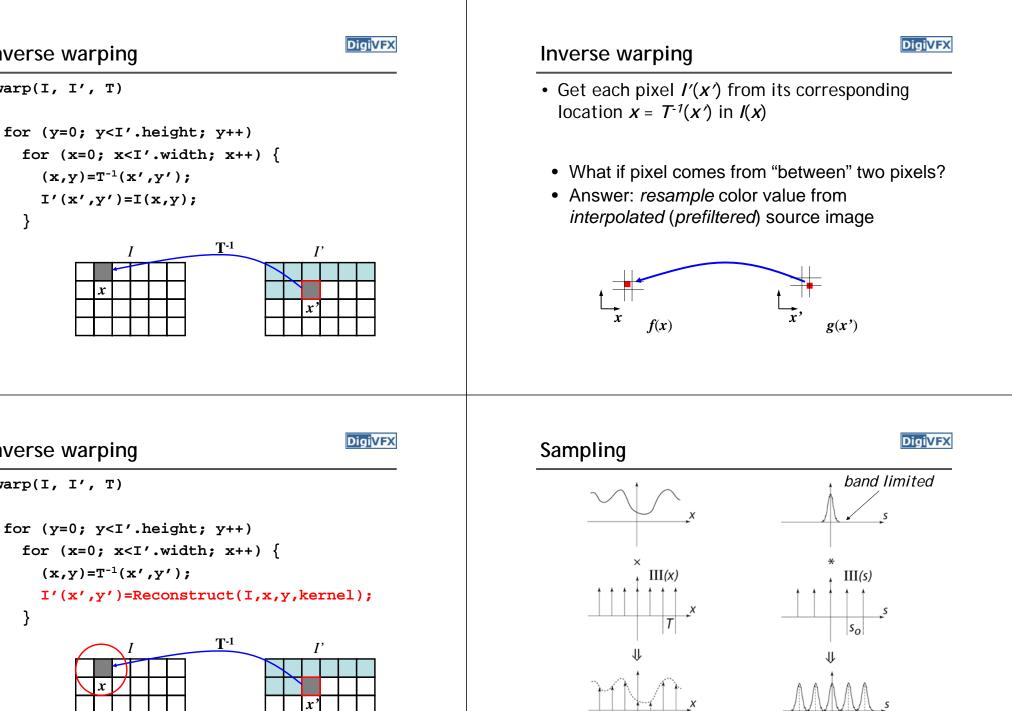
Inverse warping

iwarp(I, I', T)

iwarp(I, I', T)

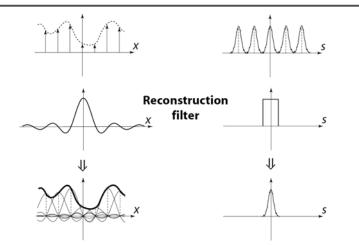
}

}



Reconstruction

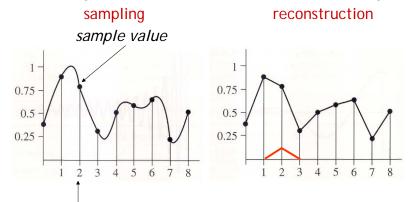
DigiVFX



The reconstructed function is obtained by interpolating among the samples in some manner

Reconstruction

• Reconstruction generates an approximation to the original function. Error is called aliasing.

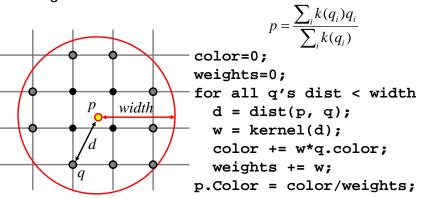


sample position

Reconstruction

DigiVFX

 Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k

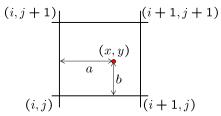


Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc (optimal reconstruction)

Bilinear interpolation (triangle filter)

• A simple method for resampling images

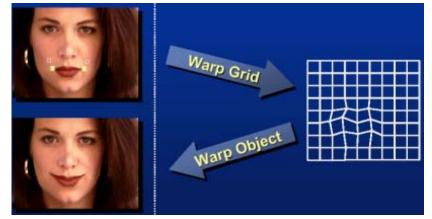


$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Non-parametric image warping

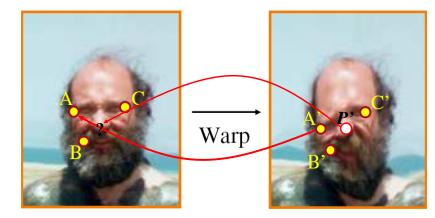
- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)

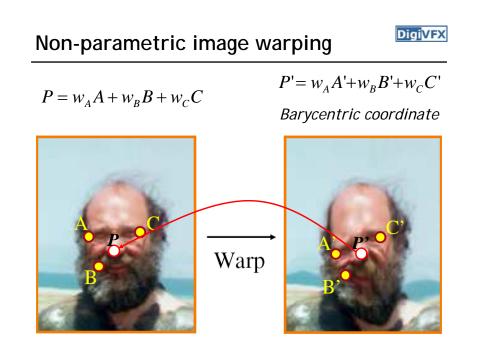
DigiVFX



Non-parametric image warping

- Mappings implied by correspondences
- Inverse warping





Barycentric coordinates

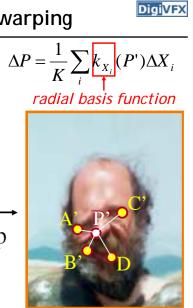
 A_2

 A_1 t_3 p t_2 t_1

$$P = t_1 A_1 + t_2 A_2 + t_3 A_3$$
$$t_1 + t_2 + t_3 = 1$$

Non-parametric image warping Gaussian $\rho(r) = e^{-\beta r^2}$ thin plate $\rho(r) = r^2 \log(r)$ spline $\Delta P = \frac{1}{K} \sum_{i} k_{X_i}$ radial basis

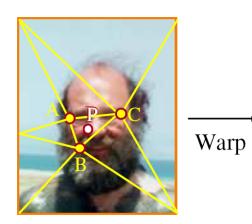
Warp

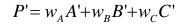


DigiVFX

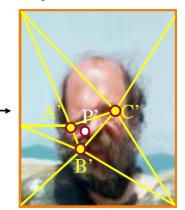
Non-parametric image warping

$$P = w_A A + w_B B + w_C C$$





Barycentric coordinate



Demo

- http://www.colonize.com/warp/warp04-2.php
- Warping is a useful operation for mosaics, video matching, view interpolation and so on.

DigiVFX

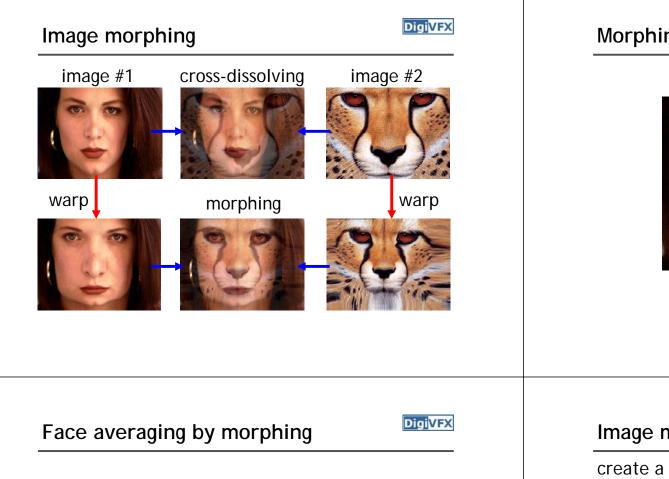
DigiVFX

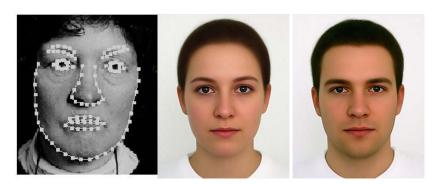
• The goal is to synthesize a fluid transformation from one image to another. • Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects. Image morphing image #2 image #1 dissolving **Digi**VFX DigiVFX Artifacts of cross-dissolving Image morphing • Why ghosting? • Morphing = warping + cross-dissolving color shape (geometric) (photometric)

Image morphing

DigiVFX

http://www.salavon.com/





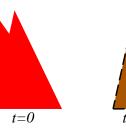
average faces

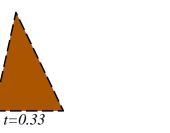
Morphing sequence

Image morphing

create a morphing sequence: for each time t

- 1. Create an intermediate warping field (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images





An ideal example (in 2004)

t=0

morphing

An ideal example

t=0

middle face (t=0.5)

t=1

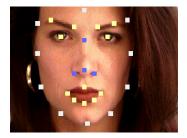
Warp specification (mesh warping)

- How can we specify the warp?
 - 1. Specify corresponding *spline control points interpolate* to a complete warping function

easy to implement, but less expressive

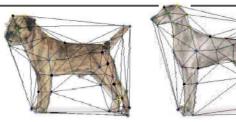
Warp specification

- How can we specify the warp
 - 2. Specify corresponding points
 - interpolate to a complete warping function



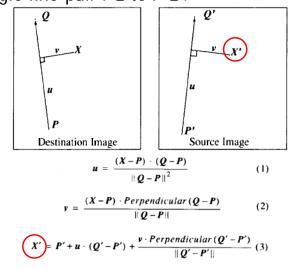
Solution: convert to mesh warping

DigiVFX



- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

• Single line-pair PQ to P'Q':



Warp specification (field warping)

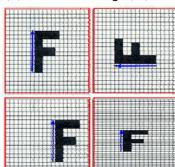
- How can we specify the warp?
 - 3. Specify corresponding vectors
 - *interpolate* to a complete warping function
 - The Beier & Neely Algorithm

Algorithm (single line-pair)

- For each X in the destination image:
 - 1. Find the corresponding u, v
 - 2. Find X' in the source image for that u,v
 - 3. destinationImage(X) = sourceImage(X')
- Examples:

	111	+++	
1111		HII	
144	123	1	223
1	11	11	
	11		111
		111	
	11	1111	н
2222		111	111

Affine transformation

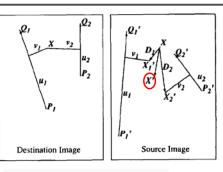


Digi<mark>VFX</mark>

Multiple Lines

DigiVFX

$D_i = X_i' - X_i$

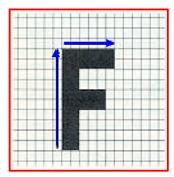


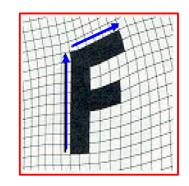
weight[i] =
$$\left(\frac{length[i]^p}{a+dist[i]}\right)^b$$

length = length of the line segment, *dist* = distance to line segment The influence of *a*, *p*, *b*. The same as the average of X_i '

Resulting warp

DigiVFX



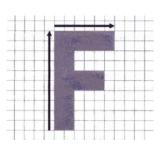


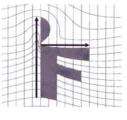
Full Algorithm

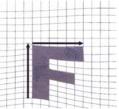
WarpImage(SourceImage, L'[...], L[...]) begin foreach destination pixel X do XSum = (0,0)WeightSum = 0foreach line L[i] in destination do X'[i]= X transformed by (L[i],L'[i]) weight[i] = weight assigned to X'[i] XSum = Xsum + X'[i] * weight[i]WeightSum += weight[i] end X' = XSum/WeightSum DestinationImage(X) = SourceImage(X')end return Destination end

Comparison to mesh morphing

- Pros: more expressive
- Cons: speed and control



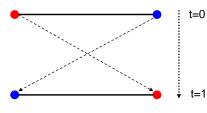




Warp interpolation

Digi<mark>VFX</mark>

- How do we create an intermediate warp at time t?
 - linear interpolation for line end-points
 - But, a line rotating 180 degrees will become 0 length in the middle
 - One solution is to interpolate line mid-point and orientation angle



Animated sequences

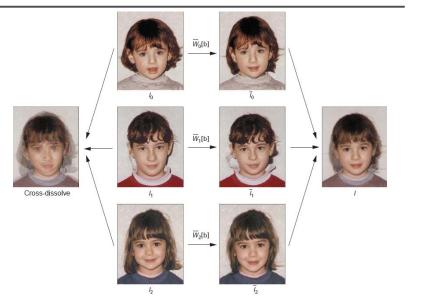
- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

Animation

Results

Michael Jackson's MTV "Black or White"

Multi-source morphing



Multi-source morphing

References

DigiVFX

DigiVFX

- Thaddeus Beier, Shawn Neely, <u>Feature-Based Image Metamorphosis</u>, SIGGRAPH 1992, pp35-42.
- Detlef Ruprecht, Heinrich Muller, <u>Image Warping with Scattered</u> <u>Data Interpolation</u>, IEEE Computer Graphics and Applications, March 1995, pp37-43.
- Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, <u>Image</u> <u>Metamorphosis Using Snakes and Free-Form Deformations</u>, SIGGRAPH 1995.
- Seungyong Lee, Wolberg, G., Sung Yong Shin, <u>Polymorph: morphing</u> <u>among multiple images</u>, IEEE Computer Graphics and Applications, Vol. 18, No. 1, 1998, pp58-71.
- Peinsheng Gao, Thomas Sederberg, <u>A work minimization approach</u> to image morphing, The Visual Computer, 1998, pp390-400.
- George Wolberg, <u>Image morphing: a survey</u>, The Visual Computer, 1998, pp360-372.