Image warping/morphing

Digital Visual Effects, Spring 2008
Yung-Yu Cbuang
2008/3/11
with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros

Image warping

Image formation

Sampling and quantization

What is an image

- We can think of an image as a function, $f: R^{2} \rightarrow R$:
- $f(x, y)$ gives the intensity at position (x, y)
- defined over a rectangle, with a finite range:
- f: $[a, b] \times[c, d] \rightarrow[0,1]$

- A color image

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

A digital image

- We usually operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- If our samples are D apart, we can write this as: $\mathrm{f}[\mathrm{i}, \mathrm{j}]=$ Quantize\{f(i D, j D) \}
- The image can now be represented as a matrix of integer values

$\dot{\boldsymbol{z}}$	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Image warping

image filtering: change range of image

$$
g(x)=h(f(x))
$$

$$
h(y)=0.5 y+0.5
$$

$\underbrace{g \sim^{h(y)}=0.5 y+0.5}_{x}$
image warping: change domain of image

$$
g(x)=f(h(x))
$$

$$
h(y)=2 y
$$

Image warping

image filtering: change range of image

$$
f(x)=h(g(x))
$$

$$
h(y)=0.5 y+0.5
$$

image warping: change domain of image

$$
f(x)=g(h(x))
$$

Parametric (global) warping

Examples of parametric warps:

translation

affine

rotation

perspective

aspect

cylindrical

Parametric (global) warping

$$
\mathbf{p}=(\mathrm{x}, \mathrm{y})
$$

- Transformation T is a coordinate-changing machine: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{p})$
- What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Represent T as a matrix: $\mathbf{p}^{\prime}=\mathbf{M}^{*} p\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}x \\ y\end{array}\right]$

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=g\left(\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]\right)
$$

Scaling

- Scaling operation: $x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix }}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What's inverse of S?

2-D Rotation

- This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear to θ,
$-x^{\prime}$ is a linear combination of \mathbf{x} and \mathbf{y}
$-y^{\prime}$ is a linear combination of x and y
- What is the inverse transformation?
- Rotation by $-\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ so $\mathbf{R}^{-1}=\mathbf{R}^{T}$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Rotate around $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=\cos \theta^{*} x-\sin \theta^{*} y \\
& y^{\prime}=\sin \theta^{*} x+\cos \theta^{*} y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s_{x} \\
\boldsymbol{s h}_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

- What types of transformations can not be represented with a 2×2 matrix?

2D Translation?

$$
\begin{align*}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{align*}
$$

Only linear 2D transformations
can be represented with a 2×2 matrix

Translation

- Example of translation

Homogeneous Coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Affine Transformations

- Affine transformations are combinations of ...
- Linear transformations, and
- Translations
- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
$\begin{aligned} & \text { - Ratios are preserved } \\ & \text { - Models change of basis }\end{aligned}\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ w\end{array}\right]$

Projective Transformations

- Proj ective transformations ...
- Affine transformations, and
- Projective warps
- Properties of proj ective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Models change of basis $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{c}x \\ y \\ w\end{array}\right]$

Image warping

- Given a coordinate transform $\mathbf{x}^{\prime}=\mathbf{T}(\mathbf{x})$ and a source image $\mathbf{I}(\mathbf{x})$, how do we compute a transformed image $\mathbf{I}^{\prime}\left(\mathbf{x}^{\prime}\right)=\mathbf{I}(\mathbf{T}(\mathbf{x}))$?

Forward warping

- Send each pixel $\mathbf{I}(\mathbf{x})$ to its corresponding location $\mathbf{x}^{\prime}=\mathbf{T}(\mathbf{x})$ in $\mathbf{I}^{\prime}\left(\mathbf{x}^{\prime}\right)$

Forward warping

fwarp(I, I', T)
\{
for ($y=0 ; y<I . h e i g h t ; y++)$
for (x=0; $x<I$. width; $x++$) \{
(x^{\prime}, y^{\prime}) $=T(x, y)$;
$I^{\prime}\left(x^{\prime}, y^{\prime}\right)=I(x, y)$;
\}
\}

Forward warping

- Send each pixel I(x) to its corresponding location $\mathbf{x}^{\prime}=\mathbf{T}(\mathbf{x})$ in $\mathbf{I}^{\prime}\left(\mathbf{x}^{\prime}\right)$
- What if pixel lands "between" two pixels?
- Will be there holes?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Forward warping

fwarp(I, I', T)
\{
for ($\mathrm{y}=0$; $\mathrm{y}<\mathrm{I}$. height; $\mathrm{y}++$)
for (x=0; $x<I$. width; $x++$) \{
(x^{\prime}, y^{\prime}) $=T(x, y)$;
Splatting(I', $\left.x^{\prime}, y^{\prime}, I(x, y), k e r n e l\right) ;$
\}
\}

Inverse warping

- Get each pixel $\mathbf{I}^{\prime}\left(\mathbf{x}^{\prime}\right)$ from its corresponding location $\mathbf{x}=\mathbf{T}^{-\mathbf{1}}\left(\mathbf{x}^{\prime}\right)$ in $\mathbf{I}(\mathbf{x})$

Inverse warping

iwarp(I, I', T)
\{
for ($\mathrm{y}=0$; $\mathrm{y}<\mathrm{I}$ '.height; $\mathrm{y}++$)
for ($x=0 ; x<I^{\prime}$. width; $x++$) \{
(x, y) $=T^{-1}\left(x^{\prime}, y^{\prime}\right)$;
$I^{\prime}\left(x^{\prime}, y^{\prime}\right)=I(x, y)$;
\}
\}

Inverse warping

- Get each pixel $\mathbf{I}^{\prime}\left(\mathbf{x}^{\prime}\right)$ from its corresponding location $\mathbf{x}=\mathbf{T}^{-\mathbf{1}}\left(\mathbf{x}^{\prime}\right)$ in $\mathbf{I}(\mathbf{x})$
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

Inverse warping

iwarp(I, I', T)
\{
for ($\mathrm{y}=0$; $\mathrm{y}<\mathrm{I}$..height; $\mathrm{y}++$)
for ($x=0 ; x<I^{\prime}$. width; $x++$) \{ (x, y) $=\mathrm{T}^{-1}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$;
$I^{\prime}\left(x^{\prime}, y^{\prime}\right)=R e c o n s t r u c t(I, x, y, k e r n e l) ;$
\}
\}

\Downarrow

\Downarrow

Reconstruction

The reconstructed function is obtained by interpolating among the samples in some manner

Reconstruction

- Reconstruction generates an approximation to the original function. Error is called aliasing.
sampling
sample value

sample position

Reconstruction

- Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k

color=0;

$$
p=\frac{\sum_{i} k\left(q_{i}\right) q_{i}}{\sum_{i} k\left(q_{i}\right)}
$$

weights=0;
for all q's dist < width

$$
d=\operatorname{dist}(p, q) ;
$$

w = kernel(d);
color += w*q.color;
weights += w;
p.Color = color/weights;

Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
- nearest neighbor
- bilinear
- bicubic
- sinc (optimal reconstruction)

Bilinear interpolation (triangle filter)

- A simple method for resampling images

$$
\begin{aligned}
& f(x, y)=(1-a)(1-b) \quad f[i, j] \\
& +a(1-b) \quad f[i+1, j] \\
& +a b \quad f[i+1, j+1] \\
& +(1-a) b \quad f[i, j+1]
\end{aligned}
$$

Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)

Non-parametric image warping

- Mappings implied by correspondences
- Inverse warping

Non-parametric image warping

$$
P=w_{A} A+w_{B} B+w_{C} C
$$

$P^{\prime}=w_{A} A^{\prime}+w_{B} B^{\prime}+w_{C} C^{\prime}$
Barycentric coordinate

Barycentric coordinates

$$
\begin{aligned}
& P=t_{1} A_{1}+t_{2} A_{2}+t_{3} A_{3} \\
& t_{1}+t_{2}+t_{3}=1
\end{aligned}
$$

Non-parametric image warping

$$
P=w_{A} A+w_{B} B+w_{C} C
$$

$P^{\prime}=w_{A} A^{\prime}+w_{B} B^{\prime}+w_{C} C^{\prime}$
Barycentric coordinate

Non-parametric image warping

$$
\rho(r)=e^{-\beta r^{2}}
$$

thin plate

$$
\rho(r)=r^{2} \log (r)
$$

$$
\Delta P=\frac{1}{K} \sum_{i} \underset{k_{x_{i}}}{ }\left(P^{\prime}\right) \Delta X_{i}
$$ spline

Demo

- http:/ / www. colonize. com/ warp/ warp04-2. php
- Warping is a useful operation for mosaics, video matching, view interpolation and so on.

Image morphing

Image morphing

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image \#1

dissolving

Artifacts of cross-dissolving

http:// www. salavon. com/

Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

shape
(geometric)

Image morphing

Morphing sequence

DigjvFX

Face averaging by morphing

average faces

Image morphing

create a morphing sequence: for each time t

1. Create an intermediate warping field (by interpolation)
2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped images

An ideal example (in 2004)

Cratas by unfeolstered FantaMorph
morphing

An ideal example

$\mathrm{t}=0$

middle face ($t=0.5$)

$\mathrm{t}=1$

Warp specification (mesh warping)

- How can we specify the warp?

1. Specify corresponding spline control points interpol ate to a complete warping function

easy to implement, but less expressive

Warp specification

- How can we specify the warp

2. Specify corresponding points

- interpolate to a complete warping function

Solution: convert to mesh warping

1. Define a triangular mesh over the points

- Same mesh in both images!
- Now we have triangle-to-triangle correspondences

2. Warp each triangle separately from source to destination

- How do we warp a triangle?
- 3 points = affine warp!
- J ust like texture mapping

Warp specification (field warping)

- How can we specify the warp?

3. Specify corresponding vectors

- interpolate to a complete warping function
- The Beier \& Neely Algorithm

Beier\&Neely (SGGRAPH 1992)

- Single line-pair PQ to P'Q':

$$
\begin{gathered}
\boldsymbol{u}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|^{2}} \\
\boldsymbol{v}=\frac{(\boldsymbol{X}-\boldsymbol{P}) \cdot \text { Perpendicular }(\boldsymbol{Q}-\boldsymbol{P})}{\|\boldsymbol{Q}-\boldsymbol{P}\|} \\
\boldsymbol{X}^{\prime}=\boldsymbol{P}^{\prime}+\boldsymbol{u} \cdot\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)+\frac{\boldsymbol{v} \cdot \text { Perpendicular }\left(\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right)}{\left\|\boldsymbol{Q}^{\prime}-\boldsymbol{P}^{\prime}\right\|}
\end{gathered}
$$

Algorithm (single line-pair)

- For each X in the destination image:

1. Find the corresponding u, v
2. Find X in the source image for that u, v
3. destinationlmage $(X)=$ sourcelmage $(X$ ')

- Examples:

Affine transformation

Multiple Lines

$$
D_{i}=X_{i}^{\prime}-X_{i}
$$

$$
\text { weight }[i]=\left(\frac{\text { length }[i]^{p}}{a+\operatorname{dist} t[i]}\right)^{b}
$$

length = length of the line segment, dist $=$ distance to line segment
The influence of a, p, b. The same as the average of $\mathrm{X}_{i}{ }^{\prime}$

Full Algorithm

```
WarpImage(SourceImage, L'[...], L[...])
begin
    foreach destination pixel X do
        XSum = (0,0)
        WeightSum = 0
        foreach line L[i] in destination do
        X'[i]= X transformed by (L[i],L'[i])
        weight[i] = weight assigned to X'[i]
        XSum = Xsum + X'[i] * weight[i]
        WeightSum += weight[i]
        end
        X' = XSum/WeightSum
        DestinationImage(X) = SourceImage( }\mp@subsup{\textrm{X}}{}{\prime}\mathrm{ )
    end
    return Destination
end
```


Resulting warp

Comparison to mesh morphing

- Pros: more expressive
- Cons: speed and control

Warp interpolation

- How do we create an intermediate warp at time t?
- linear interpolation for line end-points
- But, a line rotating 180 degrees will become 0 length in the middle
- One solution is to interpolate line mid-point and orientation angle

Animation

GenerateAnimation(Image ${ }_{0}, \mathrm{~L}_{0}[\ldots]$, Image $\left._{1}, \mathrm{~L}_{1}[\ldots]\right)$ begin
foreach intermediate frame time t do
for $\mathrm{i}=1$ to number of line-pairs do
$\mathrm{L}[\mathrm{i}]=$ line t -th of the way from $\mathrm{L}_{0}[\mathrm{i}]$ to $\mathrm{L}_{1}[\mathrm{i}]$. end
Warp $_{0}=$ WarpImage $\left(\right.$ Image $\left._{0}, \mathrm{~L}_{0}[\ldots], \mathrm{L}[\ldots]\right)$
$\operatorname{Warp}_{1}=$ WarpImage $\left(\right.$ Image $\left._{1}, \mathrm{~L}_{1}[\ldots], \mathrm{L}[\ldots]\right)$
foreach pixel p in FinalImage do
FinalImage $(p)=(1-t) \operatorname{Warp}_{0}(p)+t \operatorname{Warp}_{1}(p)$
end
end
end

Animated sequences

- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

Results

Michael J ackson's MTV "Black or White"

Multi-source morphing

Multi-source morphing

References

- Thaddeus Beier, Shawn Neely, Feature-Based Image Metamorphosis, SIGGRAPH 1992, pp35-42.
- Detlef Ruprecht, Heinrich Muller, Image Warping with Scattered Data Interpolation, IEEE Computer Graphics and Applications, March 1995, pp37-43.
- Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, Image Metamorphosis Using Snakes and Free-Form Deformations, SIGGRAPH 1995.
- Seungyong Lee, Wolberg, G., Sung Yong Shin, Polymorph: morphing among multiple images, IEEE Computer Graphics and Applications, Vol. 18, No. 1, 1998, pp58-71.
- Peinsheng Gao, Thomas Sederberg, A work minimization approach to image morphing, The Visual Computer, 1998, pp390-400.
- George Wolberg, Image morphing: a survey, The Visual Computer, 1998, pp360-372.

