Image warping/morphing

Digital Visual Ettects, Spring 2007
Yung-Yu Chuang
2007/3/20

with stides by Richard S'zeliski, Steve Seit, Tom Funkhouser and Alexei Efros

Image warping

Image formation

HHlumination (energy) p

.
‘:7 J(\ source A

o

Imaging system i A

(Internal) image plan ooooo

Scene element

Output (digitized) image

Ooooan

Quantization

Sampling and quantization

Digi2d

What is an image

e We can think of an image as a function, f: RZ2>R:
- T(X, y) gives the intensity at position (X, y)

- defined over a rectangle, with a finite range:
e f: [a,b]x[c,d] = [O,1]

e A color image
F(x,y)=[9(x,y)

Digi\Yl 2.4

A digital image

e \We usually operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

e |f our samples are D apart, we can write this as:
f[i1 ,J] = Quantize{ f(i D, J D) }
e The iImage can now be represented as a matrix

of integer values

d

g

62

79

23

119

120

105

10

10

9

62

12

78

34

10

58

197

46

46

48

176

135

5

188

191

68

49

2

1

1

29

26

37

77

0

89

144

147

187

102

62

208

255

252

0

166

123

62

31

166

63

127

17

99

30

Image warping

Image filtering: change range of image
009 =h(F) | o0

f

g

NS —

h

[~

———>

X

Image warping: change domain of image

g(x) = T(h(x))

f

h(y)=2y
g

NS —

N

X

Image warping

Image filtering: change range of image

Image warping: change domain of image

(x) = g(h(x))
h(Ix.yD=[x.y/2]

Parametric (global) warping

Examples of parametric warps:

perspective

affine

cylindrical

Parametric (global) warping

e Transformation T Is a coordinate-changing
machine: p’ = T(p)
 What does it mean that T is global?

— Is the same for any point p
— can be described by just a few numbers (parameters)

 Represent T as a matrix: p’ = M*p ['] BV

=M

Digi2d

Scaling

e Scaling a coordinate means multiplying each of
Its components by a scalar

« Uniform scaling means this scalar is the same
for all components:

o Ix X'l [2x

X 2

Scaling

« Non-uniform scaling: different scalars per

component:

X X 2,
y x 0.5

f

o

X
y

N

9

g

Scaling

« Scaling operation:

e Or, In matrix form:

What's inverse of S?

X'= ax

y'= by

__a 0l x

___O bl y
H_J

scaling matrix S

2-D Rotation

e This Is easy to capture in matrix form:

x| [cos(@) —sin(@)] x

y'| |sin(@) cos(@) |y

. 7
Y

R

e Even though sin(6) and cos(6) are nonlinear to 6,
— X' 1s a linear combination of x and y
— Yy’ iIs a linear combination of x and y

 What is the inverse transformation?

— Rotation by —6
— For rotation matrices, det(R) = 1 so R*=R

T

2X2 Matrices

 What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?

iy e i

2D Scale around (O O)’?
X'=8, %X x| [s, 0]x

y'=s,*Yy y' 0 s,

2X2 Matrices

 What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?
X'=Cc0s@*x—sin@*y {x}_{cos@ _sing}{x}

y'=sin@*x+cos@*y y'| |sin@ cosé |y
2D Shear?
X'=X+sh *y x| 1 sh [x

y'=sh, *x+y y'| [sh, 1

2X2 Matrices

 What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
Kkl
y'=y y' 0 1]y
2D Mirror over (0,0)?

= kiRl

Digi\Yl 2.4

All 2D Linear Transformations

e Linear transformations are combinations of ...
— Scale,
— Rotation,
— Shear, and
— Mirror

* Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved —] B N
— Closed under composition

Digi2d

2X2 Matrices

 What types of transformations can not be
represented with a 2x2 matrix?

2D Translation?
X'=X+t,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

Digi\Yl 2.4

Translation

« Example of translation ,
Homogeneous Coordinates

¥ 3 $

x7 [1 0 t [x] [x+t,
y'|={0 1 t |yl=]|Yy+¢
1, (0 0 1(1] [1

Affine Transformations

e Affine transformations are combinations of ...

— Linear transformations, and
— Translations

* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved - 9
— Closed under composition X
— Models change of basis

O d T

<—

|
O Qo
= =0

Projective Transformations

* Projective transformations ...
— Affine transformations, and
— Projective warps

* Properties of projective transformations:
— Origin does not necessarily map to origin

— Lines map to lines

— Parallel lines do not necessarily remain parallel

— Ratios are not preserved
— Closed under composition| ¥

— Models change of basis y' —

a
d

9

M

-—ho
X

Digi\Yl 2.4

Image warping

e Given a coordinate transform x’ = T(X) and a
source image I(x), how do we compute a
transformed image I'(X’) = I(T(X))?

Forward warping

e Send each pixel I(x) to its corresponding
location X’ = T(X) In I’(X’)

Forward warping

fwarp(l, 17, T)
{

for (y=0; y<l.height; y++)

for (x=0; x<l.width; x++) {

X7,y")=T(X,Y);
17(X7,y7)=1(X,Y):

}
} |

=

T

X

T

Forward warping

e Send each pixel I(x) to its corresponding
location X’ = T(X) In I’(X’)

« What If pixel lands “between” two pixels?

 WIill be there holes?

« Answer: add “contribution” to several pixels,
normalize later (splatting)

— hX

X f(x) Cgx)

T

Forward warping

fwarp(l, 17, T)
{

for (y=0; y<l.height; y++)

for (x=0; x<l.width; x++) {

(X7,y7)=T(X,Y);

Splatting(l”’,

¥
¥ |

X

LY L, 1 (X,y) . kernel);

=

T

X

T

DITTVFX

Inverse warping

e Get each pixel I’(x’) from its corresponding
location x = T-1(x’) in [(X)

Inverse warping

iwarp(l, 17, T)
{
for (y=0; y<I’_height; y++)
for (X=0; x<I’.width; x++) {
OGY)=TH(X,y7);
"(X7,y7)=1(X,y);
by

S amm

X

Digi2d

Inverse warping

e Get each pixel I’(x’) from its corresponding
location x = T-1(x’) in [(X)

 What If pixel comes from “between” two pixels?

« Answer: resample color value from
Interpolated (prefiltered) source image

FT

X f(x) g(x’)

Inverse warping

iwarp(l, 17, T)
1
for (y=0; y<I”.height; y++)
for (x=0; x<I1”.width; x++) {
O Y)=TH(X7,y7);
1”(X”,y”)=Reconstruct(l,x,y,kernel);
¥

=T 1] N S
g

Digi2d

Sampling

. band limited

MAVAS e

X *
. () [11(s)
L | | s
T >
\ J

Reconstruction

filter

Reconstruction

The reconstructed function is obtained by interpolating

among the samples in some manner

DITTVFX

Reconstruction

e Reconstruction generates an approximation to
the original function. Error is called aliasing.
sampling reconstruction
sample value

1

|
1 3 4 5 6 7 8

f

sample position

Digi2d

Reconstruction

e Computed weighted sum of pixel neighborhood,;
output is weighted average of input, where
welights are normalized values of filter kernel k

k(a.)a.
p_Z, ()0

ST k(@)

< color=0;

/” \\ weights=0;
o ° °

d = dist(p, q);

\ for all g’s dist < width
(P \NMﬂI :
oO—o o

/— w = kernel(d);
‘/d color += w*qg.color;
o

welghts += w;

:1__,,/// p-Color = color/weights;

Reconstruction (interpolation)

e Possible reconstruction filters (kernels):
- nearest neighbor
- bilinear
- bicubic e o
- sinc (optimal reconstruction) 4

Bilinear interpolation (triangle

filter) ZLVX

e A simple method for resampling images

(4,7 + 1) (i+1,j+1)
(z,y)
a
b
(4,7) (i+1,5)
flz,y) = (1 —=a)(1=0) fliJ]
+a(1-0) fle+1,]]
+ab fli+ 1,5+ 1]

Digi2d

Non-parametric image warping

e Specify a more detailed warp function
e Splines, meshes, optical flow (per-pixel motion)

Non-parametric image warping

e Mappings implied by correspondences
e Inverse warping

Digi\Yl 2.4

Non-parametric image warping

P'=w,A4+w,B+w_.C’
P=w,A+w;B+w.C
Barycentric coordinate

b I*

N %
. ® I “"l.
A Warp ’

N

& -

Barycentric coordinates

Ay

P=tA+LA +1A

i+t +1, =1

Digi2d

Non-parametric image warping

P=w,A+w;B+w.C Pi= Wy AW BwWe C

Barycentric coordinate

Digi2d

Non-parametric image warping

Gaussian p(r) =" AP = %Zg(P')AXi

thin plate 2

radial basis function

Digi2d

Demo

e http://www.colonize.com/warp/warp04-2.php

e Warping Is a useful operation for mosaics, video
matching, view interpolation and so on.

Image morphing

Digi2d

Image morphing

e The goal is to synthesize a fluid transformation
from one Image to another.

e Cross dissolving Is a common transition between
cuts, but it is not good for morphing because of
the ghosting effects.

Mt Y

image #1 dissolving iImage #2

Artifacts of cross-dissolving

Digill.!

http://www.salavon.com/

Image morphing

e Why ghosting?

e Morphing = warping + cross-dissolving

f

1 \
shape color

(geometric) (photometric)

MPFIVEX

Image morphing

Image #1 cross-dissolving

image #2

morphing

A\

Morphing sequence

Face averaging by morphing

average faces

Digi\Yl 2.4

Image morphing

create a morphing sequence: for each time t

1. Create an intermediate warping field (by
Interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped
Images

A A 4

t=0.33

An ideal example

* EantaMorph

morphing

An ideal example

middle face (t=0.5)

Warp specification (mesh warping)

How can we specify the warp?

1. Specify corresponding spline control points
Interpolate to a complete warping function

r

A N

| [
[-

0 e
Hm ' r
""I

i
\

i

i
i B

e

1=
i
E

[= -
:'"!"-\-
L2
I 1P
1

easy to implement, but less expressive

Warp specification

« How can we specify the warp
2. Specify corresponding points
* Interpolate to a complete warping function

DITTVFX

Solution: convert to mesh warping

1. Define a triangular mesh over the points
— Same mesh in both images!
— Now we have triangle-to-triangle correspondences
2. Warp each triangle separately from source to destination
— How do we warp a triangle?
— 3 points = affine warp!
— Just like texture mapping

Warp specification (field warping)

« How can we specify the warp?

3. Specify corresponding vectors
e interpolate to a complete warping function
« The Beier & Neely Algorithm

Beler&Neely (SIGGRAPH 1992)

 Single line-pair PQ to P'Q’:

.0

v X

u

P p’

Destination Image Source Image
X-P) - (@-P)
= Q2 (1
Q- Pll

(X —-P) - Perpendicular(Q — P)

y =

(2)

I'Q - Pl

@: P+u-(Q -P)+ v-Perpendicular (Q’' - P’) -

1Q - P,

Algorithm (single line-pair)

 For each X In the destination image:

1. Find the corresponding u,v
2. Find X’ In the source image for that u,v
3. destinationlmage(X) = sourcelmage(X’)

« Examples: HEHEE]

-|-” e i t

T |
I |--_.L -1-4--1 L l _]
2 m
['S LJ'
EEN) N 1 H
RERRERRER 8 ; e
HHHH =——— :
1 .
SsEsiEs E |
EEERES r :

Affine transformation =i - ::

Multiple Lines

,,IX V2

P,

Destination Image

Source Image

weight|i] = (

| b
lengthli]”
a+distli]

length = length of the line segment,

dist = distance to line segment

The influence of a, p, b. The same as the average of X;’

Full Algorithm

WarpImage(Sourcelmage, L'[...], L[...])
begin
foreach destination pixel X do
XSum = (0,0)
WeightSum =0
foreach line L[i] in destination do
X'[i]= X transformed by (L[i],L'[i])
weight[i] = weight assigned to X'[i]
XSum = Xsum + X'[i] * weight[i]
WeightSum += weight|[i]
end
X' = XSum/WeightSum
DestinationImage(X) = Sourcelmage(X')
end

return Destination
end

Resulting warp

Comparison to mesh morphing

e Pros: more expressive
e Cons: speed and control

Digi\Yl 2.4

Warp interpolation

« How do we create an intermediate warp at
time t?
— linear interpolation for line end-points

— But, a line rotating 180 degrees will become 0
length in the middle

— One solution is to interpolate line mid-point and
orientation angle

Animation

Generate Animation(Image , L [...],.Image , L [...])
begin
foreach intermediate frame time t do
for i=1 to number of line-pairs do
L[i] = line t-th of the way from L [i] to L [i].
end
Warp, = WarpImage(Image , L [...], L[...])
Warp, = Warplmage(Image , L [...], L[...])
foreach pixel p in Finallmage do
Finallmage(p) = (1-t) Warp (p) + t Warp (p)
end
end
end

Digi2d

Animated sequences

e Specify keyframes and interpolate the lines for
the inbetween frames

e Require a lot of tweaking

Results

Michael Jackson’s MTV “Black or White”

Multi-source morphing

Cross-dissolve

W,y[b]

Multi-source morphing

(9)

(h)

DITTVFX

References

e Thaddeus Beier, Shawn Neely, Feature-Based Image Metamorphosis,
SIGGRAPH 1992, pp35-42.

e Detlef Ruprecht, Heinrich Muller, Image Warping with Scattered
Data Interpolation, IEEE Computer Graphics and Applications,
March 1995, pp37-43.

e Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, Image
Metamorphosis Using Snakes and Free-Form Deformations,
SIGGRAPH 1995.

e Seungyong Lee, Wolberg, G., Sung Yong Shin, Polymorph: morphing
among multiple images, IEEE Computer Graphics and Applications,
Vol. 18, No. 1, 1998, pp58-71.

e Peinsheng Gao, Thomas Sederberg, A work minimization approach
to image morphing, The Visual Computer, 1998, pp390-400.

e George Wolberg, Image morphing: a survey, The Visual Computer,
1998, pp360-372.

