High dynamic range imaging

Digital Visual Ettects, Spring 2008
Yung-Yu Chuang
2008/2/26

with stides by Fredo Durand, Brian Curless, Steve Seitz, Panl Debevec and Alexei Efros



Camera Is an imperfect device BEIvEX

e Camera iIs an imperfect device for measuring
the radiance distribution of a scene because It

cannot capture the full spectral content and
dynamic range.

e Limitations in sensor design prevent cameras
from capturing all information passed by lens.



Camera pipeline
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Camera pipeline
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Real-world response functions

Digi\Yl 2.4

n general, the response function is not provided
Dy camera makers who consider it part of their
oroprietary product differentiation. In addition,

they are beyond the standard gamma curves.
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The world iIs high dynamic range
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The world iIs high dynamic range

 m—

. 1907.1




Real world dynamic range

e Eye can adapt from ~ 10-¢ to 10° cd/m?
e Often1 : 100,000 In a scene
* Typical 1:50, max 1:500 for pictures
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Camera Is not a photometer

* Limited dynamic range
— Perhaps use multiple exposures?

* Unknown, nonlinear response
= Not possible to convert pixel values to radiance

e Solution:

— Recover response curve from multiple exposures,
then reconstruct the radiance map



Varying exposure

e \Ways to change exposure
- Shutter speed
- Aperture
- Neutral density filters
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Shutter speed

e Note: shutter times usually obey a power
series - each “stop” Is a factor of 2

e Y, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500,
1/1000 sec

Usually really Is:

Ya, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512,
1/1024 sec



Varying shutter speeds
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HDRI capturing from multiple exposur@

e Capture images with multiple exposures

e Image alignment (even If you use tripod, It Is
suggested to run alignment)

e Response curve recovery
e Ghost/flare removal
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Image alignment

e \We will introduce a fast and easy-to-implement
method for this task, called Median Threshold
Bitmap (MTB) alignment technique.

e Consider only integral translations. It Is enough
empirically.
e The Inputs are N grayscale images. (You can

either use the green channel or convert into
grayscale by Y=(54R+183G+19B)/256)

e MTB Is a binary image formed by thresholding
the Iinput image using the median of intensities.
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Why 1s MTB better than gradient?

e Edge-detection filters are dependent on image
exposures

e Taking the difference of two edge bitmaps
would not give a good indication of where the

edges are misaligned.



Search for the optimal offset

e Try all possible
offsets.

e Gradient descent
e Multiscale technique

e |log(max_offset) levels

e Try 9 possibilities for
the top level

e Scale by 2 when
passing down; try its 9
neighbors
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Threshold noise

Ignore pixels that are
close to the.threshold




Efficiency considerations

e XOR for taking difference
e AND with exclusion maps
e Bit counting by table lookup
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Results

Success rate = 84%. 10% failure due to rotation.
3% for excessive motion and 3% for too much
high-frequency content.




Recovering response curve

scene

(L)

CCD

~ >

[.ens

sensor

ADC

analog _|
voltages

e

Shutter

sensor
radiance — — irradiance — J —> exposure —»
(E)

(X)

| Zij = f(E:At)|

Remapping
final

digital __ digital
values _'j"__.__ values
(2)

12 bits 8 bits




Digil2d

Recovering response curve

 We want to obtain the inverse of the response
curve

Zij = f(E:Aty)
Z@j




Recovering response curve

Image series
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ldea behind the math

plot of g(Z1)) from three pixels observed in five iImages, assuming unit radiance at each pixel
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ldea behind the math

plot of g(Zi)) from three pixels observed in five images, assuming unit radiance at each pixel
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ldea behind the math
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Math for recovering response curve

Zij = f(EiAt;)
f 1s monotonic, it is invertible
In f~'(Zi;) = nE; + In At;
let us define function ¢ = In f~*
9(Zij) = In E; + In At;

minimize the following

N P Lmar—1
O = Z 2: (9(Zi;) —In E; —In At;]° + A Z g’ (z)°
1=1 j3=1 z2=Lmin+t1

g"(2) = g(z—1) —2g(2) + g(z +1)
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Recovering response curve

e The solution can be only up to a scale, add a
constraint

g(Zmz'd) = 0, where Z,,,;4 = %(me + Zmam)
e Add a hat weighting function

QU(Z) _ Z — me;;fn, for z S %(me T Zma;x:)
Zma,m —z forz > §(Zmzin T Zmam)

0= Y {w(Z;)g(Zy;) —mE; —In At;]}* +

Lmaw—1

Ay [w()g" ()

2=Zmin+1



Recovering response curve

e \We want N(P — 1) > (Zmam — min)
If P=11, N~25 (typically 50 is used)

e We prefer that selected pixels are well
distributed and sampled from constant regions.
They picked points by hand.

e |t is an overdetermined system of linear
equations and can be solved using SVD
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How to optimize?

0= > {w(Z)lg(Z;) —In E; — In At;]}* +
A w(x)g ()P

2=Zmint1

1. Set partial derivatives zero
2. o7 Tw T

N
min ) (a;x—b,)* — least - square solution of X =
i=1 .
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Sparse linear system
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Questions

 Will g(127)=0 always be satisfied? Why or why
not?

e How to find the least-square solution for an
over-determined system?



- - VFX
Least-square solution for a linear syst@

AX = b

mxn n
m > n

They are often mutually incompatible. We instead find x to
minimize the norm |Ax —b| of the residual vector Ax—b.

If there are multiple solutions, we prefer the one with the
minimal length [x].
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Least-square solution for a linear syst@

If we perform SVD on A and rewrite it as

A=UXV"

then x ={VX*'U'b is the least-square solution.
pseudo inverse

1/ 0, 0 - 0




Proof
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Libraries for SVD

e Matlab
e GSL

e Boost
e | APACK
e ATLAS



Matlab code

d° d° Of d° Jf JP P Jf OF JF JP df Jf Jf JF P P Jf JP 0P of of Jf oP of

gsolve.m - Solve for imaging system response function

Given a set of pixel wvalues observed for several pixels in several
images with different exposure times, this function returns the

imaging system’s response function g as well as the log film irradiance
values for the observed pixels.

Assumes:
Zmin = 0
Zmax = 255

Arguments:
Z(i,9) 1is
B(7) is
1 is
wi(z) is

Returns:
gl(z) is
1E(1) is

the pixel wvalues of pixel location number i in image j

the log delta t, or log shutter speed, for image ]

lamdba, the constant that determines the amount of smoothness
the weighting function wvalue for pixel value =z

the log exposure corresponding to pixel value z
the log film irradiance at pixel location i



Matlab code

function [g, 1E]=gsolve(Z,B,1,w)

n = 256;

A = zeros(size(Z,1l)*size(Z,2)+n+l,n+si1ze(Z,1));

b = zeros(size(A,1),1);

k = 1; %% Include the data-fitting equations
for 1=1:si1ze(Z,1)

for j=1:si1ze(Z,2)
wij = w(Z(r,J)+1);
Ak,Zz(i,D+1) = wij; Ak,n+i) = -wij; b(k,1) = wij * B(i,j);

k=k+1;

end
end
A(k,129) = 1; %% Fix the curve by setting i1ts middle value to O
k=k+1;
for 1=1:n-2 %% Include the smoothness equations

Ak, D=1I*w(i+1); Ak, 1+1D)=-2*1*w(i+1); A(k,1+2)=1*w(i+l);

k=k+1;
end
X = A\b; %% Solve the system using SVD

g = X(l:n);
IE = x(n+1l:size(x,1));






Digil2d

Constructing HDR radiance map

In EE — g(Z‘ij) — In Atj

combine pixels to reduce noise and obtain a more
reliable estimation

Y w(Zij)(9(Zij) — In Aty)

In Eg — [z
D im1 W(Zij)




Reconstructed radiance map




What is this for? DigilY[3

e Human perception
 Vision/graphics applications




Automatic ghost removal

before

after




Weighted variance

Moving objects nd high-contrast edges render high variance.



Region masking

Thresholding; dilation; identify regions;






L ens flare removal
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Easier HDR reconstruction
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Easier HDR reconstruction
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Portable floatMap (.pfm)

o 12 bytes per pixel, 4 for each channel

sign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm

Image format: PF
768 512
1
<binary i1mage data>

Floating Point TIFF similar
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Radiance format (.pic, .hdr, .rad)

32 bits/pixel
CEEETEET [0 L1 1 e ——

Red Green Blue Exponent

(145, 215, 87, 149) = (145, 215, 87, 103) =
(145, 215, 87) * 27(149-128) = (145, 215, 87) * 27(103-128) =
1190000 1760000 713000 0.00000432 0.00000641 0.00000259

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994



ILM’s OpenEXR (.exr)

6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

e Several lossless compression options, 2:1 typical
e Compatible with the “half” datatype in NVidia's Cg
e Supported natively on GeForce FX and Quadro FX

e Available at http://www.openexr.net/




Radiometric self calibration

e Assume that any
response function
can be modeled
as a high-order
polynomial

M
X=9g(2)=>c,Z"
m=0

e No need to know
exposure time In
advance. Useful
for cheap
cameras

0.84
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Mitsunaga and Nayar

e To find the coefficients c_, to minimize the

‘J J+1ZC Zi i1

A guess for the ratio of

X..

E.At. At

ij =] ]

following
N P [ ™M
g=) 2| 2.cZi —R
i=1 j=1| m=0
X.

I, j+1

EAt,, At

J+1
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Mitsunaga and Nayar

e Again, we can only solve up to a scale. Thus,
add a constraint f(1)=1. It reduces to M
variables.

e How to solve I1t?
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Mitsunaga and Nayar

e \We solve the above iteratively and update the
exposure ratio accordingly

e How to determine M? Solve up to M=10 and pick
up the one with the minimal error. Notice that
you prefer to have the same order for all
channels. Use the combined error.



Robertson et. al.

Z; = T(EAL))
g(zij) = f_l(zij) = EiAtj

Given Z;and At, the goal is to find both
E; and 9(Z;)

Maximum likelihood
1
Pr(E;, g | Zij,Atj) oC eXP[—EZW(Zu)(Q (Zij)— E;At, )ZJ
1j

Q, éi = arg rg‘g‘ ;W(Zij)(g (Zij) - EiAtj )2
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Robertson et. al.

,E, =arg min ;W(Zij)(g (Z,)-EAt,f
repeat
assuming 9(Z;) is known, optimize for E,
assuming E, is known, optimize for 9(Z;)
until converge
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Robertson et. al.

,E, =arg min ;W(Zij)(g (Z,)-EAt,f
repeat
assuming 9(Z;) is known, optimize for E,
assuming E, is known, optimize for 9(Z;)
until converge

ZW(Zij)g(Zij )AL,
i > W(Z)AL,
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Robertson et. al.

,E, =arg min ;W(Zij)(g (Z,)-EAt,f
repeat
assuming 9(Z;) is known, optimize for E,
assuming E; is known, optimize for 9(Z;)
until converge

g(m):L EAt;

| En lijeE,

normalize so that
g(128) =1



Space of response curves
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Assorted pixel




Assorted pixel
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Assignment #1 HDR image assemble 2™

e \Work 1n teams of two
e Taking pictures

e Assemble HDR images and optionally the
response curve.

e Develop your HDR using tone mapping
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Taking pictures

e Use a tripod to take multiple photos with
different shutter speeds. Try to fix anything
else. Smaller images are probably good enough.

e There are two sets of test images available on
the web.

e We have tripods and a Canon PowerShot G7 for
you to borrow.

e Try not touching the camera during capturing.
But, how?
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1. Taking pictures

e Use a laptop and a remote capturing program.
- PSRemote
- AHDRIA

e PSRemote
- Manual
- Not free
- Supports both jpg and raw
- Support most Canon’s PowerShot cameras

e AHDRIA
- Automatic
- Free
- Only supports jpg
- Support less models



AHDRIA/AHDRIC/HDRI_Helper

AHDRIA
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Image registration

e Two programs can be used to correct small
drifts.

- ImageAlignment from RASCAL
- Photomatix

e Photomatix i1s recommended.
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2. HDR assembling

e Write a program to convert the captured
Images into a radiance map and optionally to
output the response curve.

 We will provide image 1/0 library, gil, which
supports many traditional image formats such
as .Jpg and .png, and float-point images such
as .hdr and .exr.

e Paul Debevec’s method. You will need SVD for
this method.

e Recover from CCD snapshots. You will need
dcraw.c.
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3. Tone mapping

e Apply some tone mapping operation to develop
your photograph.
- Reinhard’s algorithm (HDRShop plugin)
- Photomatix
- LogView
- Fast Bilateral (.exr Linux only)
- PFEStmo (Linux only)
pfsin a.hdr | pfs_fattal02 | pfsout o.hdr



Bells and Whistles Digi

e Other methods for HDR assembling algorithms
e Implement tone mapping algorithms

e Implement MTB alignment algorithm

e Others
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Submission

e You have to turn in your complete source, the
executable, a html report, pictures you have
taken, HDR image, and an artifact (tone-
mapped image).

e Report page contains:

description of the project, what do you learn, algorithm,
Implementation details, results, bells and whistles...

e The class will have vote on artifacts.
e Submission mechanism will be announced later.



Reference software

e Photomatix

e AHDRIA/AHDRIC
e HDRShop

e RASCAL
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