Camera calibration

Digital Visual Effects, Spring 2007
Yung-Yu Cbuang
2007/4/17
with slides by Richard S zeliski, Steve Seitz, and Marc Pollefyes

Announcements

- Project \#2 is due next Tuesday before the class

Outline

- Camera projection models
- Camera calibration (tools)
- Nonlinear least square methods
- Bundle adj ustment

Camera projection models

Pinhole camera

illum in tabula per radios Solis, quam in caelo contingit: hoc eff,fi in ccelo fuperior pars delıquiü patiatur, in radiis apparcbit inferior deficere, vt ratio exigit optica.

Sole defiguinum Amo Chint
 theny

Sic nos exaAct Anno. 1544. Louanii celipfim Solis obferuauimus, inuenimusq; deficere pauló plus ä dex-

Pinhole camera model

Pinhole camera model

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Pinhole camera model

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Principal point offset

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \sim\left(\begin{array}{l}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Intrinsic matrix

Is this form of K good enough?

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- non-square pixels (digital video)
- skew
- radial distortion

$$
\mathbf{K}=\left[\begin{array}{ccc}
f a & s & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

Distortion

No distortion

Pin cushion

Barrel

- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Camera rotation and translation

$$
\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \sim\left[\begin{array}{ccc}
f & 0 & x_{0} \\
0 & f & y_{0} \\
0 & 0 & 1
\end{array}\right][\mathbf{R} \left\lvert\, \mathbf{t}\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \quad \mathbf{x} \sim \mathbf{K} \underbrace{[\mathbf{R} \mid \mathbf{t}] \mathbf{X}}_{\uparrow}\right.
$$

Two kinds of parameters

- internal or intrinsic parameters such as focal length, optical center, aspect ratio: what kind of camera?
- external or extrinsic (pose) parameters including rotation and translation: where is the camera?

Other projection models

Orthographic projection

- Special case of perspective projection
- Distance from the COP to the PP is infinite

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

- Also called "parallel projection": $(x, y, z) \rightarrow(x, y)$

Other types of projections

- Scaled orthographic
- Also called "weak perspective"

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Affine projection
- Also called "paraperspective"

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Fun with perspective

Perspective cues

Perspective cues

Fun with perspective

Forced perspective in LOTR

Camera calibration

Camera calibration

- Estimate both intrinsic and extrinsic parameters
- Mainly, two categories:

1. Photometric calibration: uses reference objects with known geometry
2. Self calibration: only assumes static scene, e.g. structure from motion

Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optimization
3. multiple planar patterns

Chromaglyphs (HP research)

Linear regression

$\mathbf{x} \sim \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}=\mathbf{M X}$

$$
\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \sim\left[\begin{array}{lllc}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Linear regression

- Directly estimate 11 unknowns in the M matrix using known 3D points (X_{i}, Y_{i}, Z_{i}) and measured feature positions (u_{i}, v_{i})

Linear regression

$$
\begin{gathered}
u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1} \\
u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03} \\
v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+1\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}
\end{gathered}
$$

Linear regression

Linear regression

$$
\left[\begin{array}{cccccccccccc}
X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\
0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\
X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\
0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}
\end{array}\right]\left[\begin{array}{c}
m_{00} \\
m_{01} \\
m_{02} \\
m_{03} \\
m_{10} \\
m_{11} \\
m_{12} \\
m_{13} \\
m_{20} \\
m_{21} \\
m_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Solve for Projection Matrix M using least-square techniques

Normal equation

Given an overdetermined system

$$
\mathbf{A x}=\mathbf{b}
$$

the normal equation is that which minimizes the sum of the square differences between left and right sides

$$
\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
$$

Why?

Normal equation

$$
\begin{gathered}
E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2} \\
{\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
: & & : \\
: & & : \\
: & & : \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
: \\
: \\
: \\
b_{n}
\end{array}\right]}
\end{gathered}
$$

$n \times m, n$ equations, m variables

Normal equation

$$
\begin{gathered}
\mathbf{A x}-\mathbf{b}=\left[\begin{array}{c}
\sum_{j=1}^{m} a_{1 j} x_{j} \\
\vdots \\
\sum_{j=1}^{m} a_{i j} x_{j} \\
\vdots \\
\sum_{j=1}^{m} a_{n j} x_{j}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
: \\
b_{i} \\
: \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
\left(\sum_{j=1}^{m} a_{1 j} x_{j}\right)-b_{1} \\
: \\
\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i} \\
: \\
\left(\sum_{j=1}^{m} a_{n j} x_{j}\right)-b_{n}
\end{array}\right] \\
E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2}=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right]^{2}
\end{gathered}
$$

Normal equation

$$
\begin{aligned}
& E(\mathbf{x})=(\mathbf{A x}-\mathbf{b})^{2}=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right]^{2} \\
& 0=\frac{\partial E}{\partial x_{1}}= \sum_{i=1}^{n} 2\left[\left(\sum_{j=1}^{m} a_{i j} x_{j}\right)-b_{i}\right] a_{i 1} \\
&= 2 \sum_{i=1}^{n} a_{i 1} \sum_{j=1}^{m} a_{i j} x_{j}-2 \sum_{i=1}^{n} a_{i 1} b_{i} \\
& 0=\frac{\partial E}{\partial \mathbf{x}}=2\left(\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\mathbf{A}^{\mathrm{T}} \mathbf{b}\right) \rightarrow \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Normal equation

$$
\begin{aligned}
& (\mathbf{A x}-\mathbf{b})^{2} \\
& =(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A x}-\mathbf{b}) \\
& =\left((\mathbf{A x})^{T}-\mathbf{b}^{T}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\left(\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}-\mathbf{b}^{\mathrm{T}}\right)(\mathbf{A x}-\mathbf{b}) \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{b}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& =\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}-\left(\mathbf{A}^{\mathrm{T}} \mathbf{b}\right)^{\mathrm{T}} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{b} \\
& \frac{\partial E}{\partial \mathbf{x}}=2 \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Linear regression

- Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the image
- Disadvantages:
- Doesn't tell us about particular parameters
- Mixes up internal and external parameters
- pose specific: move the camera and everything breaks

Nonlinear optimization

- A probabilistic view of least square
- Feature measurement equations

$$
\begin{aligned}
u_{i} & =f\left(\mathbf{M}, \mathbf{x}_{i}\right)+n_{i}=\widehat{u}_{i}+n_{i}, \quad n_{i} \sim N(0, \sigma) \\
v_{i} & =g\left(\mathbf{M}, \mathbf{x}_{i}\right)+m_{i}=\widehat{v}_{i}+m_{i}, \quad m_{i} \sim N(0, \sigma)
\end{aligned}
$$

- Likelihood of $\operatorname{Mgiven}\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
\begin{aligned}
L & =\prod_{i} p\left(u_{i} \mid \widehat{u}_{i}\right) p\left(v_{i} \mid \widehat{v}_{i}\right) \\
& =\prod_{i} e^{-\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma^{2}} e^{-\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma^{2}}
\end{aligned}
$$

Optimal estimation

- Log likelihood of $\operatorname{Mgiven}\left\{\left(u_{i}, v_{i}\right)\right\}$

$$
C=-\log L=\sum_{i}\left(u_{i}-\widehat{u}_{i}\right)^{2} / \sigma_{i}^{2}+\left(v_{i}-\widehat{v}_{i}\right)^{2} / \sigma_{i}^{2}
$$

- It is a least square problem (but not necessarily linear least square)
- How do we minimize C?

Optimal estimation

- Non-linear regression (least squares), because the relations between \hat{u}_{i} and u_{i} are non-linear functions \mathbf{M}
unknown parameters
We could have terms like $f \cos \theta$ in this

$$
\mathbf{u}-\hat{\mathbf{u}} \sim \underset{\uparrow}{\mathbf{u}}-\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \mathbf{X}_{\uparrow}^{\mathbf{X}}
$$

known constant

- We can use Levenberg-Marquardt method to minimize it

A popular calibration tool

Multi-plane calibration

DigjVFX

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/ orientations
- Good code available online!
- Intel's OpenCV library: http:// www. intel. com/ research/ mrl/ research/ opencv/
- Matlab version by J ean-Yves Bouget:
http:// www. vision. caltech. edu/ bouguetj / calib_doc/ index. html
- Zhengyou Zhang's web site: http:// research. microsoft.com/ -zhang/ Calib/

Step 1: data acquisition

DigjVFX

Step 2: specify corner order

Click on the four extreme comers of the rectangular pattem (first comer $=$ origin)... Image 1 Click on the four extreme corners of the rectangular pattem (first comer $=$ origin)... Image 1

Cick on the four extreme comers of the rectangular pattern (first corner = origin)... Image 1

Step 3: corner extraction

Step 3: corner extraction

Step 4: minimize projection error

Reprojection error (in pixel) - To exit: right button

Calibration res
Focal Length:
Principal point:
Skew:
Distortion:
Pixel error:

$$
\begin{aligned}
& \mathrm{fc}=\left[\begin{array}{ll}
657.46290 & 657.94673
\end{array}\right] \pm\left[\begin{array}{lll}
6.31819 & 0.34046
\end{array}\right] \\
& \mathrm{CC}=[303.13665242 .56935] \pm\left[\begin{array}{lll}
{[6.64682} & 0.59218
\end{array}\right] \\
& \text { alpha_c }=[6.00096] \pm[6.60696] \Rightarrow \text { angle of pixel axes }= \\
& \overline{\mathbf{k}} \mathbf{c}=\left[\begin{array}{lllll}
-0.25403 & 0.12143 & -0.09621 & 0.00902 & 0.09509
\end{array}\right] \\
& \mathrm{err}=\left[\begin{array}{ll}
0.11689 & 0.11509
\end{array}\right]
\end{aligned}
$$

Step 4: camera calibration

Step 4: camera calibration

Step 5: refinement

Nonlinear least square methods

Least square fitting

Least Squares Problem

Find x^{*}, a local minimizer for

$$
F(\mathrm{x})=\frac{1}{2} \sum_{i=1}^{m}\left(f_{i}(\mathrm{x})\right)^{2}
$$

where $f_{i}: \mathbb{R}^{n} \mapsto \mathbb{R}, i=1, \ldots, m$ are given functions, and $m \geq n$.
number of data points
number of parameters

Linear least square fitting

Nonlinear least square fitting

$$
\begin{aligned}
& \text { model } M(\mathbf{x}, t)=x_{3} e^{x_{1} t}+x_{4} e^{x_{2} t} \\
& \begin{aligned}
\text { parameters } \mathbf{x} & =\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top} \\
\text { residuals } f_{i}(\mathbf{x}) & =y_{i}-M\left(\mathbf{x}, t_{i}\right) \\
& =y_{i}-x_{3} e^{x_{1} t_{i}}-x_{4} e^{x_{2} t_{i}}
\end{aligned}
\end{aligned}
$$

Function minimization

Least square is related to function minimization.

Global Minimizer

Given $F: \mathbb{R}^{n} \mapsto \mathbb{R}$. Find

$$
\mathbf{x}^{+}=\operatorname{argmin}_{\mathbf{x}}\{F(\mathbf{x})\}
$$

It is very hard to solve in general. Here, we only consider a simpler problem of finding local minimum.

Local Minimizer
Given $F: \mathbb{R}^{n} \mapsto \mathbb{R}$. Find x^{*} so that

$$
F\left(\mathrm{x}^{*}\right) \leq F(\mathrm{x}) \quad \text { for } \quad\left\|\mathrm{x}-\mathrm{x}^{*}\right\|<\delta
$$

Function minimization

We assume that the cost function F is differentiable and so smooth that the following Taylor expansion is valid, ${ }^{2)}$

$$
F(\mathbf{x}+\mathbf{h})=F(\mathbf{x})+\mathbf{h}^{\top} \mathbf{g}+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

where \mathbf{g} is the gradient,

$$
\mathbf{g} \equiv \mathbf{F}^{\prime}(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}}(\mathbf{x}) \\
\vdots \\
\frac{\partial F}{\partial x_{n}}(\mathbf{x})
\end{array}\right]
$$

and \mathbf{H} is the Hessian,

$$
\mathbf{H} \equiv \mathbf{F}^{\prime \prime}(\mathbf{x})=\left[\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(\mathbf{x})\right]
$$

Quadratic functions

Approximate the function with a quadratic function within a small neighborhood

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x+c
$$

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right], \quad b=\left[\begin{array}{r}
2 \\
-8
\end{array}\right], \quad c=0 .
$$

Quadratic functions

A is positive definite. (a) All eigenvalues are positive. Fall all x, $x^{\top} A x>0$.

(b) negative definite

A is singular
(d)

A is indefinite

Function minimization

Theorem 1.5. Necessary condition for a local minimizer. If x^{*} is a local minimizer, then

$$
\mathrm{g}^{*} \equiv \mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=0
$$

Definition 1.6. Stationary point. If

$$
\mathbf{g}_{\mathrm{s}} \equiv \mathbf{F}^{\prime}\left(\mathbf{x}_{\mathrm{s}}\right)=\mathbf{0}
$$

then x_{s} is said to be a stationary point for F.

$$
F\left(\mathbf{x}_{\mathrm{s}}+\mathbf{h}\right)=F\left(\mathbf{x}_{\mathrm{s}}\right)+\frac{1}{2} \mathbf{h}^{\top} \mathbf{H}_{\mathrm{s}} \mathbf{h}+O\left(\|\mathbf{h}\|^{3}\right)
$$

\mathbf{H}_{s} is positive definite

a) minimum

b) maximum

c) saddle point

Descent methods

$\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \rightarrow \mathrm{x}^{*}$ for $k \rightarrow \infty$

1. Find a descent direction \mathbf{h}_{d}
2. find a step length giving a good decrease in the F-value.
```
Algorithm Descent method
begin
    \(k:=0 ; \mathrm{x}:=\mathrm{x}_{0} ;\) found \(:=\mathbf{f a l s e}\)
    while (not found) and ( \(k<k_{\text {max }}\) )
            \(\mathbf{h}_{\mathrm{d}}:=\) search_direction \((\mathbf{x})\)
            if (no such \(\mathbf{h}\) exists)
                found \(:=\) true
            else
            \(\alpha:=\) step_length \(\left(\mathbf{x}, \mathbf{h}_{\mathrm{d}}\right) \quad\left\{\right.\) from x in direction \(\left.\mathbf{h}_{\mathrm{d}}\right\}\)
            \(\mathrm{x}:=\mathrm{x}+\alpha \mathbf{h}_{\mathrm{d}} ; \quad k:=k+1 \quad\{\) next iterate \(\}\)
end
```


Descent direction

$$
\begin{aligned}
F(\mathbf{x}+\alpha \mathbf{h}) & =F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \text { for } \alpha \text { sufficiently small. }
\end{aligned}
$$

Definition Descent direction.
\mathbf{h} is a descent direction for F at \mathbf{x} if $\mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})<0$.

Steepest descent method

$$
\begin{aligned}
& F(\mathbf{x}+\alpha \mathbf{h})=F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})+O\left(\alpha^{2}\right) \\
& \simeq F(\mathbf{x})+\alpha \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \quad \text { for } \alpha \text { sufficiently small. } \\
& \frac{F(\mathbf{x})-F(\mathbf{x}+\alpha \mathbf{h})}{\alpha\|\mathbf{h}\|}=-\frac{1}{\|\mathbf{h}\|} \mathbf{h}^{\top} \mathbf{F}^{\prime}(\mathbf{x})=-\left\|\mathbf{F}^{\prime}(\mathbf{x})\right\| \cos \theta
\end{aligned}
$$

the decrease of $\boldsymbol{F}(\boldsymbol{x})$ per unit along h direction greatest gain rate if $\theta=\pi \rightarrow \mathbf{h}_{\mathrm{sd}}=-\mathbf{F}^{\prime}(\mathbf{x})$
$h_{\text {sd }}$ is a descent direction because $h_{\text {sd }}^{\top} F^{\prime}(x)=F^{\prime}(x)^{2}<0$

Line search

$$
\varphi(\alpha)=F(\mathbf{x}+\alpha \mathbf{h}), \quad \mathbf{x} \text { and } \mathbf{h} \text { fixed, } \alpha \geq 0 . \quad \text { Find } \alpha \text { so that }
$$

$$
0=\frac{\partial \varphi(\alpha)}{\partial \alpha}=\frac{\partial \mathbf{F}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)}{\partial \alpha}
$$

$f\left(x_{(i)}+\alpha r_{(i)}\right) \quad$ (c)

$=\frac{\partial \mathbf{F}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \alpha}=\mathbf{h}^{\mathrm{T}} \mathbf{F}^{\prime}\left(\mathbf{x}_{0}+\alpha \mathbf{h}\right)$ $h=-F^{\prime}\left(x_{0}\right)$

Line search

Steepest descent method

isocontour

gradient

Steepest descent method

It has good performance in the initial stage of the iterative process. Converge very slof with a linear rate.

Newton's method

x^{*} is a stationary point \rightarrow it satisfies $\mathbf{F}^{\prime}\left(\mathrm{x}^{*}\right)=0$.

$$
\begin{aligned}
\mathbf{F}^{\prime}(\mathbf{x}+\mathbf{h}) & =\mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h}+O\left(\|\mathbf{h}\|^{2}\right) \\
& \simeq \mathbf{F}^{\prime}(\mathbf{x})+\mathbf{F}^{\prime \prime}(\mathbf{x}) \mathbf{h} \text { for }\|\mathbf{h}\| \text { sufficiently small }
\end{aligned}
$$

$$
\rightarrow \mathbf{H h}_{\mathrm{n}}=-\mathbf{F}^{\prime}(\mathbf{x}) \text { with } \mathbf{H}=\mathbf{F}^{\prime \prime}(\mathbf{x})
$$

$$
\mathbf{x}:=\mathrm{x}+\mathbf{h}_{\mathrm{n}}
$$

Suppose that \mathbf{H} is positive definite
$\rightarrow \mathbf{u}^{\top} \mathbf{H u}>0$ for all nonzero \mathbf{u}.
$\rightarrow 0<\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{H} \mathbf{h}_{\mathrm{n}}=-\mathbf{h}_{\mathrm{n}}^{\top} \mathbf{F}^{\prime}(\mathbf{x}) \mathbf{h}_{\mathrm{n}}$ is a descent direction
It has good performance in the final stage of the iterative process, where x is close to x^{*}.

Hybrid method

$$
\begin{aligned}
& \text { if } \mathbf{F}^{\prime \prime}(\mathbf{x}) \text { is positive definite } \\
& \mathbf{h}:=\mathbf{h}_{\mathbf{n}} \\
& \text { else } \\
& \quad \mathbf{h}:=\mathbf{h}_{\mathrm{sd}} \\
& \mathbf{x}:=\mathbf{x}+\alpha \mathbf{h}
\end{aligned}
$$

This needs to calculate second-order derivative which might not be available.

