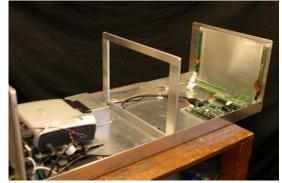

Tone mapping

Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/3/4

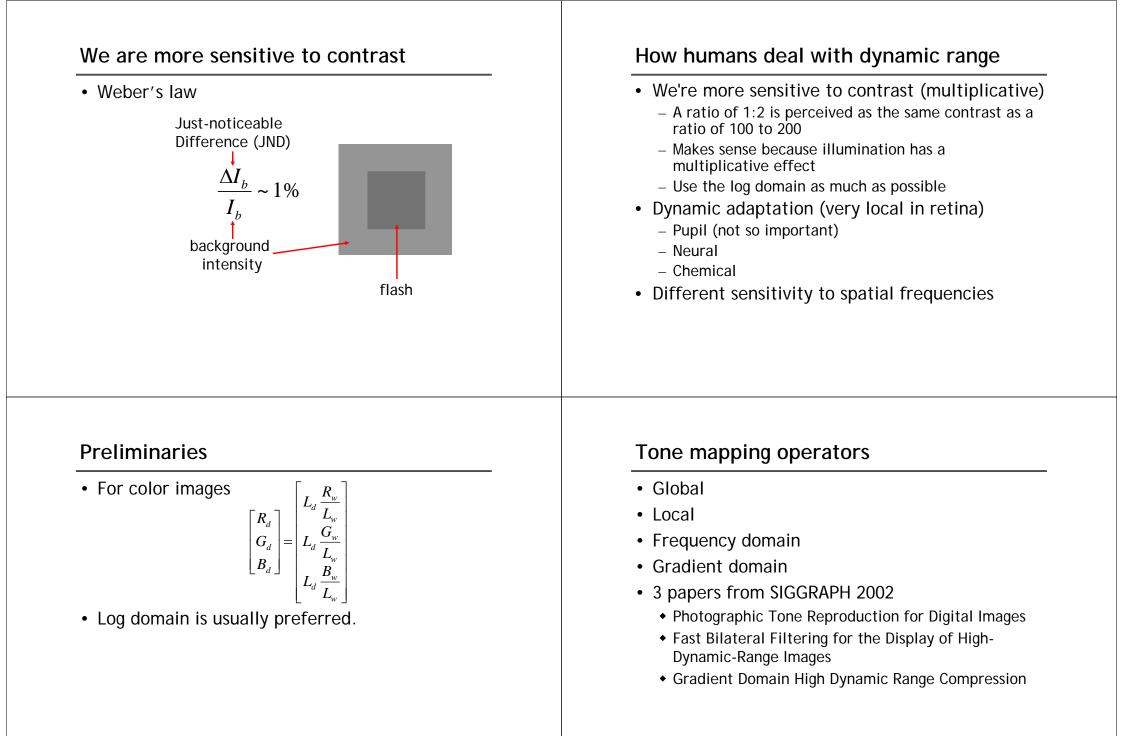
with slides by Fredo Durand, and Alexei Efros


Tone mapping

 How should we map scene luminances (up to 1:100,000) to display luminances (only around 1:100) to produce a satisfactory image? Linear scaling?, thresholding?

Display HDR

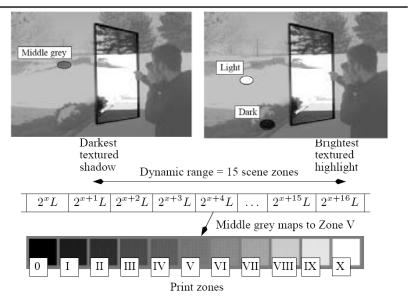
 Once we have HDR images (either captured or synthesized), how can we display them on normal displays?



HDR display system, Sunnybrook, 2004

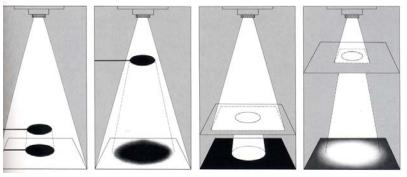
Eye is not a photometer!

- Dynamic range along the visual pathway is only around 32:1.
- The key is adaptation

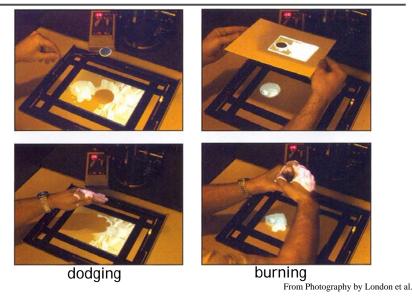

Photographic Tone Reproduction for Digital Images

Erik Reinhard Mike Stark Peter Shirley Jim Ferwerda SIGGRAPH 2002

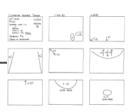
Photographic tone reproduction


- Proposed by Reinhard et. al. in SIGGRAPH 2002
- Motivated by traditional practice, zone system by Ansel Adams and dodging and burning
- It contains both global and local operators

Zone system


Dodging and burning

- During the print
- Hide part of the print during exposure
 - Makes it brighter

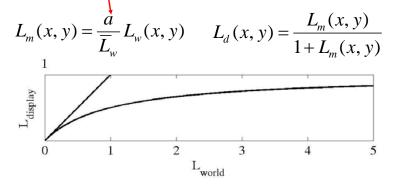

From The Master Printing Course, Rudman

Dodging and burning

Dodging and burning

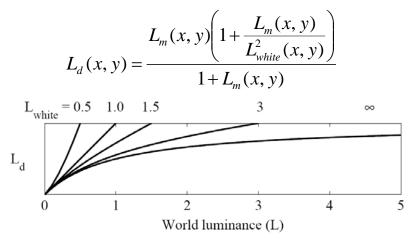
• Must be done for every single print!

Straight print


After dodging and burning

Global operator

$$\overline{L}_{w} = \exp\left(\frac{1}{N}\sum_{x,y}\log(\delta + L_{w}(x, y))\right)$$


Approximation of scene's key (how light or dark it is). Map to 18% of display range for average-key scene

User-specified; high key or low key

Global operator

It seldom reaches 1 since the input image does not have infinitely large luminance values.

low key (0.18)

high key (0.5)

Dodging and burning (local operators)

$$L_{d}(x, y) = \frac{L_{m}(x, y)}{1 + L_{s_{max}}^{blur}(x, y)}$$

- A darker pixel (smaller than the blurred average of its surrounding area) is divided by a larger number and become darker (dodging)
- A brighter pixel (larger than the blurred average of its surrounding area) is divided by a smaller number and become brighter (burning)
- Both increase the contrast

Dodging and burning (local operators)

- Area receiving a different exposure is often bounded by sharp contrast
- Find largest surrounding area without any sharp contrast

$$L_s^{blur}(x, y) = L_m(x, y) \otimes G_s(x, y)$$

$$V_{s}(x, y) = \frac{L_{s}^{blur}(x, y) - L_{s+1}^{blur}(x, y)}{2^{\phi} a/s^{2} + L_{s}^{blur}}$$

$$s_{\max}: |V_{s_{\max}}(\mathbf{x}, \mathbf{y})| < \varepsilon$$

Dodging and burning

Frequency domain

- First proposed by Oppenheim in 1968!
- Under simplified assumptions,

= illuminance * low-frequency hi attenuate more at

reflectance
high-frequency
attenuate less

Oppenheim

- Taking the logarithm to form density image
- Perform FFT on the density image
- Apply frequency-dependent attenuation filter

$$s(f) = (1-c) + c \frac{kf}{1+kf}$$

- Perform inverse FFT
- Take exponential to form the final image

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Frédo Durand & Julie Dorsey

SIGGRAPH 2002

A typical photo

- Sun is overexposed
- Foreground is underexposed


Gamma compression

- $X \rightarrow X^{\gamma}$
- Colors are washed-out

Chiu et al. 1993

- Reduce contrast of low-frequencies
- Keep high frequencies


Gamma compression on intensity

• Colors are OK, but details (intensity highfrequency) are blurred

The halo nightmare

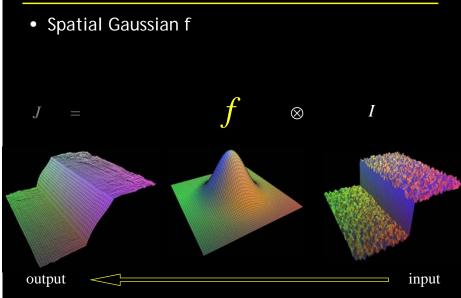
- For strong edges
- Because they contain high frequency

Durand and Dorsey

- Do not blur across edges
- Non-linear filtering

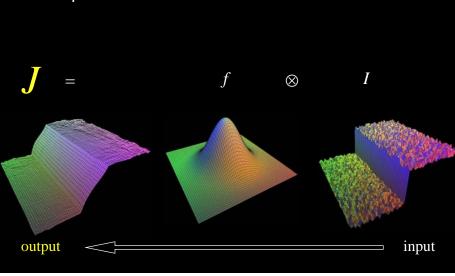
Edge-preserving filtering

• Blur, but not across edges

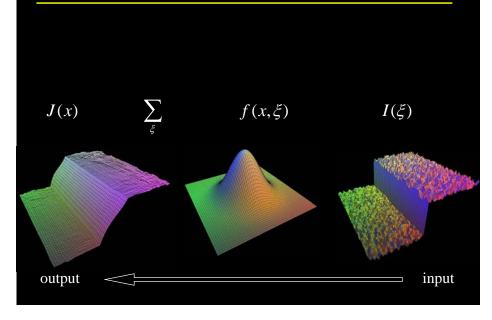


- Anisotropic diffusion [Perona & Malik 90]
 - Blurring as heat flow
 - LCIS [Tumblin & Turk]
- Bilateral filtering [Tomasi & Manduci, 98]

Start with Gaussian filtering

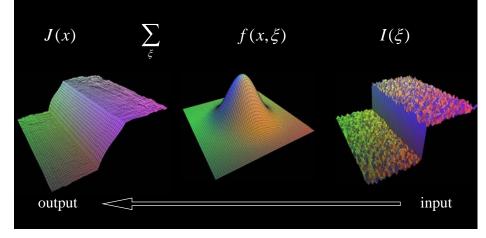

• Here, input is a step function + noise $J = f \otimes I$

Start with Gaussian filtering



Start with Gaussian filtering

• Output is blurred



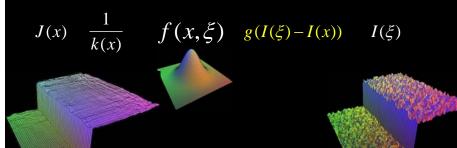
Gaussian filter as weighted average

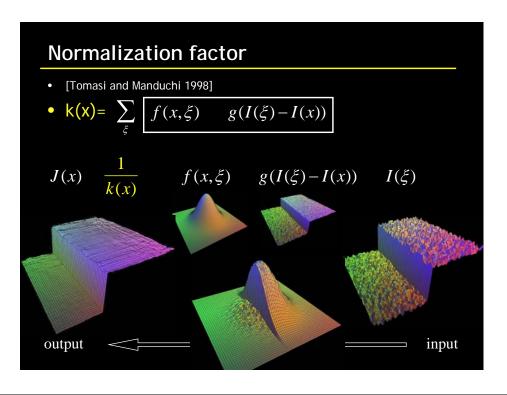
The problem of edges

- Here, $I(\xi)$ "pollutes" our estimate J(x)
- It is too different

Principle of Bilateral filtering

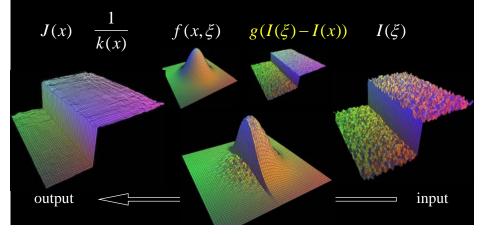
- [Tomasi and Manduchi 1998]
- Penalty g on the intensity difference


$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \qquad g(I(\xi) - I(x)) \qquad I(\xi)$$


Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f

output



input

Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f
- Gaussian g on the intensity difference

Bilateral filtering is non-linear

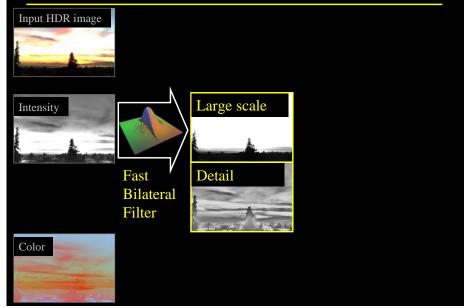
• [Tomasi and Manduchi 1998]

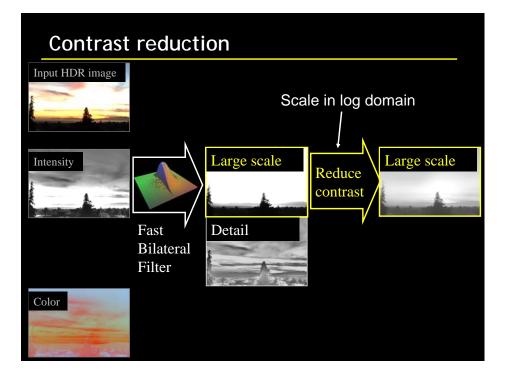
• The weights are different for each output pixel

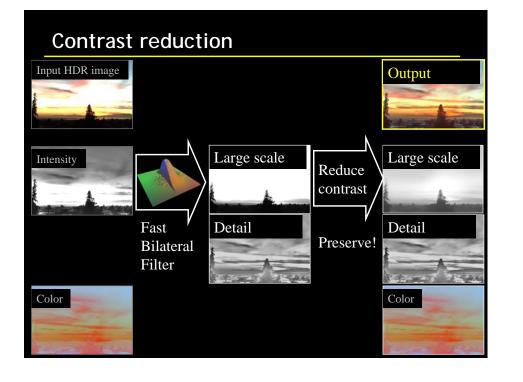
Contrast reduction

Contrast too high!

Contrast reduction


Input HDR image




Color

<complex-block>Contrast reduction

Contrast reduction

<section-header>Contrast reductionInput HDR imageIntensityInte

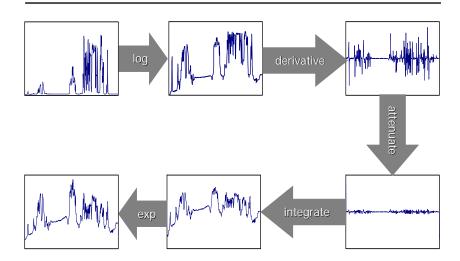
Bilateral filter is slow!

- Compared to Gaussian filtering, it is much slower because the kernel is not fixed.
- Durand and Dorsey proposed an approximate approach to speed up
- Paris and Durand proposed an even-faster approach in ECCV 2006. We will cover this one when talking about computational photogrphy.

Oppenheim

bilateral

Gradient Domain High Dynamic Range Compression


Raanan Fattal Dani Lischinski Michael Werman

SIGGRAPH 2002

Log domain

- Logorithm is a crude approximation to the perceived brightness
- Gradients in log domain correspond to ratios (local contrast) in the luminance domain

The method in 1D

The method in 2D

- Given: a log-luminance image H(x,y)
- Compute an *attenuation map* $\Phi(|\nabla H|)$
- Compute an attenuated gradient field G:

$G(x, y) = \nabla H(x, y) \cdot \Phi(\|\nabla H\|)$

• Problem: G is not integrable!

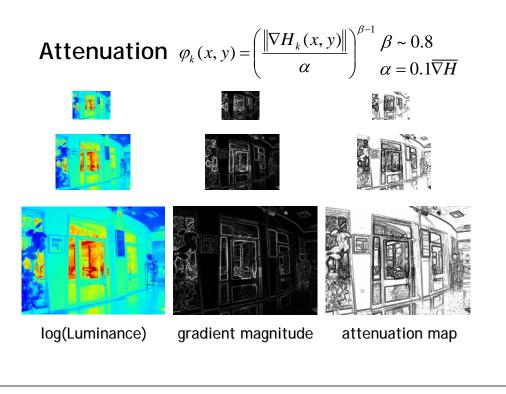
Solution

- Look for image *I* with gradient closest to *G* in the least squares sense.
- *I* minimizes the integral: $\iint F(\nabla I, G) dx dy$

$$F(\nabla I, G) = \left\|\nabla I - G\right\|^2 = \left(\frac{\partial I}{\partial x} - G_x\right)^2 + \left(\frac{\partial I}{\partial y} - G_y\right)^2$$

$\partial^2 I$	$\partial^2 I$	∂G_x	∂G_y	
∂x^2	$\int \frac{\partial y^2}{\partial y^2}$	∂x	∂y	

Poisson equation



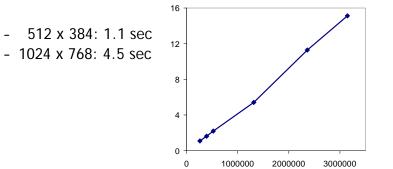
Solving Poisson equation

- No analytical solution
- Multigrid method
- Conjugate gradient method

Attenuation

- Any dramatic change in luminance results in large luminance gradient at some scale
- Edges exist in multiple scales. Thus, we have to detect and attenuate them at multiple scales
- Construct a Gaussian pyramid *H_i*

Multiscale gradient attenuation



Final gradient attenuation map

Performance

• Measured on 1.8 GHz Pentium 4:

Can be accelerated using processor-optimized libraries.

Informal comparison

Gradient domain [Fattal et al.] Bilateral [Durand et al.] Photographic [Reinhard et al.]

Informal comparison

Gradient domain [Fattal et al.]

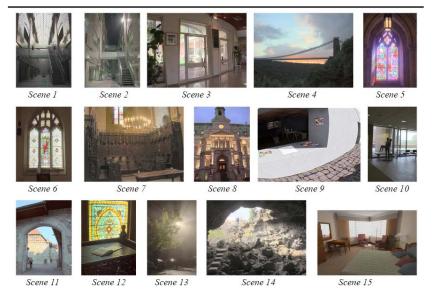
Bilateral [Durand et al.]

Photographic [Reinhard et al.]

Informal comparison

Gradient domain [Fattal et al.] Bilateral [Durand et al.] Photographic [Reinhard et al.]

Evaluation of Tone Mapping Operators using a High Dynamic Range Display


Patrick LeddaAlan ChalmersTom TroscinkoHelge Seetzen

SIGGRAPH 2005

Six operators

- H: histogram adjustment
- B: bilateral filter
- P: photographic reproduction
- I: iCAM
- L: logarithm mapping
- A: local eye adaption

23 scenes

Experiment setting

Preference matrix

- Ranking is easier than rating.
- 15 pairs for each person to compare. A total of 345 pairs per subject.

	tmo ₁	tmo ₂	tmo ₃	tmo ₄	tmo5	tmo ₆	Score
tmo ₁	-	1	0	0	1	1	3
tmo_2	0	-	0	1	1	0	2
tmo ₃	1	1	-	1	1	1	5
tmo_4	1	0	0	.	0	0	1
tmo ₅	0	0	0	1	-	1	2
tmo ₆	0	1	0	1	0	-	2

preference matrix (tmo2->tmo4, tom2 is better than tmo4)

Statistical measurements

- Statistical measurements are used to evaluate:
 - Agreement: whether most agree on the ranking between two tone mapping operators.
 - Consistency: no cycle in ranking. If all are confused in ranking some pairs, it means they are hard to compare. If someone is inconsistent alone, his ranking could be droped.

Overall similarity

Scene 8								
	P	Н	B	L	Ι	A	Total	
P	-	24	46	42	10	32	154	
Н	24	-	44	32	8	12	120	
В	2	4	-	8	2	4	20	
L	6	16	40	-	4	12	78	
Ι	38	40	46	44	-	38	206	
A	16	36	44	36	10	-	142	

Summary

Overall Similarity: Color									
Ι	P	Н	A	L	В				
3712	3402	2994	2852	1902	2 1696				
Bright Detail									
Ι	A	P	H	В	L				
823	688	569	549	474	347				
Dark Detail									
P	A	Ι	L	H	В				
815	5 793	583	491	485	283				

Not settled down yet!

- Some other experiment said bilateral are better than others.
- For your reference, photographic reproduction performs well in both reports.
- There are parameters to tune and the space could be huge.

References

- Raanan Fattal, Dani Lischinski, Michael Werman, Gradient Domain High Dynamic Range Compression, SIGGRAPH 2002.
- Fredo Durand, Julie Dorsey, <u>Fast Bilateral Filtering for</u> <u>the Display of High Dynamic Range Images</u>, SIGGRAPH 2002.
- Erik Reinhard, Michael Stark, Peter Shirley, Jim Ferwerda, <u>Photographics Tone Reproduction for Digital</u> <u>Images</u>, SIGGRAPH 2002.
- Patrick Ledda, Alan Chalmers, Tom Troscianko, Helge Seetzen, <u>Evaluation of Tone Mapping Operators using a</u> <u>High Dynamic Range Display</u>, SIGGRAPH 2005.
- Jiangtao Kuang, Hiroshi Yamaguchi, Changmeng Liu, Garrett Johnson, Mark Fairchild, <u>Evaluating HDR</u> <u>Rendering Algorithms</u>, ACM Transactions on Applied Perception, 2007.