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Image stitching

= Stitching = alignment + blending
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Applications of image stitching

» Video stabilization

« Video summarization
« Video compression

» Video matting

e Panorama creation

Video summarization




Video compression Object removal

input video

Digil24 Digil 2R

Object removal Object removal

remove foreground estimate background




Object removal

background estimation

Panorama creation

Why panorama?

Digil24

« Are you getting the whole picture?
- Compact Camera FOV = 50 x 35°

Why panorama? e

e Are you getting the whole picture?
- Compact Camera FOV = 50 x 35°
- Human FOV =200 x 135°




Why panorama? e

= Are you getting the whole picture?
- Compact Camera FOV = 50 x 35°
- Human FOV =200 x 135°
- Panoramic Mosaic = 360 x 180°
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Panorama examples

» Like HDR, it is a topic of computational
photography, seeking ways to build a better
camera mostly in software.

= Most consumer cameras have a panorama mode

e Mars:
http://www.panoramas.dk/fullscreen3/f2_mars97.html

e Earth:
http://www.panoramas.dk/new-year-2006/taipei.html
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A pencil of rays contains all views
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Can generate any synthetic camera view
as long as it has the same center of projection!
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Mosaic as an image reprojection

h \ mosaic projection plane

 The images are reprojected onto a common plane
e The mosaic is formed on this plane
« Mosaic is a synthetic wide-angle camera




Changing camera center

e Does it still work? synthetic PP
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Planar scene (or far away) e

* PP3 is a projection plane of both centers of
projection, so we are OK!

 This is how big aerial photographs are made

Motion models RIEIVFX

e Parametric models as the assumptions on the
relation between two images.
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Motion models RIEIVFX
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A case study: cylindrical panorama Y™

* What if you want a 360° field of view?

\ mosaic projection cylinder

Cylindrical panoramas e

o Steps
— Reproject each image onto a cylinder
— Blend
— Output the resulting mosaic

Cylindrical panorama e

Take pictures on a tripod (or handheld)
Warp to cylindrical coordinate

Compute pairwise alignments

Fix up the end-to-end alignment
Blending

Crop the result and import into a viewer
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Kaidan panoramic tripod head

Translation model RIEIVFX

Cylindrical projection e
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Adopted from http://www.cambridgeincolour.com/tutorials/image-projections.htm
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Cylindrical reprojection

Image 384x300  f =180 (pixels)

A simple method for estimating f
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Or, you can use other software, such as AutoStich,
to help.

Input images

Cylindrical warping




Blending

IDigi

» Why blending: parallax, lens distortion, scene

motion, exposure difference

Blending

Blending

IDigi

IDigi
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Assembling the panorama Problem: Drift e
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« Stitch pairs together, blend, then crop
» Error accumulation
— small errors accumulate over time
Problem: Drift e End-to-end alignment and crop e
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— add another copy of first image at the end

— there are a bunch of ways to solve this problem

* add displacement of (y; —y,)/(n -1) to each image after
the first

e compute a global warp: y' =y + ax
 run a big optimization problem, incorporating this
constraint
— best solution, but more complicated
— known as “bundle adjustment”




Digia4

Viewer: panorama Viewer: texture mapped model

exam ple . http://www.cs.washington.edu/education/courses/cse590ss/01wi/projects/projectl/students/dougz/index.html exam ple http //WWW panoramas . d k/

Cylindrical panorama e Determine pairwise alignment? TRV
1. Take pictures on a tripod (or handheld) e Feature-based methods: only use feature points
2. Warp to cylindrical coordinate to estimate parameters

3. Compute pairwise alignments

4. Fix up the end-to-end alignment = We will study the “Recognising panorama”

5. Blending paper published in ICCV 2003

6. Crop the result and import into a viewer

e Run SIFT for each image, find feature matches.




Determine pairwise alignment

p’=Mp, where M is a transformation matrix, p
and p’ are feature matches

It is possible to use more complicated models
such as affine or perspective

For example, assume M is a 2x2 matrix
y' m21 IfnZZ y
Find M with the least square error
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Determine pairwise alignment
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Normal equation e

Given an overdetermined system
AX=Db

the normal equation is that which minimizes the
sum of the square differences between left and
right sides

A'Ax=A"b

Why?

Normal equation e

E(x) = (Ax—Db)’
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Normal equation
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Normal equation
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Determine pairwise alignment?

e p’=Mp, where M is a transformation matrix, p
and p’ are feature matches

e For translation model, it is easier.
E= Z[m +X - (m +y, - yi')z]

0= &
om,

 What if the match is false? Avoid impact of
outliers.




RANSAC

RANSAC = Random Sample Consensus

an algorithm for robust fitting of models in the
presence of many data outliers

Compare to robust statistics

Given N data points x;, assume that mjority of
them are generated from a model with
parameters O, try to recover 0.

RANSAC algorithm

Smaller is better
(2) fit parameters © with these n samples

(3) for each of other N-n points, calculate
its distance to fitted model, count the
number of c
Output ® with the largest ¢
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How to define?
Depends on the problem.

How to determine k

Example: line fitting

p: probability of real inliers
P: probability of success after k trials

P =1-(1-p")"

n samples are all inliers
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Example: line fitting

Model fitting
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Another trial

C

The best model

RANSAC for Homography




RANSAC for Homography Applications of panorama in VFX
e Background plates
» Image-based lighting

Troy (image-based lighting)

http://www.cgnetworks.com/story custom.php?story id=2195&page=4




