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Computational photography

wikipedia:
Computational photography refers broadly to 
computational imaging techniques that enhance 
or extend the capabilities of digital photography. 
The output of these techniques is an ordinary 
photograph, but one that could not have been 
taken by a traditional camera. 

What is computational photography

• Convergence of image processing, computer 
vision, computer graphics and photography

• Digital photography:
– Simply mimics traditional sensors and recording by 

digital technology
– Involves only simple image processing

• Computational photography
– More elaborate image manipulation, more 

computation
– New types of media (panorama, 3D, etc.)
– Camera design that take computation into account

Computational photography

• One of the most exciting fields.
• Symposium on Computational Photography and 

Video, 2005 
• Full-semester courses in MIT, CMU, Stanford, 

GaTech, University of Delaware 
• A new book by Raskar and Tumblin is coming 

out in SIGGRAPH 2007.



Siggraph 2006 Papers (16/86=18.6%)
Hybrid Images
Drag-and-Drop Pasting
Two-scale Tone Management for Photographic Look
Interactive Local Adjustment of Tonal Values
Image-Based Material Editing
Flash Matting
Natural Video Matting using Camera Arrays
Removing Camera Shake From a Single Photograph
Coded Exposure Photography: Motion Deblurring
Photo Tourism: Exploring Photo Collections in 3D
AutoCollage
Photographing Long Scenes With Multi-Viewpoint Panoramas
Projection Defocus Analysis for Scene Capture and Image Display
Multiview Radial Catadioptric Imaging for Scene Capture
Light Field Microscopy
Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination

Siggraph 2007 Papers (23/108=21.3%)
Image Deblurring with Blurred/Noisy Image Pairs 
Photo Clip Art
Scene Completion Using Millions of Photographs
Soft Scissors: An Interactive Tool for Realtime High Quality Matting
Seam Carving for Content-Aware Image Resizing
Detail-Preserving Shape Deformation in Image Editing
Veiling Glare in High Dynamic Range Imaging
Do HDR Displays Support LDR content? A Psychophysical Evaluation
Ldr2hdr: On-the-fly Reverse Tone Mapping of Legacy Video and Photographs
Rendering for an Interactive 360-Degree Light Field Display
Multiscale Shape and Detail Enhancement from Multi-light Image Collections
Post-Production Facial Performance Relighting Using Reflectance Transfer
Active Refocusing of Images and Videos
Multi-aperture Photography
Dappled Photography: Mask-Enhanced Cameras for Heterodyned Light Fields and Coded 

Aperture Refocusing
Image and Depth from a Conventional Camera with a Coded Aperture
Capturing and Viewing Gigapixel Images
Efficient Gradient-Domain Compositing Using Quadtrees
Image Upsampling via Imposed Edges Statistics
Joint Bilateral Upsampling
Factored Time-Lapse Video
Computational Time-Lapse Video
Real-Time Edge-Aware Image Processing With the Bilateral Grid

Scope

• We can’t yet set its precise definition. The 
following are scopes of what researchers are 
exploring in this field.
– Record a richer visual experience
– Overcome long-standing limitations of conventional 

cameras
– Enable new classes of visual signal
– Enable synthesis impossible photos

Scope

• Image formation 

• Color and color 
perception 

• Demosaicing



Scope
• Panoramic imaging 

• Image and video registration 

• Spatial warping operations 

Scope
• High Dynamic 

Range Imaging 
• Bilateral 

filtering and 
HDR display 

• Matting 

Scope

• Active flash methods 
• Lens technology 
• Depth and defocus 

No-flash

Flash

our 
result

Removing Photography Artifacts using Gradient 
Projection and Flash-Exposure Sampling



Continuous flash

Flash = 0.0

Flash = 0.3 Flash = 0.7 Flash = 1.4

Flash = 1.0

Flash matting

Depth Edge Detection and Stylized 
Rendering Using a Multi-Flash Camera Motion-Based Motion Deblurring



Removing Camera Shake from a 
Single Photograph Motion Deblurring using Fluttered Shutter

Scope
• Future cameras 
• Plenoptic function and light fields 

Scope
• Gradient image manipulation 



Scope

• Taking great pictures 

Art Wolfe Ansel Adams

Scope

• Non-parametric 
image synthesis, 
inpainting, 
analogies 

Scope

Motion 
analysis 

Image Inpainting



Object Removal by 
Exemplar-Based Inpainting

Image Completion with 
Structure Propagation

Lazy snapping Lazy snapping

• Pre-segmentation
• Boundary Editing



Grab Cut - Interactive Foreground 
Extraction using Iterated Graph Cuts Image Tools

• Gradient domain operations, 
– Tone mapping, fusion and matting

• Graph cuts, 
– Segmentation and mosaicing

• Bilateral and Trilateral filters, 
– Denoising, image enhancement

Gradient domain operators

Intensity Gradient in 1D

I(x)
1

105

G(x)
1

105
Intensity Gradient

Gradient at x,
G(x)    =    I(x+1)- I(x)

Forward Difference



Reconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

?
?

For  n intensity values, about  n gradients 

Reconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

1D Integration

I(x)  =  I(x-1)  +  G(x)

Cumulative sum

?

1D case with constraints

Seamlessly paste onto

Just add a linear function so that the boundary condition is respected

Discrete 1D example: minimization
• Copy to

• Min ((f2-f1)-1)2

• Min ((f3-f2)-(-1))2

• Min ((f4-f3)-2)2

• Min ((f5-f4)-(-1))2

• Min ((f6-f5)-(-1))2
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1D example: minimization
• Copy to

• Min ((f2-6)-1)2 ==> f2
2+49-14f2

• Min ((f3-f2)-(-1))2 ==> f3
2+f2

2+1-2f3f2 +2f3-2f2

• Min ((f4-f3)-2)2 ==> f4
2+f3

2+4-2f3f4 -4f4+4f3

• Min ((f5-f4)-(-1))2 ==> f5
2+f4

2+1-2f5f4 +2f5-2f4

• Min ((1-f5)-(-1))2 ==> f5
2+4-4f5

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

1D example: big quadratic
• Copy to

• Min (f2
2+49-14f2

+ f3
2+f2

2+1-2f3f2 +2f3-2f2

+ f4
2+f3

2+4-2f3f4 -4f4+4f3

+ f5
2+f4

2+1-2f5f4 +2f5-2f4

+ f5
2+4-4f5) 

Denote it Q
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1D example: derivatives
• Copy to
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+ f5
2+4-4f5) 

Denote it Q

1D example: set derivatives to zero
• Copy to
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1D example
• Copy to
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1D example: remarks
• Copy to

• Matrix is sparse
• Matrix is symmetric 
• Everything is a multiple of 2  

– because square and derivative of square

• Matrix is a convolution (kernel -2 4 -2)
• Matrix is independent of gradient field. Only RHS is
• Matrix is a second derivative
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Grad X

Grad Y

Intensity Gradient in 2D

Gradient at x,y as Forward Differences 
Gx(x,y)    =    I(x+1  , y)- I(x,y)
Gy(x,y)    =    I(x ,  y+1)- I(x,y)

G(x,y) = (Gx , Gy)

Grad X

Grad Y

2D 
Integration

Image Intensity Gradients in 2D

Sanity Check: 
Recovering Original Image

Solve 
Poisson Equation, 
2D linear system



Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline

Modify 
Gradients

2D case with constraints

• Given vector field v (pasted gradient), find the 
value of f in unknown region that optimize: 

Pasted gradient Mask

Background

unknown
region

Poisson image editing

Problems with direct cloning

From Perez et al. 2003



Solution: clone gradient Result



Reduce big gradients
• Dynamic range compression
• Fattal et al. 2002

Seamless Image Stitching in the Gradient Domain

• Anat Levin, Assaf Zomet, Shmuel Peleg, and 
Yair Weiss
http://www.cs.huji.ac.il/~alevin/papers/eccv04-blending.pdf
http://eprints.pascal-network.org/archive/00001062/01/tips05-
blending.pdf

• Various strategies (optimal cut, feathering)



Gradient tone mapping

• Fattal et al. Siggraph 2002

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.) 

Gradient attenuation

From Fattal et al.

Fattal et al. Gradient tone mapping Poisson Matting

• Sun et al. Siggraph 2004
• Assume gradient of F & B is negligible
• Plus various image-editing tools to refine matte



Interactive Local Adjustment of 
Tonal Values

Dani Lischinski, Zeev Farbman
The Hebrew University

Matt Uyttendaele, Richard Szeliski
Microsoft Research

Background (1)

Dodging 
Burning brushes

Darkroom

Camera shutter  --- Photograph

⎧
⎨
⎩

Tool Only!

But, …
It is tedious, time-consuming and painstaking!

Background (2)

• A large arsenal of adjustment tools
• Hard to master these tools

– To learn, use
• Tedious and time-consuming

– Professional ability, experienced skill
– Too many layer masks

• Incapable in some requirements

[Adobe Photoshop CS2, 2005]

Background (2)

[Adobe Photoshop CS2, 2005]

ResultLayer maskOriginal image



Related Work: Tone Mapping Operators

• Global operators
[Ward Larson et al. 1997; Reinhard et al. 2002; Drago et 
al. 2003]
– Usually fast

• Local operators
[Fattal et al. 2002; Reinhard et al. 2002; 
Li et al. 2005] …
– Better at preserving local contrasts
– Introduce visual artifacts sometimes

Limitations of Tone Mapping Operators

• Lack of direct local control
– Can’t directly manipulate a particular region

• Not guaranteed to converge to a subjectively 
satisfactory result
– Involves several trial-and-error iterations
– Change the entire image each iteration



Algorithm Overview
1.Load a digital negative, a camera RAW file, an 

HDR radiance map, or an ordinary image
2.Indicate regions in the image that require 

adjusting
3.Experiment with the available adjustment 

parameters until a satisfactory result is obtained 
in the desired regions

4.Iterate 2 and 3 until a satisfactory image





An Example



Region Selection: Strokes and Brushes

• Basic brush
• Luminance brush

weight=1, for the selected pixels 
in the brush; 
weight=0, else

Region Selection: Luminance Brush

Region Selection: Strokes and Brushes

• Basic brush
• Luminance brush
• Lumachrome brush (chromaticity)

–
• Over-exposure brush
• Under-exposure brush

Constraint Propagation

User strokes Adjusted exposure



Image-guided Energy Minimization

Data term + smoothing term

Image-guided Energy Minimization

data term + smoothing term

: log-luminance channel
: sensitivity factor
: a small zero-division constant
: a balance factor

Default:

Standard Finite Differences Fast Approximate Solution

Solved iteratively by                 [Saad 2003]
preconditioned conjugate gradients (PCG)



Interactive Local Adjustment of 
Tonal Value

2arg min ( )( ( ) ( )) ( , )
f

f w f g h f Lλ⎧ ⎫= − + ∇ ∇⎨ ⎬
⎩ ⎭
∑ ∑

X X
x x x

f

Results

Graph cut

Graph cut
• Interactive image segmentation using graph cut
• Binary label: foreground vs. background
• User labels some pixels 

– similar to trimap, usually sparser

• Exploit
– Statistics of known Fg & Bg
– Smoothness of label

• Turn into discrete graph optimization
– Graph cut (min cut / max flow)

F

B

F

F F

F B

B

B



Energy function
• Labeling: one value per pixel, F or B
• Energy(labeling) = data + smoothness

– Very general situation
– Will be minimized

• Data: for each pixel
– Probability that this color belongs to F (resp. B)
– Similar in spirit to Bayesian matting

• Smoothness (aka regularization): 
per neighboring pixel pair
– Penalty for having different label
– Penalty is downweighted if the two 

pixel colors are very different
– Similar in spirit to bilateral filter

One labeling
(ok, not best)

Data

Smoothness

Data term
• A.k.a regional term 

(because integrated over full region)

• D(L)=Σi -log h[Li](Ci)
• Where i is a pixel 

Li is the label at i (F or B), 
Ci is the pixel value
h[Li] is the histogram of the observed Fg
(resp Bg)

• Note the minus sign

Hard constraints
• The user has provided some labels
• The quick and dirty way to include 

constraints into optimization is to replace the 
data term by a huge penalty if not respected. 

• D(L_i)=0 if respected
• D(L_i) = K if not respected

– e.g. K=- #pixels

Smoothness term
• a.k.a boundary term, a.k.a. regularization

• S(L)=Σ{j, i} in N B(Ci,Cj) δ(Li-Lj) 
• Where i,j are neighbors 

– e.g. 8-neighborhood 
(but I show 4 for simplicity)

• δ(Li-Lj) is 0 if Li=Lj, 1 otherwise
• B(Ci,Cj) is high when Ci and Cj are similar, low if 

there is a discontinuity between those two pixels
– e.g. exp(-||Ci-Cj||2/2σ2)
– where σ can be a constant 

or the local variance
• Note positive sign



Optimization
• E(L)=D(L)+λ S(L)
• λ is a black-magic constant
• Find the labeling that minimizes E
• In this case, how many possibilities?

– 29 (512)
– We can try them all!
– What about megapixel images?

Labeling as a graph problem
• Each pixel = node
• Add two nodes F & B
• Labeling: link each pixel to either F or B

F

B

Desired result

Data term
• Put one edge between each pixel and F & G
• Weight of edge = minus data term

– Don’t forget huge weight for hard constraints
– Careful with sign

B

F

Smoothness term
• Add an edge between each neighbor pair
• Weight = smoothness term 

B

F



Min cut
• Energy optimization equivalent to min cut
• Cut: remove edges to disconnect F from B
• Minimum: minimize sum of cut edge weight

B

F cut

Min cut <=> labeling
• In order to be a cut:

– For each pixel, either the F or G edge has to be cut

• In order to be minimal
– Only one edge label 

per pixel can be cut 
(otherwise could 
be added)

B

F cut

Computing a multiway cut

• With 2 labels:  classical min-cut problem
– Solvable by standard flow algorithms

• polynomial time in theory, nearly linear in practice

– More than 2 terminals: NP-hard 
[Dahlhaus et al., STOC ‘92]

• Efficient approximation algorithms exist
– Within a factor of 2 of optimal
– Computes local minimum in a strong sense

• even very large moves will not improve the energy
– Yuri Boykov, Olga Veksler and Ramin Zabih, Fast Approximate Energy 

Minimization via Graph Cuts, International Conference on Computer 
Vision, September 1999.

Move examples

Starting point

Red-blue swap move

Green expansion move



GrabCutGrabCut
Interactive Foreground Extraction Interactive Foreground Extraction 

using Iterated Graph Cutsusing Iterated Graph Cuts

CarstenCarsten RotherRother
Vladimir Kolmogorov Vladimir Kolmogorov 

Andrew BlakeAndrew Blake

Microsoft Research CambridgeMicrosoft Research Cambridge--UKUK
Agrawala et al, Digital Photomontage, Siggraph 2004

Source images Brush strokes Computed labeling

Composite



Brush strokes Computed labeling

Graph Cuts for Segmentation and Mosaicing Interactive Digital Photomontage
• Extended 

depth of 
field

Interactive Digital Photomontage
• Relighting

Interactive Digital Photomontage



Bilateral filtering

[Ben Weiss, Siggraph 2006][Ben Weiss, Siggraph 2006]

InputInput Log(IntensityLog(Intensity) ) 
Bilateral SmoothingBilateral Smoothing

Gaussian Gaussian 
SmoothingSmoothing

Image Denoising

noisy image naïve denoising
Gaussian blur

better denoising
edge-preserving filter

Smoothing an image without blurring its edges.

A Wide Range of Options

• Diffusion, Bayesian, Wavelets…

– All have their pros and cons.

• Bilateral filter
– not always the best result [Buades 05] but often good

– easy to understand, adapt and set up

Start with Gaussian filtering

• Here, input is a step function + noise

output input

=J f I⊗



Start with Gaussian filtering

• Spatial Gaussian f

output input

=J f I⊗

Start with Gaussian filtering

• Output is blurred

output input

=J f I⊗

Gaussian filter as weighted average

• Weight of  ξ depends on distance to x

),( ξxf )(ξI

output input

=)(xJ ∑
ξ

x x
ξ

The problem of edges

• Here,          “pollutes” our estimate J(x)
• It is too different 

x

)(ξI

)(xI

),( ξxf )(ξI=)(xJ ∑
ξ

output input



Principle of Bilateral filtering
• [Tomasi and Manduchi 1998]

• Penalty g on the intensity difference

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1
xk

x
)(xI

)(ξI

output input

Bilateral filtering
• [Tomasi and Manduchi 1998]

• Spatial Gaussian f

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1
xk

x

output input

Bilateral filtering
• [Tomasi and Manduchi 1998]

• Spatial Gaussian f
• Gaussian g on the intensity difference

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1
xk

x

output input output input

Normalization factor
• [Tomasi and Manduchi 1998]

• k(x)=

=)(xJ )(ξI∑
ξ)(

1
xk

x

),( ξxf ))()(( xIIg −ξ

∑
ξ

),( ξxf ))()(( xIIg −ξ



output input

Bilateral filtering is non-linear
• [Tomasi and Manduchi 1998]

• The weights are different for each output pixel

=)(xJ ),( ξxf ))()(( xIIg −ξ )(ξI∑
ξ)(

1
xk

x x

Many Applications based on Bilateral Filter

Tone Mapping [Durand 02]

Virtual Video Exposure [Bennett 05]

And many others…

Flash / No-Flash [Eisemann 04, Petschnigg 04]

[Petschnigg 04]

Tone Management [Bae 06]

Advantages of Bilateral Filter

• Easy to understand 
– Weighted mean of nearby pixels

• Easy to adapt
– Distance between pixel values

• Easy to set up
– Non-iterative

But Bilateral Filter is Nonlinear

• Slow but some accelerations exist:

– [Elad 02]: Gauss-Seidel iterations

• Only for many iterations

– [Durand 02, Weiss 06]: fast approximation

• No formal understanding of accuracy versus speed

• [Weiss 06]: Only box function as spatial kernel



A Fast Approximation 
of the Bilateral Filter

using a Signal Processing 
Approach

Sylvain Paris and Frédo Durand

Computer Science and Artificial Intelligence Laboratory 
Massachusetts Institute of Technology 

Definition of Bilateral Filter
• [Smith 97, Tomasi 98]

• Smoothes an image
and preserves edges

• Weighted average 
of neighbors

• Weights
– Gaussian on space distance
– Gaussian on range distance
– sum to 1

space range

Input Result

Contributions

• Link with linear filtering

• Fast and accurate approximation

Intuition on 1D Signal

BF



p

Intuition on 1D Signal
Weighted Average of Neighbors

• Near and similar pixels have influence.

• Far pixels have no influence.

• Pixels with different value have no influence.

weights
applied
to pixels

p

Link with Linear Filtering
1. Handling the Division

sum of
weights

Handling the division with a projective space.

Formalization: Handling the Division

• Normalizing factor as homogeneous coordinate

• Multiply both sides by             

• Normalizing factor as homogeneous coordinate

• Multiply both sides by             

Formalization: Handling the Division

• Similar to homogeneous coordinates 
in projective space

• Division delayed until the end

• Next step: Adding a dimension to make a 
convolution appear

with Wq=1



space range

p

Link with Linear Filtering
2. Introducing a Convolution

q

space: 1D Gaussian
× range: 1D Gaussian

combination: 2D Gaussian

space: 1D Gaussian
× range: 1D Gaussian

combination: 2D Gaussian p

Link with Linear Filtering
2. Introducing a Convolution

q

space: 1D Gaussian
× range: 1D Gaussian

combination: 2D Gaussian

space: 1D Gaussian
× range: 1D Gaussian

combination: 2D Gaussian

space x range

Corresponds to a 3D Gaussian on a 2D image.

Link with Linear Filtering
2. Introducing a Convolution

space-range Gaussian

black = zerosum all values

sum all values multiplied by kernel convolution

space-range Gaussian

result of the convolution

Link with Linear Filtering
2. Introducing a Convolution



Link with Linear Filtering
2. Introducing a Convolution

space-range Gaussian

result of the convolution

higher dimensional functions

Gaussian convolution

division

slicing

w i w

Reformulation: Summary

1. Convolution in higher dimension
• expensive but well understood (linear, FFT, etc)

2. Division and slicing
• nonlinear but simple and pixel-wise 

Exact reformulationExact reformulation

higher dimensional functions

Gaussian convolution

division

slicing

Low-pass filterLow-pass filter

Almost only
low freq. 

High freq. 
negligible

Almost only
low freq. 

High freq. 
negligible

w i w



higher dimensional functions

Gaussian convolution

division

slicing

w i w

D O W N S A M P L E

U P S A M P L E

Almost no
information

loss

Almost no
information

loss

Fast Convolution by Downsampling

• Downsampling cuts frequencies 
above Nyquist limit

– Less data to process
– But induces error

• Evaluation of the approximation
– Precision versus running time
– Visual accuracy

Accuracy versus Running Time
• Finer sampling increases accuracy.
• More precise than previous work.

finer sampling

PSNR as function of Running Time

Digital 
photograph
1200 × 1600

Straightforward 
implementation is 
over 10 minutes.

input exact BF our result prev. work

1200 × 1600

• Comparison with previous work [Durand 02]
– running time = 1s for both techniques

0

0.1difference
with exact

computation
(intensities in [0:1])

Visual Results



input exact BF our result prev. work

1200 × 1600

• Comparison with previous work [Durand 02]
– running time = 1s for both techniques

0

0.1difference
with exact

computation
(intensities in [0:1])

Visual Results

input exact BFour result prev. work

1200 × 1600

• Comparison with previous work [Durand 02]
– running time = 1s for both techniques

0

0.1difference
with exact

computation
(intensities in [0:1])

Visual Results

input exact BF our result

difference
with exact

computation
(intensities in [0:1])

prev. work

1200 × 1600

• Comparison with previous work [Durand 02]
– running time = 1s for both techniques

0

0.1

Visual Results

input exact BFour resultprev. work

1200 × 1600

• Comparison with previous work [Durand 02]
– running time = 1s for both techniques

0

0.1difference
with exact

computation
(intensities in [0:1])

Visual Results



Discussion

• Higher dimension advantageous formulation
– akin to Level Sets with topology
– our approach: isolate nonlinearities
– dimension increase largely offset by downsampling

• Space-range domain already appeared
– [Sochen 98, Barash 02]: image as an embedded manifold
– new in our approach: image as a dense function

Conclusions

Practical gain

• Interactive running time

• Visually similar results

• Simple to code (100 lines)

Theoretical gain

• Link with linear filters

• Separation linear/nonlinear

• Signal processing framework

higher dimension “better” computationhigher dimension “better” computation

Two-scale Tone Management 
for Photographic Look

Soonmin Bae, Sylvain Paris, and Frédo Durand
MIT CSAIL

Ansel Adams

Ansel Adams, Clearing Winter Storm



An Amateur Photographer A Variety of Looks

Goals

• Control over photographic look
• Transfer “look” from a model photo

For example,

we want
with the look of

Aspects of Photographic Look

• Subject choice
• Framing and composition

Specified by input photos

• Tone distribution and contrast
Modified based on model photos

Input

Model



Tonal Aspects of Look

Ansel Adams Kenro Izu

Tonal aspects of Look - Global Contrast

Ansel Adams Kenro Izu

High Global Contrast Low Global Contrast

Tonal aspects of Look - Local Contrast

Variable amount of texture Texture everywhere

Ansel Adams Kenro Izu

Overview

Input Image Result

Model

• Transfer look between photographs
– Tonal aspects



Overview

Local contrast

Global contrast

Result

• Separate global and local contrast

Input
Image

Split

Local contrast

Global contrast

Input
Image

Result

Careful
combination

Post-
process

Overview

Split

Global contrast

Input
Image

Result

Careful
combination

Post-
process

Overview

Local contrast

Split Global vs. Local Contrast

• Naïve decomposition: low vs. high frequency
– Problem: introduce blur & halos 

Low frequency High frequency

Halo

Blur

Global contrast Local contrast



Bilateral Filter

• Edge-preserving smoothing [Tomasi 98]
• We build upon tone mapping [Durand 02]

After bilateral filtering Residual after filtering
Global contrast Local contrast

Bilateral Filter

• Edge-preserving smoothing [Tomasi 98]
• We build upon tone mapping [Durand 02]

After bilateral filtering Residual after filtering

BASE layer DETAIL layer

Global contrast Local contrast

Global contrast

Input
Image

Result

Careful
combination

Post-
process

Bilateral
Filter

Local contrast Local contrast

Global contrast

Input
Image

Result

Careful
combination

Post-
process

Bilateral
Filter



Global Contrast

• Intensity remapping of base layer

Input base After remappingInput intensity

Remapped 
intensity

Global Contrast (Model Transfer)

• Histogram matching

– Remapping function given 
input and model histogram

Model
base

Input
base

Output
base

Local contrast

Global contrast

Input
Image

Result

Careful
combination

Post-
process

Bilateral
Filter

Intensity
matching

Local contrast

Global contrast
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combination

Post-
process
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Filter

Intensity
matching



Local Contrast: Detail Layer

• Uniform control:
– Multiply all values in the detail layer

Input Base + 3 × Detail

The amount of local contrast 
is not uniform

Smooth region

Textured region

Local Contrast Variation

• We define “textureness”: amount of local 
contrast
– at each pixel based on surrounding region

Smooth region
Low textureness

Textured region
High textureness

Input signal

“Textureness”: 1D Example

Smooth region
Low textureness

Textured region
High textureness

High frequency H Amplitude |H| Edge-preserving 
filter

Smooth region
Small high-frequency

Textured region
Large high-frequency Previous work:

Low pass of |H|
[Li 05, Su 05]
Low pass of |H|
[Li 05, Su 05]



Textureness

Input Textureness

Textureness Transfer

Step 1: 
Histogram transfer

Hist. transfer
Input Input 

texturenesstextureness

Desired Desired 

texturenesstextureness

Model Model 

texturenesstextureness

x 0.5

x 2.7

x 4.3

Input detail Output detail

Step 2:
Scaling detail layer
(per pixel) to match
desired textureness

Local contrast

Global contrast

Input
Image

Result

Careful
combination

Post-
process
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Intensity
matching

Textureness
matching
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A Non Perfect Result

• Decoupled and large modifications (up to 6x)
Limited defects may appear

input (HDR)
result after 
global and local adjustments

Intensity Remapping

• Some intensities may be outside displayable 
range.
Compress histogram to fit visible range.

corrected
result

remapped
intensities

initial
result

Preserving Details
1. In the gradient domain:

– Compare gradient amplitudes of input and current
– Prevent extreme reduction & extreme increase

2. Solve the Poisson equation.

corrected
result

remapped
intensities

initial
result

Effect of Detail Preservation
uncorrected result corrected result



Local contrast

Global contrast

Input
Image

Result

Post-
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Constrained
Poisson

Local contrast
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Result
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Constrained
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Post-
process

Additional Effects
• Soft focus (high frequency manipulation)
• Film grain (texture synthesis [Heeger 95])
• Color toning (chrominance = f (luminance) )

before
effects

after
effects

model
Intensity
matching

Bilateral
Filter

Local contrast

Global contrast

Input
Image

Result

Textureness
matching

Constrained
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Soft focus
Toning
Grain



Intensity
matching

Bilateral
Filter

Local contrast

Global contrast

Input
Image

Result

Textureness
matching

Constrained
Poisson

Soft focus
Toning
Grain

Recap
Results

User provides input and model photographs.
Our system automatically produces the result.

Running times:
– 6 seconds for 1 MPixel or less
– 23 seconds for 4 MPixels

multi-grid Poisson solver and fast bilateral filter [Paris 
06]

Input ModelResult InputResult



Input ModelResult

InputInput

Our resultOur resultNaNaïïve Histogram Matchingve Histogram Matching

ModelModel
SnapshotSnapshot, Alfred Stieglitz, Alfred Stieglitz

Comparison with Naïve Histogram Matching

Local contrast, sharpness unfaithful

InputInput

Our ResultOur Result

ModelModel
Clearing Winter Storm, Ansel
Adams

Histogram MatchingHistogram Matching

Comparison with Naïve Histogram Matching

Local contrast too low

Color Images

• Lab color space: modify only luminance

InputInput OutputOutput



Limitations

• Noise and JPEG artifacts 
– amplified defects

• Can lead to unexpected 
results if the image content is 
too different from the model
– Portraits, in particular, can 

suffer

Conclusions

• Transfer “look” from a model photo

• Two-scale tone management
– Global and local contrast
– New edge-preserving textureness
– Constrained Poisson reconstruction
– Additional effects
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