Computational Photography

Digital Visual Effects, Spring 2007
Yung-Yu Cbuang
2007/5/22
with slides by Fredo Durand, Ramesh Raskar, Sylvain Paris, Soonmin Bae

wikipedia:

Computational photography refers broadly to computational imaging techniques that enhance or extend the capabilities of digital photography. The output of these techniques is an ordinary photograph, but one that could not have been taken by a traditional camera.

What is computational photography

DigjvFX

- Convergence of image processing, computer vision, computer graphics and photography
- Digital photography:
- Simply mimics traditional sensors and recording by digital technology
- Involves only simple image processing
- Computational photography
- More elaborate image manipulation, more computation
- New types of media (panorama, 3D, etc.)
- Camera design that take computation into account

Computational photography

- One of the most exciting fields.
- Symposium on Computational Photography and Video, 2005
- Full-semester courses in MIT, CMU, Stanford, GaTech, University of Delaware
- A new book by Raskar and Tumblin is coming out in SIGGRAPH 2007.

Hybrid Images
Drag-and-Drop Pasting
Two-scale Tone Management for Photographic Look
Interactive Local Adj ustment of Tonal Values
mage-Based Material Editing
Flash Matting
Natural Video Matting using Camera Arrays
Removing Camera Shake From a Single Photograph
Coded Exposure Photography: Motion Deblurring
Photo Tourism: Exploring Photo Collections in 3D
AutoCollage
Photographing Long Scenes With Multi-Viewpoint Panoramas
Projection Defocus Analysis for Scene Capture and Image Display
Multiview Radial Catadioptric Imaging for Scene Capture
Light Field Microscopy
Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination

Image Deblurring with Blurred/ Noisy Image Pairs
Photo Clip Art
Scene Completion Using Millions of Photographs Soft Scissors: An Interactive Tool for Realtime High Quality Matting Seam Carving for Content-Aware Image Resizing Detail-Preserving Shape Deformation in Image Editing Veiling Glare in High Dynamic Range Imaging
Do HDR Displays Support LDR content? A Psychophysical Evaluation Ldr2hdr: On-the-fly Reverse Tone Mapping of Legacy Video and Photographs Rendering for an Interactive 360-Degree Light Field Display
Multiscale Shape and Detail Enhancement from Multi-light Image Collections Post-Production Facial Performance Relighting Using Reflectance Transfer Active Refocusing of Images and Videos
Multi-aperture Photography
Dappled Photography: Mask-Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing
Image and Depth from a Conventional Camera with a Coded Aperture
Capturing and Viewing Gigapixel Images
Efficient Gradient-Domain Compositing Using Quadtrees
Image Upsampling via Imposed Edges Statistics
J oint Bilateral Upsampling
Factored Time-Lapse Video
Computational Time-Lapse Video
Real-Time Edge-Aware Image Processing With the Bilateral Grid

Scope

- We can't yet set its precise definition. The following are scopes of what researchers are exploring in this field.
- Record a richer visual experience
- Overcome long-standing limitations of conventional cameras
- Enable new classes of visual signal
- Enable synthesis impossible photos

Scope

- Image formation
- Color and color perception

Scope

- Image and video registration

- Spatial warping operations

- High Dynamic Range Imaging

Bilateral filtering and HDR display

Matting

Scope

- Active flash method
- Lens technology
- Depth and defocus

Removing Photography Artifacts using Gradientex Projection and Flash-Exposure Sampling

Flash $=0.0$

Flash $=0.3$

Flash $=1.0$

Flash $=0.7$

Flash $=1.4$

Depth Edge Detection and Stylized DigivFx
Rendering Using a Multi-Flash Camera

Motion-Based Motion Deblurring
DigivFX

Removing Camera Shake from a Single Photograph

Motion Deblurring using Fluttered Shutter

- Gradient image manipulation

- Taking great pictures

Art Wolfe
Ansel Adams

Scope

- Non-parametric image synthesis, inpainting, analogies

input images
quilting results

 are inputs to our allonithm, and B ' is the output The fulls size images are shown in Figques 10 and 11.

Scope

Object Removal by
Exemplar-Based_Inpainting

Source region

$\Omega_{\text {Target region }}$

Image Completion with

Lazy snapping

- Pre-segmentation
- Boundary Editing

Grab Cut - Interactive ForegroundigivFX Extraction using Iterated Graph Cuts

- Gradient domain operations,
- Tone mapping, fusion and matting
- Graph cuts,
- Segmentation and mosaicing
- Bilateral and Trilateral filters,
- Denoising, image enhancement

Gradient domain operators

Intensity Gradient in 1D
1
10^{5}

Gradient at x,
$G(x)=I(x+1)-I(x)$
Forward Difference

For n intensity values, about n gradients

Reconstruction from Gradients
DigivFX

1D case with constraints
DigivFX

Seamlessly paste
 onto

Just add a linear function so that the boundary condition is respected

Discrete 1D example: minimization

- $\operatorname{Min}\left(\left(f_{2}-f_{1}\right)-1\right)^{2}$

Cumulative sum

- $\operatorname{Min}\left(\left(f_{3}-f_{2}\right)-(-1)\right)^{2}$
- $\operatorname{Min}\left(\left(f_{4}-f_{3}\right)-2\right)^{2} \quad$ With
- $\operatorname{Min}\left(\left(f_{5}-f_{4}\right)-(-1)\right)^{2} \quad f_{1}=6$
- $\operatorname{Min}\left(\left(f_{6}-f_{5}\right)-(-1)\right)^{2} \quad f_{6}=1$

1D example: minimization

1D example: big quadratic

- Copy

- $\operatorname{Min}\left(\left(f_{2}-6\right)-1\right)^{2} \quad \Longrightarrow f_{2}{ }^{2}+49-14 f_{2}$
- $\operatorname{Min}\left(\left(f_{3}-f_{2}\right)-(-1)\right)^{2} \Longrightarrow f_{3}{ }^{2} f_{2}{ }^{2}+1-2 f_{3} f_{2}+2 f_{3}-2 f_{2}$
- $\operatorname{Min}\left(\left(f_{4}-f_{3}\right)-2\right)^{2} \quad \Longrightarrow f_{4}{ }^{2} f_{3}{ }^{2}+4-2 f_{3} f_{4}-4 f_{4}+4 f_{3}$
- $\operatorname{Min}\left(\left(f_{5}-f_{4}\right)-(-1)\right)^{2} \Longrightarrow f_{5}{ }^{2}+f_{4}^{2}+1-2 f_{5} f_{4}+2 f_{5}-2 f_{4}$
- $\operatorname{Min}\left(\left(1-f_{5}\right)-(-1)\right)^{2} \Longrightarrow f_{5}{ }^{2}+4-4 f_{5}$

1D example: derivatives

to

$\operatorname{Min}\left(f_{2}{ }^{2}+49-14 f_{2}\right.$
$+f_{3}{ }^{2}+f_{2}{ }^{2}+1-2 f_{3} f_{2}+2 f_{3}-2 f_{2}$ $+f_{4}{ }^{2}+f_{3}{ }^{2}+4-2 f_{3} f_{4}-4 f_{4}+4 f_{3}$
$+f_{5}{ }^{2}+f_{4}{ }^{2}+1-2 f_{5} f_{4}+2 f_{5}-2 f_{4}$ $\left.+f_{5}{ }^{2}+4-4 f_{5}\right)$
$\frac{d Q}{d f_{2}}=2 f_{2}+2 f_{2}-2 f_{3}-16$
$\frac{d Q}{d f_{3}}=2 f_{3}-2 f_{2}+2+2 f_{3}-2 f_{4}+4$
$\frac{d Q}{d f_{4}}=2 f_{4}-2 f_{3}-4+2 f_{4}-2 f_{5}-2$
Denote it \mathbf{Q}
$\frac{d Q}{d f_{5}}=2 f_{5}-2 f_{4}+2+2 f_{5}-4$

1D example: set derivatives to zero

- Copy

$$
\begin{aligned}
& \frac{d Q}{d=}=2 f_{2}+2 f_{2}-2 f_{3}-16 \\
& \frac{d a}{d d_{3}}=2 f_{3}-2 f_{2}+2+2 f_{3}-2 f_{4}+4 \\
& \frac{d a}{d f_{1}}=2 f_{4}-2 f_{3}-4+2 f_{4}-2 f_{5}-2 \\
& \frac{d a}{d d_{5}^{5}}=2 f_{5}-2 f_{4}+2+2 f_{5}-4
\end{aligned}
$$

$$
==>\left(\begin{array}{cccc}
4 & -2 & 0 & 0 \\
-2 & 4 & -2 & 0 \\
0 & -2 & 4 & -2 \\
0 & 0 & -2 & 4
\end{array}\right)\left(\begin{array}{c}
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right)=\left(\begin{array}{c}
16 \\
-6 \\
6 \\
2
\end{array}\right)
$$

1D example

1D example: remarks

- Matrix is sparse
- Matrix is symmetric
- Everything is a multiple of 2
- because square and derivative of square
- Matrix is a convolution (kernel -2 4-2)
- Matrix is independent of gradient field. Only RHS is
- Matrix is a second derivative

Gradient at x, y as Forward Differences

$$
\begin{aligned}
G_{x}(x, y) & =I(x+1, y)-I(x, y) \\
G_{y}(x, y) & =I(x, y+1)-I(x, y) \\
G(x, y) & =\left(G_{x}, G_{y}\right)
\end{aligned}
$$

Sanity Check:
 Recovering Original Image

Poisson Equation,
2D linear system

- Given vector field v (pasted gradient), find the value of f in unknown region that optimize:
$\min _{f} \iint_{\Omega}|\nabla f-\mathbf{v}|^{2}$ with $\left.f\right|_{\partial \Omega}=\left.f^{*}\right|_{\partial \Omega}$

Figure 1: Guided interpolation notations. Unknown function f interpolates in domain Ω the destination function f^{*}, under guid ance of vector field \mathbf{v}, which might be or not the gradient field of a source function g.

Problems with direct cloning

Poisson image editing

From Perez et al. 2003

Solution: clone gradient

- VFX
\qquad

Figure 2: Concealment. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable artifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

swapped textures

Reduce big gradients

- Dynamic range compression
- Fattal et al. 2002

Figure 10: Local illumination changes. Applying an appropriate non-linear transformation to the gradient field inside the selection non-linear transformation to the gradient field inside the selection
and then integrating back with a Poisson solver, modifies locally and then integrating back with a Poisson solver, modifies locally
the apparent illumination of an image. This is useful to highligh under-exposed foreground objects or to reduce specular reflections.

Figure 7: Inserting transparent objects. Mixed seamless cloning facilitates the transfer of partly transparent objects, such as the rainbow in this example. The non-linear mixing of gradient fields picks out whichever of source or destination structure is the more salient at each location.

Seamless Image Stitching in the Gradient Domain

DigivFX

- Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss
http:// www. cs. huj i. ac. il/ -alevin/ papers/ eccv04-blending. pdf http:/ / eprints. pascal-network. org/ archive/ 00001062/ 01/ tips05-

Input image 1_{1}

Fig. 1. Image stitching. On the left are the input images. ω is the overlap region. On top right is a simple pasting of the input images. On the bottom right is the result of the GIST1 algorithm.

Gradient tone mapping

- Fattal et al. Siggraph 2002

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.)

Gradient attenuation

Attenuation map
From Fattal et al.

Fattal et al. Gradient tone mapping

Poisson Matting

- Sun et al. Siggraph 2004
- Assume gradient of F \& B is negligible
- Plus various imaqe-editing tools to refine matte $I=\alpha F+(1-\alpha) B$
$\nabla I=(F-B) \nabla \alpha+\alpha \nabla F+(1-\alpha) \nabla B$
$\nabla \alpha \approx \frac{1}{F-B} \nabla I$

Figure 1: Pulling of matre from a complex scene. From left to right: a complex natural image for existing matting techniques where the color background is complex, a high quality matte generated by Poisson matting. a composite image with the extracted koala and a constant-color background, and a composite image with the extracted koala and a different background.

Interactive Local Adjustment of Tonal Values

Dani Lischinski, Zeev Farbman
The Hebrew University

Matt Uyttendaele, Richard Szeliski
Microsoft Research

Darkroom

Camera shutter $---\rightarrow$ Photograph
Tool $\left\{\begin{array}{l}\text { Dodging } \\ \text { Burning brushes }\end{array}\right.$ Only!

But, ...
It is tedious, time-consuming and painstaking!

Background (2)

Background (2)

[Adobe Photoshop CS2, 2005]

- A large arsenal of adjustment tools
- Hard to master these tools
- To learn, use
- Tedious and time-consuming
- Professional ability, experienced skill
- Too many layer masks
- Incapable in some requirements

Related Work: Tone Mapping Operatorig

- Global operators
[Ward Larson et al. 1997; Reinhard et al. 2002; Drago et al. 2003]
- Usually fast
- Local operators
[Fattal et al. 2002; Reinhard et al. 2002;
Li et al. 2005] ...
- Better at preserving local contrasts
- Introduce visual artifacts sometimes

Limitations of Tone Mapping Operators

- Lack of direct local control
- Can't directly manipulate a particular region
- Not guaranteed to converge to a subj ectively satisfactory result
- Involves several trial-and-error iterations
- Change the entire image each iteration

vil

iv

Region Selection: Strokes and Brushes ${ }^{\text {DigivFX }}$

- Basic brush
- Luminance brush

weight $=1$, for the selected pixels in the brush; weight $=0$, else
μ be the mean lightness (CIE L^{*})
A pixel with a lightness value of ℓ is selected only if $|\mu-\ell|<\sigma$
the weight

$$
w(\ell)=\exp \left(-|\ell-\mu|^{2} / \sigma^{2}\right)
$$

- Basic brush
- Luminance brush
- Lumachrome brush (chromaticity) - the CIE $L^{*} a^{*} b^{*}$ color space
- Over-exposure brush
- Under-exposure brush

$f=\arg \min _{f}\left\{\sum_{\mathbf{X}} w(\mathbf{x})(f(\mathbf{x})-g(\mathbf{x}))^{2}+\lambda \sum_{\mathbf{X}} h(\nabla f, \nabla L)\right\}$
Data term + smoothing term
$f=\arg \min _{f}\left\{\sum_{\mathbf{X}} w(\mathbf{x})(f(\mathbf{x})-g(\mathbf{x}))^{2}+\lambda \sum_{\mathbf{X}} h(\nabla f, \nabla L)\right\}$
data term + smoothing term

$$
h(\nabla f, \nabla L)=\frac{\left|f_{x}\right|^{2}}{\left|L_{x}\right|^{\alpha}+\varepsilon}+\frac{\left|f_{y}\right|^{2}}{\left|L_{y}\right|^{\alpha}+\varepsilon}
$$

L : log-luminance channel
α : sensitivity factor
ε : a small zero-division constant
λ : a balance factor
Default:
$\alpha=1$
$\varepsilon=0.0001$
$\lambda=0.2$

Fast Approximate Solution
$f=\arg \min _{f}\left\{\sum_{\mathbf{X}} w(\mathbf{x})(f(\mathbf{x})-g(\mathbf{x}))^{2}+\lambda \sum_{\mathbf{X}} h(\nabla f, \nabla L)\right\}$
$\mathbf{A} f=b$,
where

$$
\mathbf{A}_{i j}=\left\{\begin{array}{cc}
-\lambda\left(\left|L_{i}-L_{j}\right|^{\alpha}+\varepsilon\right)^{-1} & j \in N_{4}(i) \\
w_{i}-\sum_{k \in N_{4}(i)} \mathbf{A}_{i k} & i=j \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
b_{i}=w_{i} g_{i} .
$$

$N_{4}(i)$ are the 4-neighbors of pixel i

$$
\mathbf{A} f=b
$$

Solved iteratively by
[Saad 2003]
preconditioned conj ugate gradients (PCG)

SIGGRAPH 2006

Interactive Local Adjustment of Tonal Values

Dani Lischinski
Zeev Farbman
Matt Uyttendaele Richard Szeliski

Graph cut

Graph cut

- Interactive image segmentation using graph cut
- Binary label: foreground vs. background
- User labels some pixels
- similar to trimap, usually sparser
- Exploit
- Statistics of known Fg \& Bg
- Smoothness of label

- Turn into discrete graph optimization

- Graph cut (min cut / max flow)

Energy function

- Labeling: one value per pixel, F or B
- Energy(labeling) = data +smoothness
- Very general situation
- Will be minimized
- Data: for each pixel
- Probability that this color belongs to F (resp. B)
- Similar in spirit to Bayesian matting
- Smoothness (aka regularization): per neighboring pixel pair
- Penalty for having different label
- Penalty is downweighted if the two pixel colors are very different
- Similar in spirit to bilateral filter

One labeling (ok, not best)
(resp. B)

Data term

- A.k.a regional term (because integrated over full region)
- $D(L)=\sum_{i}-\log h\left[L_{i}\right]\left(C_{i}\right)$
- Where i is a pixel
L_{i} is the label at $i(F$ or B), C_{i} is the pixel value $\mathrm{h}\left[\mathrm{L}_{\mathrm{i}}\right]$ is the histogram of the observed Fg (resp Bg)
- Note the minus sign

Smoothness term

- a.k.a boundary term, a.k.a. regularization
- $S(L)=\sum_{\{j, i\} \text { in } N} B\left(C_{i}, C_{j}\right) \delta\left(L_{i}-L_{j}\right)$
- Where i, j are neighbors
- e.g. 8-neighborhood
(but I show 4 for simplicity)
- $\delta\left(L_{i}-L_{j}\right)$ is 0 if $L_{i} L_{j}, 1$ otherwise
- $B\left(C_{i}, C_{j}\right)$ is high when C_{i} and C_{j} are similar, low if there is a discontinuity between those two pixels
- e.g. $\exp \left(-\left|\left|C_{i}-C j\right|\right|^{2} / 2 \sigma^{2}\right)$
- where σ can be a constant or the local variance
- Note positive sign

Optimization

Labeling as a graph problem

- Each pixel =node
- Add two nodes F \& B
- Labeling: link each pixel to either F or B

Smoothness term

- Add an edge between each neighbor pair
- Weight =smoothness term

- Energy optimization equivalent to min cut
- Cut: remove edges to disconnect F from B
- Minimum: minimize sum of cut edge weight

Computing a multiway cut

Move examples

- With 2 labels: classical min-cut problem
- Solvable by standard flow al gorithms
- polynomial time in theory, nearly linear in practice
- More than 2 terminals: NP-hard
[Dahl haus et al., sTOC '92]
- Efficient approximation algorithms exist
- Within a factor of 2 of optimal
- Computes local minimum in a strong sense
- even very large moves will not improve the energy
- Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Min cut \Longrightarrow labeling

- In order to be a cut:
- For each pixel, either the F or G edge has to be cut
- In order to be minimal
- Only one edge label per pixel can be cut (otherwise could be added)

GrabCut

Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother Vladimir Kolmogorov Andrew Blake

Agrawala et al, Digital Photomontage, Siggraph 2004

- Extended depth of field

Interactive Digital Photomontage

Interactive Digital Photomontage
DigivFX

Bilateral filtering

[Ben Weiss, Siggraph 2006]

noisy image

naïve denoising Gaussian blur

better denoising edge-preserving filter

Smoothing an image without blurring its edges.

A Wide Range of Options

- Diffusion, Bayesian, Wavelets...
- All have their pros and cons.
- Bilateral filter
- not always the best result [Buades 05] but often good
- easy to understand, adapt and set up

- Spatial Gaussian f

- Output is blurred

Gaussian filter as weighted averaga

The problem of edges

- Here, $I(\xi)$ "pollutes" our estimate J (x)
- It is too different

Principle of Bilateral filtering

- [Tomasi and Manduchi 1998]
- Penalty g on the intensity difference
$J(x)=\frac{1}{k(x)} \sum_{\xi} f(x, \xi) \quad g(I(\xi)-I(x)) \quad I(\xi)$

Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f
$J(x) \frac{1}{k(x)} \quad f(x, \xi) \quad g(I(\xi)-I(x)) \quad I(\xi)$

Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f
- Gaussian g on the intensity difference

Normalization factor

- [Tomasi and Manduchi 10981
- $k(x)=\sum_{\xi} f(x, \xi) \quad g(I(\xi)-I(x))$
$J(x) \frac{1}{k(x)} \quad f(x, \xi) \quad g(I(\xi)-I(x)) \quad I(\xi)$

Bilateral filtering is non-linear

- [Tomasi and Manduchi 1998]
- The weights are different for each output pixel
$J(x) \frac{1}{k(x)} \sum_{\xi} f(x, \xi) \quad g(I(\xi)-I(x)) \quad I(\xi)$

Digivex
Many Applications based on Bilateral Filter

Tone Mapping [Durand 02]

Virtual Video Exposure [Bennett 05]

Flash / No-Flash [Eisemann 04, Petschnigg 04]

Tone Management [Bae 06]

And many others...

Advantages of Bilateral Filter

- Easy to understand
- Weighted mean of nearby pixels
- Easy to adapt
- Distance between pixel values
- Easy to set up
- Non-iterative

But Bilateral Filter is Nonlinear

- Slow but some accelerations exist:
- [Elad 02]: Gauss-Seidel iterations
- Only for many iterations
- [Durand 02, Weiss 06]: fast approximation
- No formal understanding of accuracy versus speed
- [Weiss 06]: Only box function as spatial kernel

A Fast Approximation

 of the Bilateral Filter using a Signal Processing ApproachSylvain Paris and Frédo Durand
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Definition of Bilateral Filter

- [Smith 97, Tomasi 98]
- Smoothes an image and preserves edges
- Weighted average of neighbors
- Weights
- Gaussian on space distance
- Gaussian on range distance
- sum to 1

$I_{\mathbf{p}}^{\text {bf }}=\frac{\mathbf{1}}{W_{\mathbf{p}}^{\text {bf }}} \sum_{\mathbf{q} \subset \mathcal{S}} \underset{\text { space }}{C_{\sigma_{\sigma_{5}}}(\|\mathbf{p}-\mathbf{q}\|)} \underset{\text { range }}{G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathbf{p}}-I_{\mathbf{q}}\right|\right)} I_{\mathbf{q}}$

Intuition on 1D Signal

Intuition on 1D Signal

- Near and similar pixels have influence.
- Far pixels have no influence.
- Pixels with different value have no influence.

Formalization: Handling the Division

$$
\binom{W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}}}{W_{\mathbf{p}}^{\mathrm{bf}}}=\sum_{\mathbf{q} \in \mathcal{S}} G_{\sigma_{\mathrm{x}}}(\mid \mathbf{p}-\mathbf{q} \|) G_{\sigma_{\mathrm{r}}}\left(\left|I_{\mathrm{p}}-I_{\mathbf{q}}\right|\right)\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}} \text { with } W_{\mathbf{q}}=1
$$

- Similar to homogeneous coordinates
in proj ective space
- Division delayed until the end
- Next step: Adding a dimension to make a convolution appear

Corresponds to a 3D Gaussian on a 2D image.

Link with Linear Filtering

Link with Linear Filtering

2. Introducing a Convolution

result of the convolution

$$
\binom{W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}}}{W_{\mathbf{p}}^{\mathrm{bf}}}=\sum_{(\mathbf{q}, \zeta) \in S \times \mathcal{R}} \quad \text { space-range Gaussian }\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}}
$$

Link with Linear Filtering DigivFX

2. Introducing a Convolution

result of the convolution

$$
\binom{W_{\mathbf{p}}^{\mathrm{bf}} I_{\mathbf{p}}^{\mathrm{bf}}}{W_{\mathbf{p}}^{\mathrm{bf}}}=\sum_{(\mathbf{q}, \zeta) \in \boldsymbol{S} \times \boldsymbol{R}} \quad \text { space-range Gaussian }\binom{W_{\mathbf{q}} I_{\mathbf{q}}}{W_{\mathbf{q}}}
$$

Reformulation: Summary
DigjvFX
linear:

$$
\begin{aligned}
\left(w^{\mathrm{bf}} i^{\mathrm{bf}}, w^{\mathrm{bf}}\right) & =g_{\sigma_{\mathrm{s}}, \sigma_{\mathrm{r}}} \otimes(w i, w) \\
I_{\mathbf{p}}^{\mathrm{bf}} & =\frac{w^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right) i^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right)}{w^{\mathrm{bf}}\left(\mathbf{p}, I_{\mathbf{p}}\right)}
\end{aligned}
$$

nonlinear:

1. Convolution in higher dimension

- expensive but well understood (linear, FFT, etc)

2. Division and slicing

- nonlinear but simple and pixel-wise

- Downsampling cuts frequencies above Nyquist limit
- Less data to process
- But induces error
- Evaluation of the approximation
- Precision versus running time
- Visual accuracy

Accuracy versus Running Time

- Finer sampling increases accuracy.
- More precise than previous work.

Digital photograph 1200×1600

Straightforward implementation is over 10 minutes.

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1 \mathrm{~s}$ for both techniques
1200×1600

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1$ s for both techniques

1200×1600

difference with exact computation (intensities in [0:1])

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1 \mathrm{~s}$ for both techniques

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1 \mathrm{~s}$ for both techniques

difference with exact computation (intensities in [0:1])

1200×1600

Visual Results

- Comparison with previous work [Durand 02]
- running time $=1 \mathrm{~s}$ for both techniques
1200×1600

- Higher dimension \Rightarrow advantageous formulation
- akin to Level Sets with topology
- our approach: isolate nonlinearities
- dimension increase largely offset by downsampling
- Space-range domain already appeared
- [Sochen 98, Barash 02]: image as an embedded manifold
- new in our approach: image as a dense function
higher dimension \Rightarrow "better" computation

Practical gain

- Interactive running time
- Visually similar results
- Simple to code (100 lines)

Theoretical gain

- Link with linear filters
- Separation linear/ nonlinear
- Signal processing framework

Two-scale Tone Management for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand MIT CSAIL

Ansel Adams, Clearing Winter Storm

Goals

 DigivFX- Control over photographic look
- Transfer "look" from a model photo

For example,
we want

Aspects of Photographic Look
Digivivex

- Subject choice
- Framing and composition
\rightarrow Specified by input photos

Input

- Tone distribution and contrast
\rightarrow Modified based on model photos

Model

Ansel Adams

Tonal aspects of Look - Global Contrast

Ansel Adams
Kenro Izu
High Global Contrast
Low Global Contrast

Tonal aspects of Look - Local ContrastigFx

Ansel Adams

Kenro Izu

Overview

Input Image

DigivFX

Result

- Transfer look between photographs
- Tonal aspects

- Separate global and local contrast

Result

Split Global vs. Local Contrast

- Naïve decomposition: low vs. high frequency
- Problem: introduce blur \& halos

Low frequency
Global contrast

High frequency Local contrast

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

After bilateral filtering Global contrast

Residual after filtering Local contrast

After bilateral filtering Global contrast

Residual after filtering Local contrast

- Edge-preserving smoothing [Tomasi 98]
- We build upon tone mapping [Durand 02]

- Intensity remapping of base layer

Result

Global Contrast (Model Transfer)

Model
base

- Histogram matching
- Remapping function given input and model histogram

Local Contrast: Detail Layer

- Uniform control:
- Multiply all values in the detail layer

Input

Base $+3 \times$ Detail

Smooth region

Textured region

Local Contrast Variation

"Textureness": 1D Example

Textured region
\Rightarrow Large high-frequency

Input signal High frequency H Amplitude |H| Edge-preserving filter

Input

Textureness

Textureness Transfer
DigivFX

Step 1:
Histogram transfer

Step 2:
Scaling detail layer (per pixel) to match desired textureness

Model textureness

- Decoupled and large modifications (up to $6 x$)
\rightarrow Limited defects may appear
input (HDR)

result after
global and local adjustments

- Some intensities may be outside displayable range.
\rightarrow Compress histogram to fit visible range.

Preserving Details

1. In the gradient domain:

- Compare gradient amplitudes of input and current
- Prevent extreme reduction \& extreme increase

2. Solve the Poisson equation.

Effect of Detail Preservation

corrected result

Result
User provides input and model photographs.
\rightarrow Our system automatically produces the result.

Running times:

- 6 seconds for 1 MPixel or less
- 23 seconds for 4 MPixels
- multi-grid Poisson solver and fast bilateral filter [Paris 06]

Comparison with Naïve Histogram Matching g_{FX}

Comparison with Naïve Histogram Matchigg ${ }_{F X}$

Histogram Matching
Local contrast too low

Color Images

- Lab color space: modify only luminance

- Can lead to unexpected results if the image content is too different from the model
- Portraits, in particular, can suffer

- Transfer "look" from a model photo
- Two-scale tone management
- Global and local contrast
- New edge-preserving textureness
- Constrained Poisson reconstruction
- Additional effects

References

- Patrick Perez, Michel Gangnet, Andrew Blake, Poisson Image Editing, SIGGRAPH 2003.
- Dani Lischinski, Zeev Farbman, Matt Uytendaelle and Richard Szeliski. Interactive Local Adjustment of Tonal Values. SIGGRAPH 2006.
- Carsten Rother, Andrew Blake, Vladimir Kolmogorov, GrabCut Interactive Foreground Extraction Using Iterated Graph Cuts, SIGGRAPH 2004.
- Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David H. Salesin, Michael F. Cohen, Interactive Digital Photomontage, SIGGRAPH 2004.
- Sylvain Paris and Fredo Durand. A Fast Approximation of the Bilateral Filter using a Signal Processing Approach. ECCV 2006.
- Soonmin Bae, Sylvain Paris and Fredo Durand. Two-scale Tone Management for Photographic Look. SIGGRAPH 2006.

