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Announcements

• Project #2 is due today. Same submission 
mechanism. Please hand it in before Sunday if 
possible. 

• The class of 5/8 will begin at 2:30pm. 



Outline

• Epipolar geometry and fundamental matrix
• Structure from motion
• Factorization method
• Bundle adjustment
• Applications



Epipolar geometry & 
fundamental matrix



The epipolar geometry

C,C’,x,x’ and X are coplanar

epipolar geometry demo



The epipolar geometry

What if only C,C’,x are known?



The epipolar geometry

All points on π project on l and l’



The epipolar geometry

Family of planes π and lines l and l’ intersect at e
and e’



The epipolar geometry

epipolar plane = plane containing baseline
epipolar line = intersection of epipolar plane with image

epipolar pole
= intersection of baseline with image plane 
= projection of projection center in other image

epipolar geometry demo



The fundamental matrix F

C C’
T=C’-C

Rp p’

T)-R(p'p =
Two reference frames are related via the extrinsic parameters

0)()( =×− Τ pTTp
The equation of the epipolar plane through X is 

0)()'( =×ΤΤ pTpR



The fundamental matrix F

0)()'( =×ΤΤ pTpR
SppT =×
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The fundamental matrix F

0' =Τ Epp

Let M and M’ be the intrinsic matrices, then

xMp 1−= ''' 1 xMp −=

0)()'( 11 =−Τ− xMExM'
0' 1 =−Τ−Τ xEMM'x

0' =Τ Fxx fundamental matrix



The fundamental matrix F

• The fundamental matrix is the algebraic 
representation of epipolar geometry

• The fundamental matrix satisfies the condition 
that for any pair of corresponding points x↔x’
in the two images

0Fxx'T = ( )0l'x'T =



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 
for all x↔x’

1. Transpose: if F is fundamental matrix for (P,P’), then 
FT is fundamental matrix for (P’,P)

2. Epipolar lines: l’=Fx & l=FTx’
3. Epipoles: on all epipolar lines, thus e’TFx=0, ∀x 

⇒e’TF=0, similarly Fe=0
4. F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
5. F is a correlation, projective mapping from a point x to 

a line l’=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

• It can be used for 
– Simplifies matching
– Allows to detect wrong matches



Estimation of F — 8-point algorithm

• The fundamental matrix F is defined by

0=ΤFxx'
for any pair of matches x and x’ in two images.

• Let x=(u,v,1)T and x’=(u’,v’,1)T,
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8-point algorithm
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• In reality, instead of solving            , we seek f
to minimize         , least eigenvector of         . 

0=Af
Af AA Τ



8-point algorithm

• To enforce that F is of rank 2, F is replaced by 
F’ that minimizes              subject to                . 'FF − 0'det =F

• It is achieved by SVD. Let                , where 

, let 

then                    is the solution. 
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8-point algorithm
% Build the constraint matrix

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V 
% corresponding to the smallest singular value.

F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint 
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';



8-point algorithm

• Pros: it is linear, easy to implement and fast
• Cons: susceptible to noise
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Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

!
Orders of magnitude difference
between column of data matrix
→ least-squares yields poor results



Normalized 8-point algorithm

1. Transform input by                ,
2. Call 8-point on           to obtain
3.

ii Txx =ˆ '
i

'
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ii xx ˆ,ˆ

TFTF ˆΤ'=
F̂

0=ΤFxx'

0ˆ'ˆ 1 =−Τ−Τ xFTTx'
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Normalized 8-point algorithm
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Transform image to ~[-1,1]x[-1,1]



Normalized 8-point algorithm

A = [x2(1,:)‘.*x1(1,:)'   x2(1,:)'.*x1(2,:)'  x2(1,:)' ...
x2(2,:)'.*x1(1,:)'   x2(2,:)'.*x1(2,:)'  x2(2,:)' ...
x1(1,:)'             x1(2,:)'            ones(npts,1) ];       

[U,D,V] = svd(A);

F = reshape(V(:,9),3,3)';

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';

% Denormalise
F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);



Normalization
function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)')';   % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
scale = sqrt(2)/meandist;

T = [scale      0    -scale*c(1)
0     scale  -scale*c(2)
0         0            1      ];

newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until Γ(#inliers,#samples)>95% or too many times

compute F based on all inliers



Results (ground truth)



Results (8-point algorithm)



Results (normalized 8-point algorithm)



Structure from motion



Structure from motion

structure for motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self 
calibration technique and called automatic camera tracking
or matchmoving.

UnknownUnknown
cameracamera

viewpointsviewpoints



Applications

• For computer vision, multiple-view shape 
reconstruction, novel view synthesis and 
autonomous vehicle navigation.

• For film production, seamless insertion of CGI 
into live-action backgrounds



Structure from motion

2D feature
tracking 3D estimation optimization

(bundle adjust)
geometry 

fitting

SFM pipeline



Structure from motion

• Step 1:  Track Features
– Detect good features, Shi & Tomasi, SIFT
– Find correspondences between frames

• Lucas & Kanade-style motion estimation
• window-based correlation
• SIFT matching



KLT tracking

http://www.ces.clemson.edu/~stb/klt/



Structure from Motion
• Step 2:  Estimate Motion and Structure

– Simplified projection model, e.g.,  [Tomasi 92]
– 2 or 3 views at a time  [Hartley 00]



Structure from Motion
• Step 3:  Refine estimates

– “Bundle adjustment” in photogrammetry
– Other iterative methods



Structure from Motion
• Step 4:  Recover surfaces (image-based 

triangulation, silhouettes, stereo…)

Good mesh



Factorization methods



Problem statement



Notations

• n 3D points are seen in m views
• q=(u,v,1): 2D image point
• p=(x,y,z,1): 3D scene point
• Π: projection matrix
• π: projection function
• qij is the projection of the i-th point on image j
• λij projective depth of qij

)( ijij pq Π=π )/,/(),,( zyzxzyx =π
zij =λ



Structure from motion

• Estimate      and     to minimize
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SFM under orthographic projection

2D image 
point

orthographic
projection

matrix
3D scene

point
image
offset

tΠpq +=
12× 32× 13× 12×

• Trick
– Choose scene origin to be centroid of 3D points
– Choose image origins to be centroid of 2D points
– Allows us to drop the camera translation:

Πpq =



factorization (Tomasi & Kanade)
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Key Observation:  rank(W) <= 3



n33m2n2m
''
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= SMW

• Factorization Technique
– W is at most rank 3 (assuming no noise)
– We can use singular value decomposition to factor W:

Factorization

– S’ differs from S by a linear transformation A:

– Solve for A by enforcing metric constraints on M

))(('' ASMASMW 1−==

n33m2n2m ×××
= SMWknown solve for



Metric constraints

• Orthographic Camera
– Rows of Π are orthonormal:

• Enforcing “Metric” Constraints
– Compute A such that rows of M have these 

properties
MAM ='
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Trick (not in original Tomasi/Kanade paper, but in followup work)

• Constraints are linear in AAT :

• Solve for G first by writing equations for every Πi in M
• Then G = AAT by SVD (since U = V)
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nm2n33m2n2m ××××
+= ESMW

Factorization with noisy data

• SVD gives this solution
– Provides optimal rank 3 approximation W’ of W

nm2n2mn2m
'

×××
+= EWW

• Approach
– Estimate W’, then use noise-free factorization of W’

as before
– Result minimizes the SSD between positions of image 

features and projection of the reconstruction



Results



Extensions to factorization methods

• Projective projection
• With missing data
• Projective projection with missing data



Bundle adjustment



Levenberg-Marquardt method

• LM can be thought of as a combination of 
steepest descent and the Newton method. 
When the current solution is far from the 
correct one, the algorithm behaves like a 
steepest descent method: slow, but guaranteed 
to converge. When the current solution is close 
to the correct solution, it becomes a Newton’s 
method.



Nonlinear least square 
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Levenberg-Marquardt method



Levenberg-Marquardt method

• μ=0 → Newton’s method
• μ→∞ → steepest descent method

• Strategy for choosing μ
– Start with some small μ
– If error is not reduced, keep trying larger μ until it 

does
– If error is reduced, accept it and reduce μ for the 

next iteration 



Bundle adjustment

• Bundle adjustment (BA) is a technique for 
simultaneously refining the 3D structure and 
camera parameters

• It is capable of obtaining an optimal 
reconstruction under certain assumptions on 
image error models. For zero-mean Gaussian 
image errors, BA is the maximum likelihood 
estimator.



Bundle adjustment

• n 3D points are seen in m views
• xij is the projection of the i-th point on image j
• aj is the parameters for the j-th camera
• bi is the parameters for the i-th point
• BA attempts to minimize the projection error

Euclidean distance

predicted projection



Bundle adjustment



Bundle adjustment

3 views and 4 points



Typical Jacobian



Block structure of normal equation



Issues in SFM

• Track lifetime
• Nonlinear lens distortion
• Degeneracy and critical surfaces
• Prior knowledge and scene constraints
• Multiple motions



Track lifetime

every 50th frame of a 800-frame sequence



Track lifetime

lifetime of 3192 tracks from the previous sequence



Track lifetime

track length histogram



Nonlinear lens distortion



Nonlinear lens distortion

effect of lens distortion



Prior knowledge and scene constraints

add a constraint that several lines are parallel



Prior knowledge and scene constraints

add a constraint that it is a turntable sequence



Applications of matchmove



Applications of matchmove

More example #1 More example #2



2d3 boujou

Enemy at the Gate, Double Negative 



2d3 boujou

Enemy at the Gate, Double Negative 



Jurassic park



Photo Tourism



Project #3 MatchMove

• It is more about using tools in this project
• You can choose either calibration or structure 

from motion to achieve the goal
• Calibration example
• Icarus


