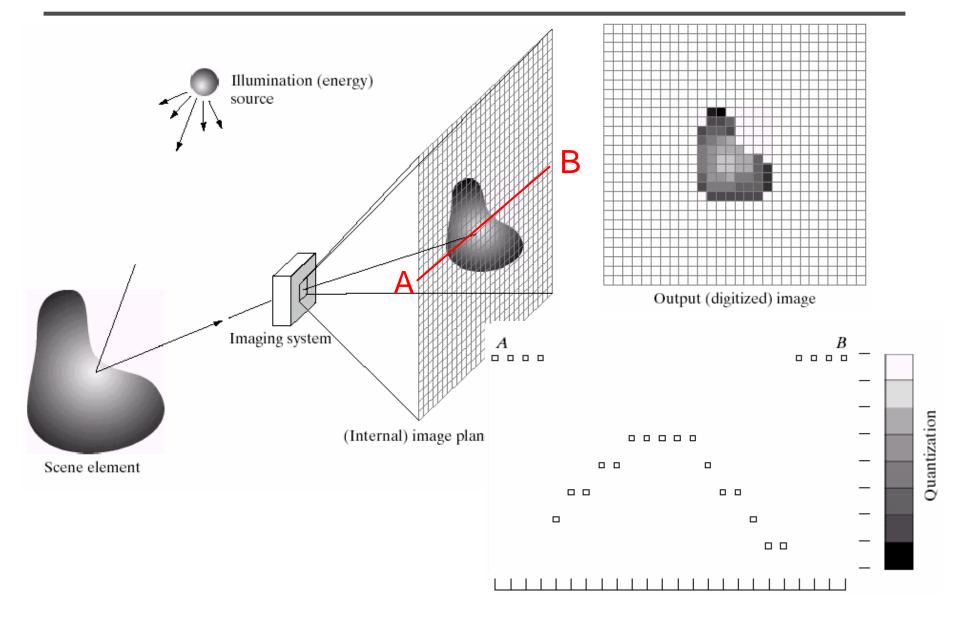
Image warping/morphing

Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/20

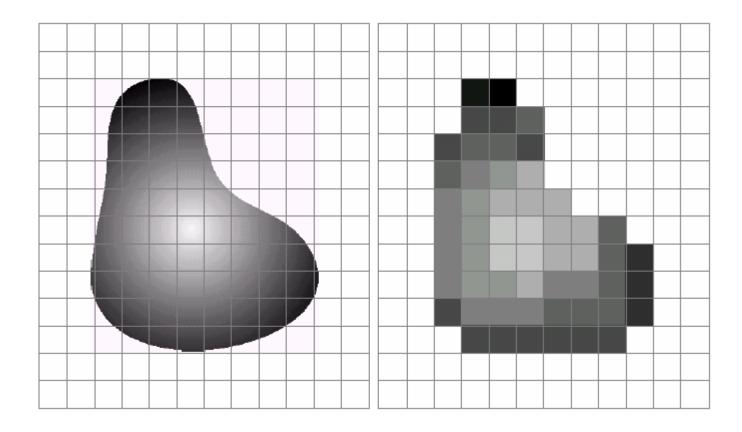
with slides by Richard Szeliski, Steve Seitz, Tom Funkhouser and Alexei Efros

Image warping

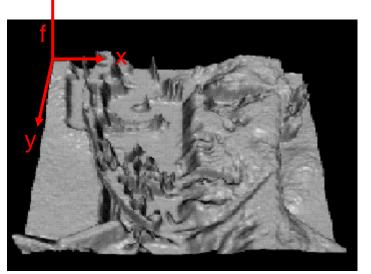
Image formation



Sampling and quantization



- We can think of an image as a function, $f: \mathbb{R}^2 \rightarrow \mathbb{R}$:
 - f(x, y) gives the intensity at position (x, y)
 - defined over a rectangle, with a finite range:
 - $f: [a, b] \times [c, d] \rightarrow [0, 1]$



• A color image $f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$

- We usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are D apart, we can write this as:
 f[i, j] = Quantize{ f(i D, j D) }
- The image can now be represented as a matrix of integer values

.	62	79	23	119	120	105	4	0
i	10	10	9	62	12	78	34	0
•	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

X

Image warping

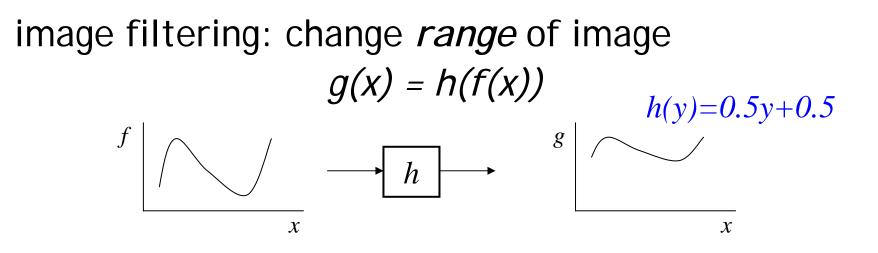


image warping: change *domain* of image g(x) = f(h(x)) h(y)=2y $f \mid \bigwedge \bigwedge h \mapsto g \mid \bigwedge \bigwedge$

X

image filtering: change *range* of image f(x) = h(g(x))h(y)=0.5y+0.5

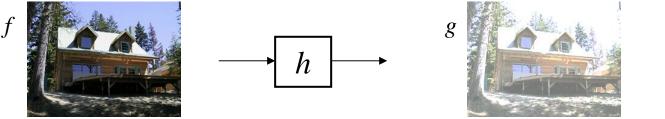
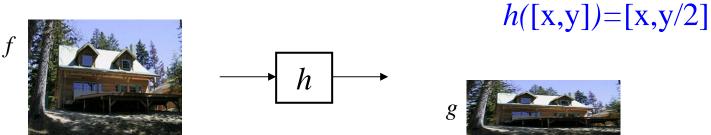


image warping: change *domain* of image f(x) = g(h(x))



Examples of parametric warps:

translation

rotation

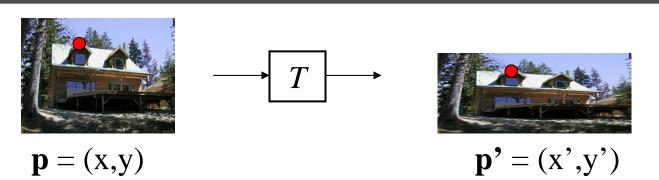
aspect

affine

perspective

cylindrical

Parametric (global) warping

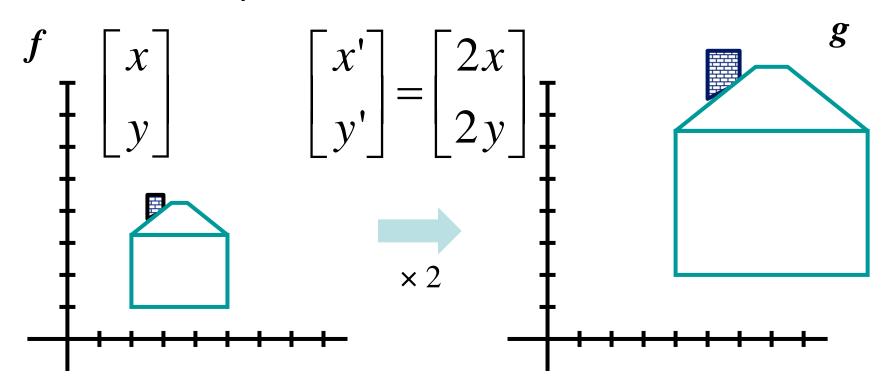


- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Represent T as a matrix: $p' = M^* p [\gamma']$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

• Non-uniform scaling: different scalars per component: $\begin{vmatrix} x \\ \end{vmatrix} = g \end{vmatrix}'$ x' | $\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} 2x \\ 0.5y \end{vmatrix}$ $\mathbf{x} \times 2$, $y \times 0.5$

Scaling

• Scaling operation: x' = ax

$$y' = by$$

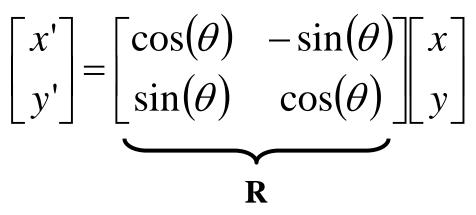
• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's inverse of S?

• This is easy to capture in matrix form:



- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear to θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- What is the inverse transformation?
 - Rotation by – θ
 - For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$y = y \qquad \qquad \lfloor y \rfloor \lfloor 0 1 \rfloor \lfloor y \rfloor$	$\begin{array}{l} x' = x \\ y' = y \end{array}$	$\begin{bmatrix} x' \\ y' \end{bmatrix}$	$=\begin{bmatrix}1\\0\end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	$\begin{bmatrix} x \\ y \end{bmatrix}$	
---	---	--	-------------------------------------	--------------------------------------	--	--

2D Scale around (0,0)? $x' = s_x * x$ $y' = s_y * y$ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \theta * x - \sin \theta * y$$

$$y' = \sin \theta * x + \cos \theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
2D Shear?

$$\begin{aligned} \mathbf{x}' &= \mathbf{x} + \mathbf{s} \mathbf{h}_{x} * \mathbf{y} \\ \mathbf{y}' &= \mathbf{s} \mathbf{h}_{y} * \mathbf{x} + \mathbf{y} \end{aligned} \qquad \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{vmatrix} 1 & \mathbf{s} \mathbf{h}_{x} \\ \mathbf{s} \mathbf{h}_{y} & 1 \end{vmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

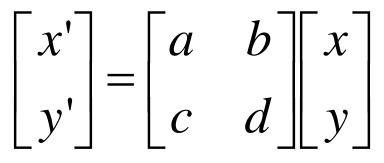
$$\begin{array}{c} x' = -x \\ y' = y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$\begin{array}{c} x' = -x \\ y' = -y \end{array} \qquad \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition



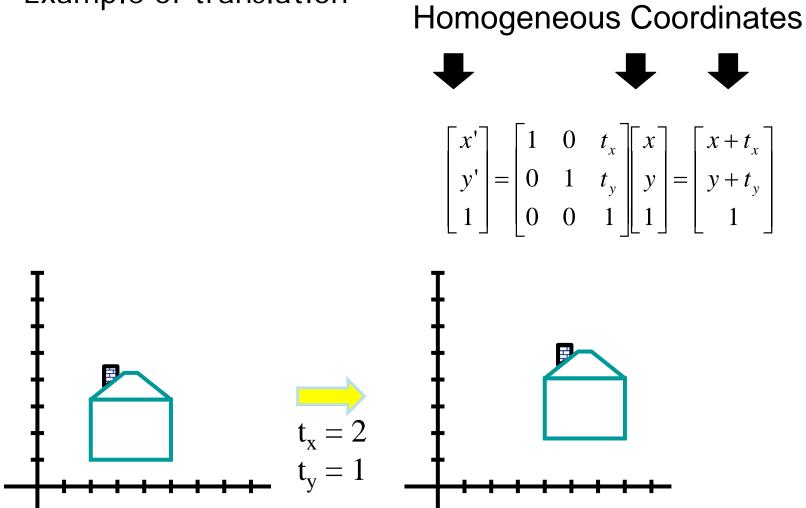
• What types of transformations can not be represented with a 2x2 matrix?

2D Translation? $x' = x + t_x$ $y' = y + t_y$ NO!

Only linear 2D transformations can be represented with a 2x2 matrix

Translation

• Example of translation



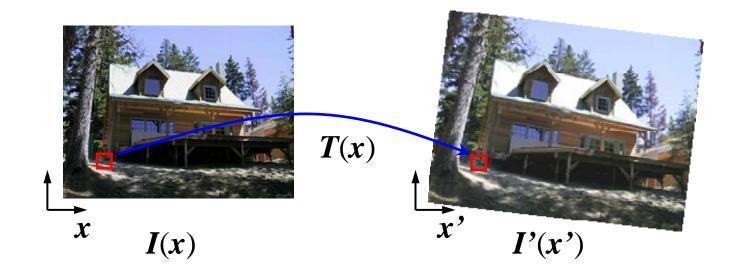
- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition
 - Models change of basis

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations ...
 - Affine transformations, and
 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
 - Models change of basis

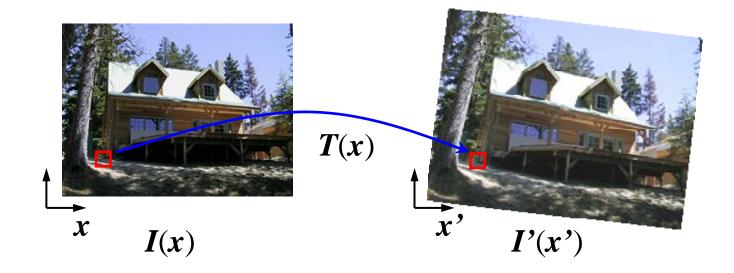
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Given a coordinate transform x' = T(x) and a source image I(x), how do we compute a transformed image I'(x') = I(T(x))?

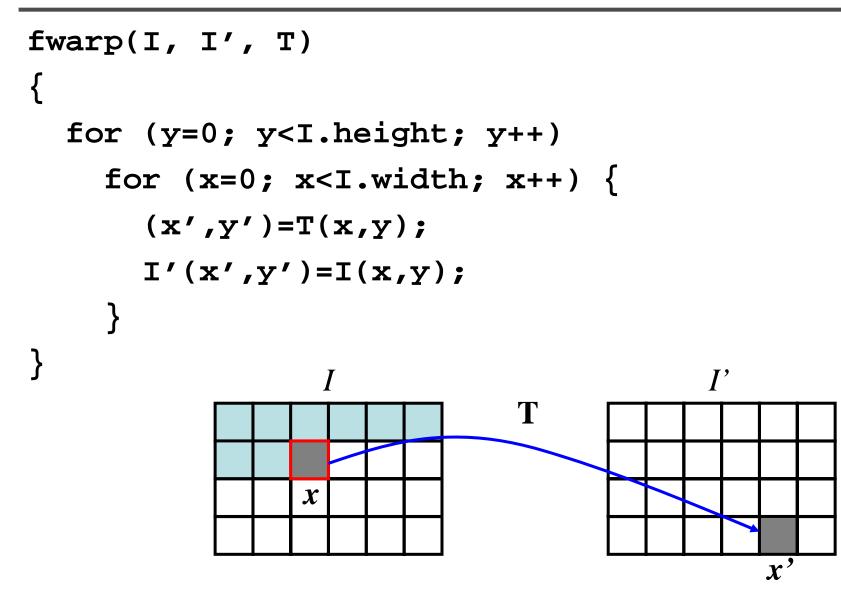


Forward warping

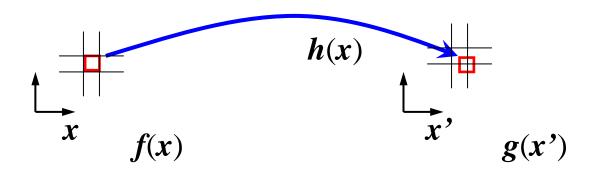
Send each pixel *I(x)* to its corresponding location *x'* = *T(x)* in *I'(x')*



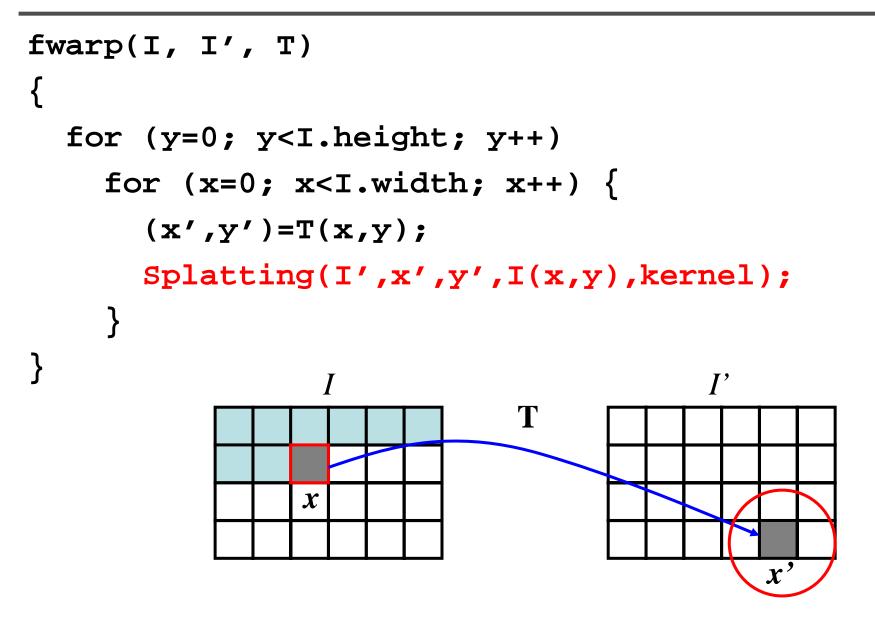
Forward warping



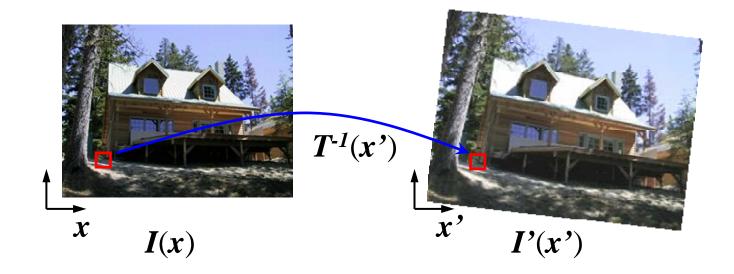
- Send each pixel *I(x)* to its corresponding location *x'* = *T(x)* in *I'(x')*
 - What if pixel lands "between" two pixels?
 - Will be there holes?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)



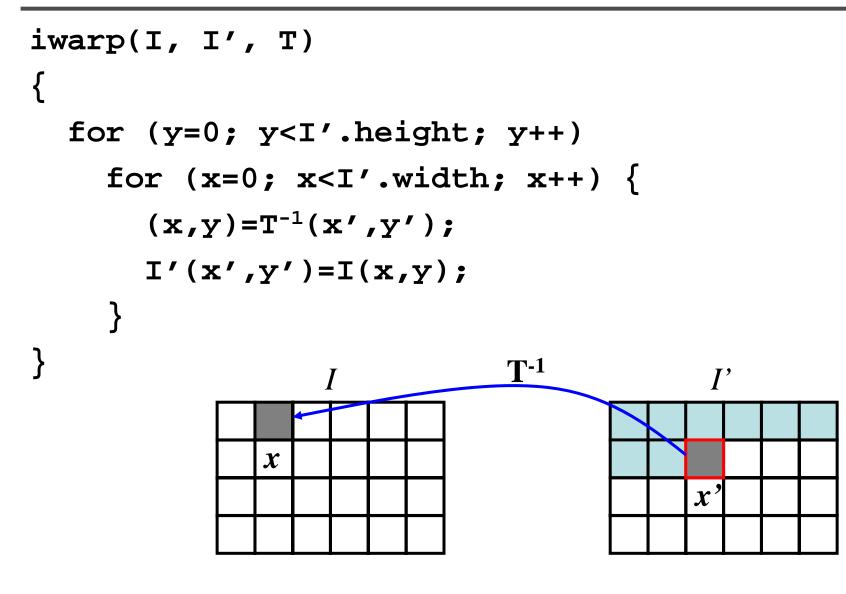
Forward warping



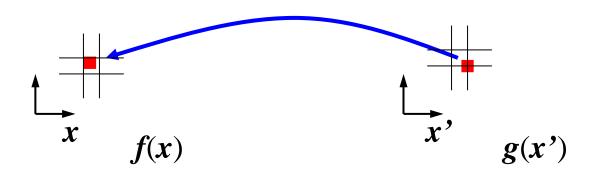
Get each pixel I'(x') from its corresponding location x = T⁻¹(x') in I(x)



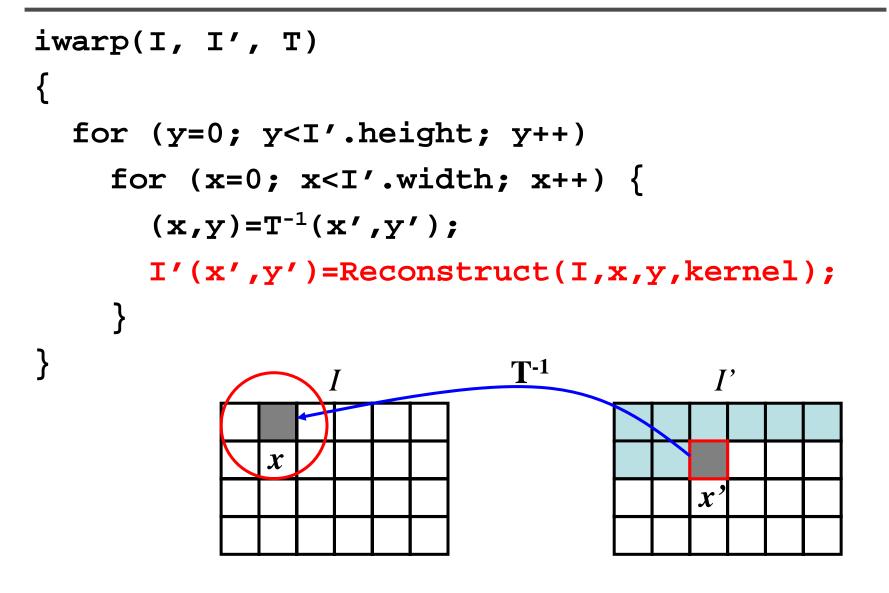
Inverse warping



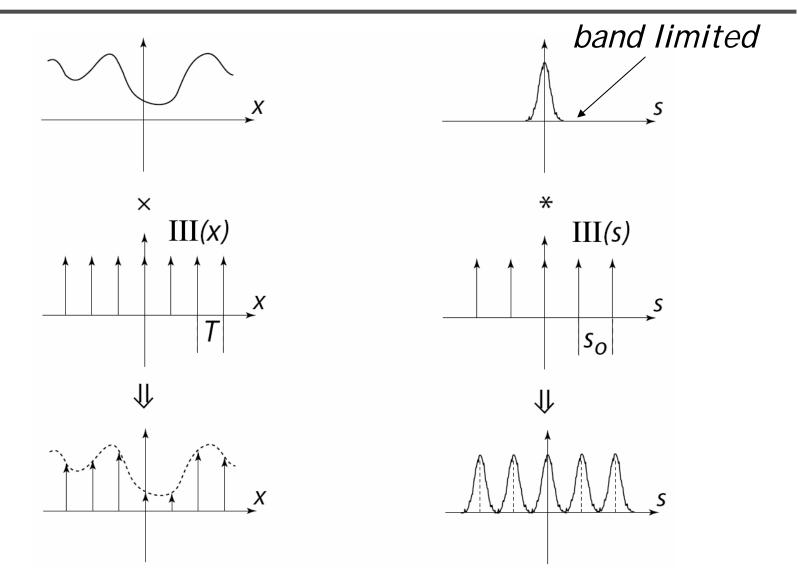
- Get each pixel I'(x') from its corresponding location x = T⁻¹(x') in I(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated (prefiltered) source image



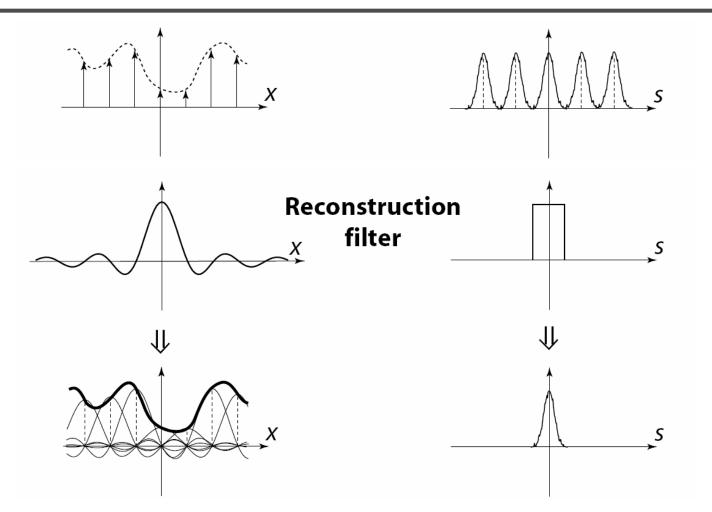
Inverse warping



Sampling



Reconstruction

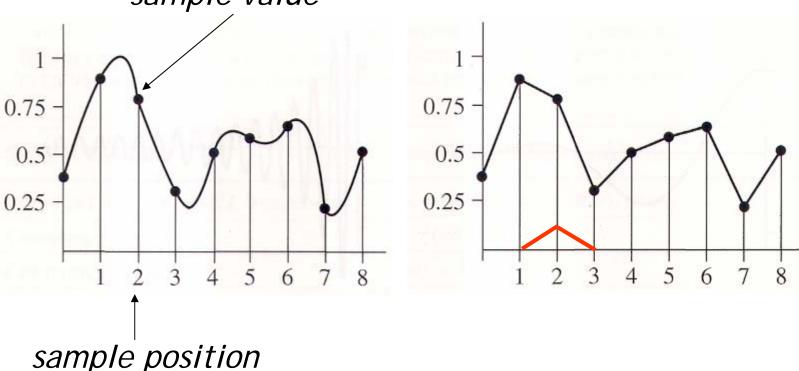


The reconstructed function is obtained by interpolating among the samples in some manner

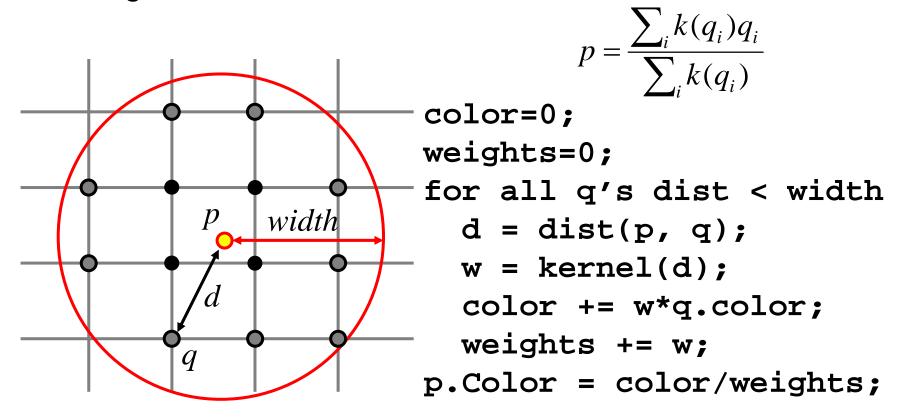
• Reconstruction generates an approximation to the original function. Error is called aliasing.

sampling sample value

reconstruction



 Computed weighted sum of pixel neighborhood; output is weighted average of input, where weights are normalized values of filter kernel k



Reconstruction (interpolation)

- Possible reconstruction filters (kernels):
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc (optimal reconstruction)

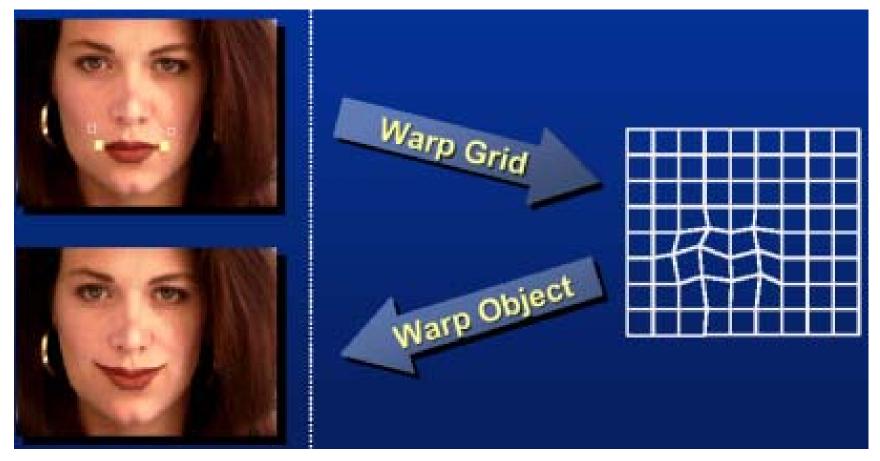
• A simple method for resampling images

$$(i, j + 1)$$
 $(i + 1, j + 1)$
 (x, y)
 (i, j) $(i + 1, j)$

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

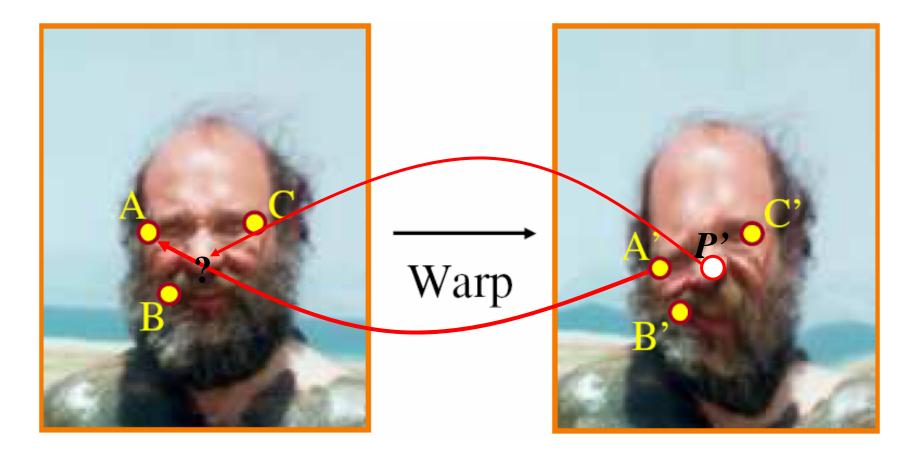
Non-parametric image warping

- Specify a more detailed warp function
- Splines, meshes, optical flow (per-pixel motion)



Non-parametric image warping

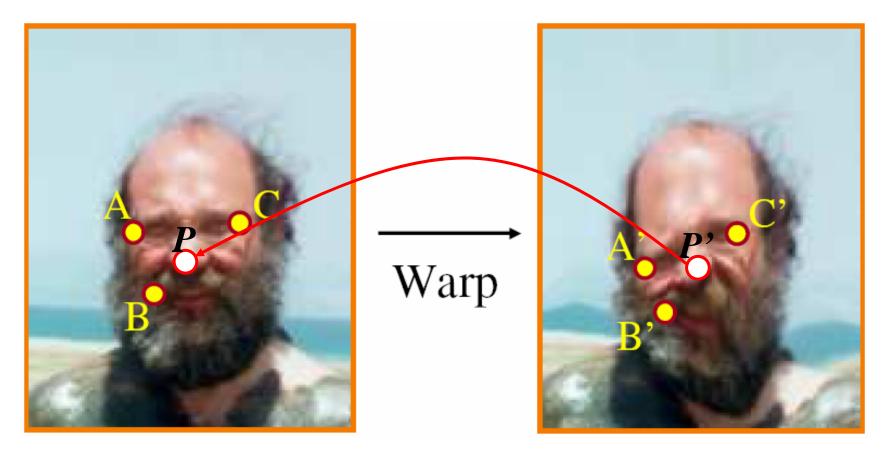
- Mappings implied by correspondences
- Inverse warping



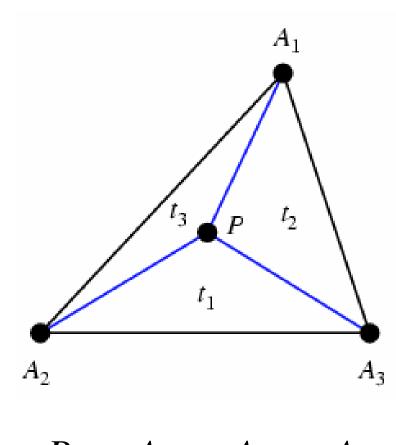
$$P = w_A A + w_B B + w_C C$$

 $P' = w_A A' + w_B B' + w_C C'$

Barycentric coordinate

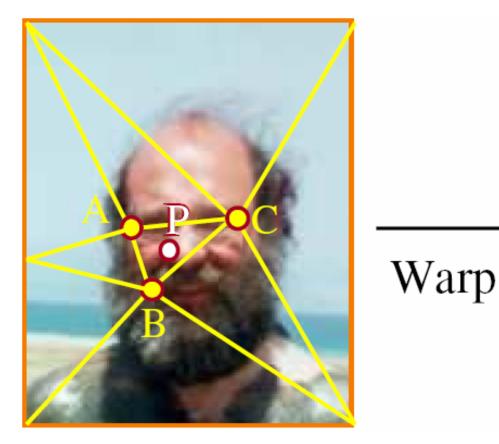


Barycentric coordinates



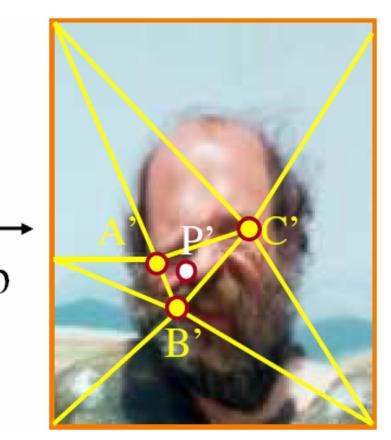
$$P = t_1 A_1 + t_2 A_2 + t_3 A_3$$
$$t_1 + t_2 + t_3 = 1$$

$$P = w_A A + w_B B + w_C C$$

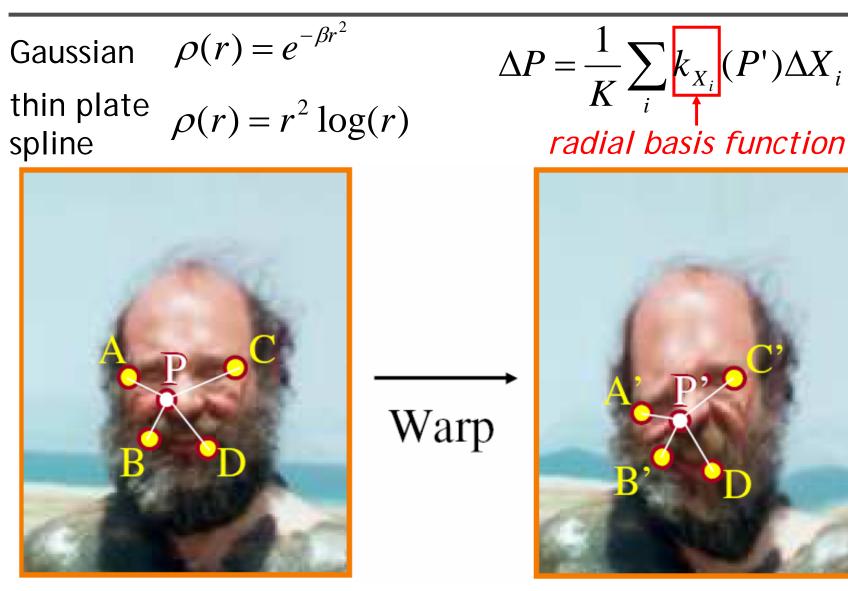


$$P' = w_A A' + w_B B' + w_C C'$$

Barycentric coordinate



Non-parametric image warping



Demo

- http://www.colonize.com/warp/warp04-2.php
- Warping is a useful operation for mosaics, video matching, view interpolation and so on.

Image morphing

image #2

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image #1

dissolving

Artifacts of cross-dissolving

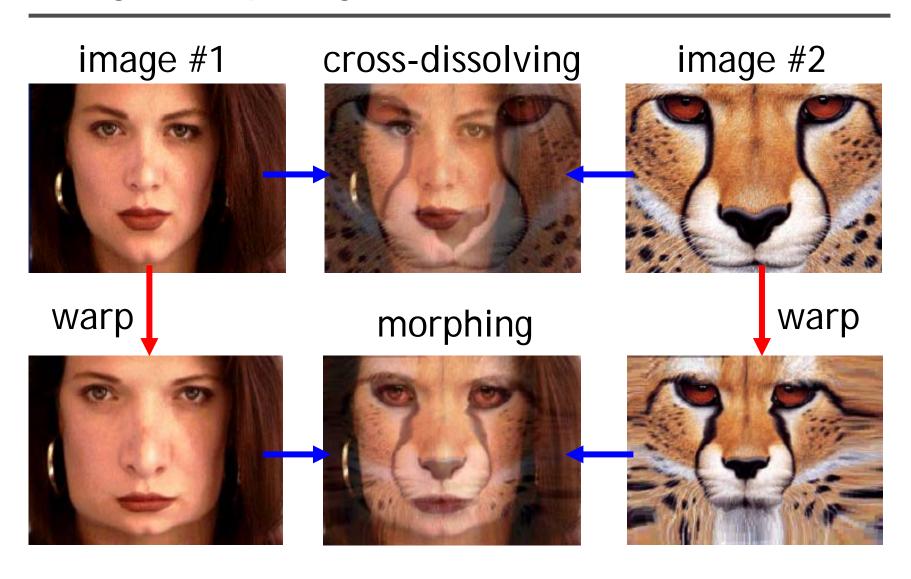
http://www.salavon.com/

Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

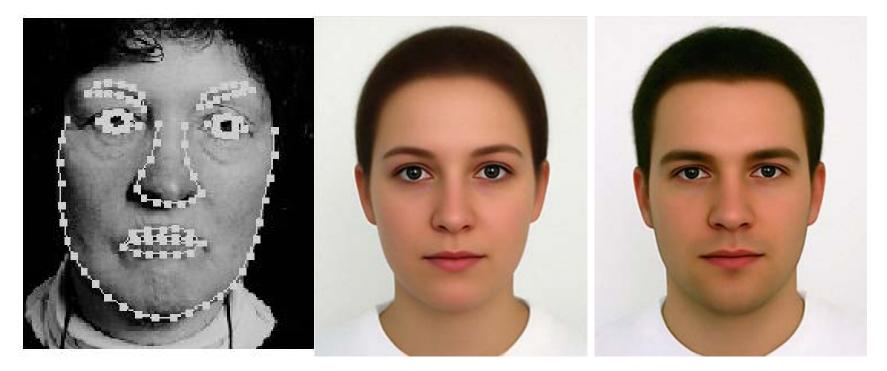
shape color (geometric) (photometric)

Image morphing



Morphing sequence

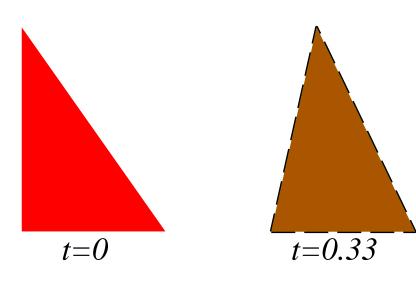
Face averaging by morphing

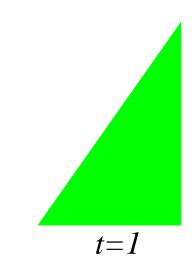


average faces

create a morphing sequence: for each time t

- 1. Create an intermediate warping field (by interpolation)
- 2. Warp both images towards it
- 3. Cross-dissolve the colors in the newly warped images

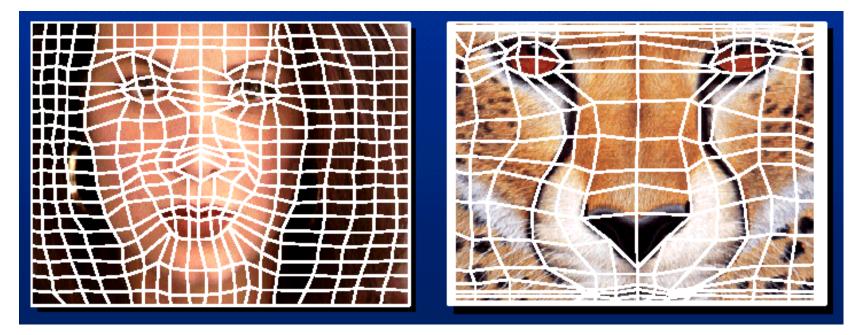




An ideal example

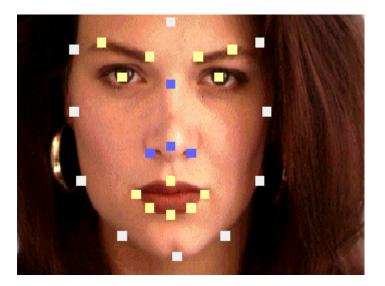
An ideal example

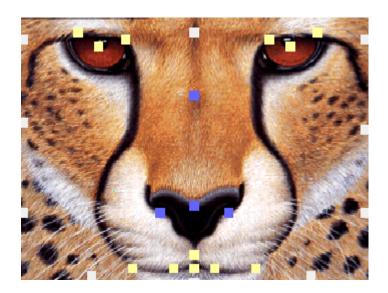
- How can we specify the warp?
 - 1. Specify corresponding *spline control points interpolate* to a complete warping function



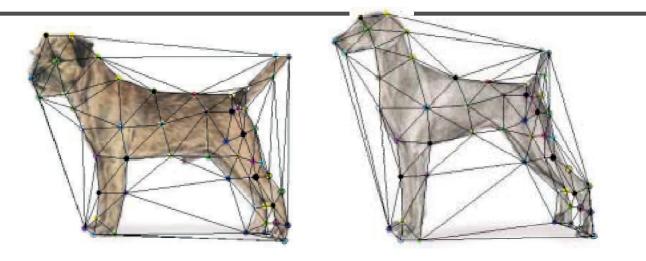
easy to implement, but less expressive

- How can we specify the warp
 - 2. Specify corresponding *points*
 - *interpolate* to a complete warping function



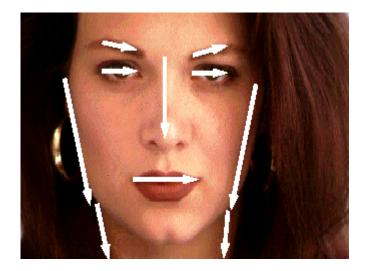


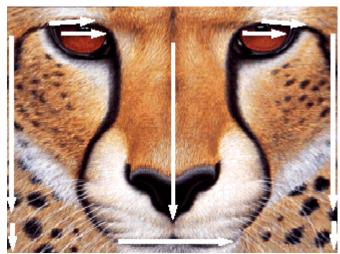
Solution: convert to mesh warping



- 1. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
- 2. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping

- How can we specify the warp?
 - 3. Specify corresponding *vectors*
 - *interpolate* to a complete warping function
 - The Beier & Neely Algorithm

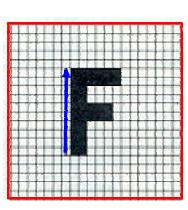




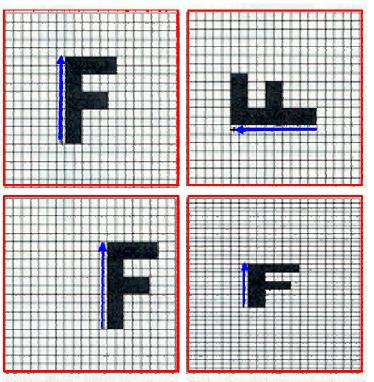
• Single line-pair PQ to P'Q': Q' Q u u Р P' Destination Image Source Image $\boldsymbol{u} = \frac{(\boldsymbol{X} - \boldsymbol{P}) \cdot (\boldsymbol{Q} - \boldsymbol{P})}{\|\boldsymbol{Q} - \boldsymbol{P}\|^2}$ (1) $v = \frac{(X - P) \cdot Perpendicular(Q - P)}{||Q - P||}$ (2)

$$X' = P' + u \cdot (Q' - P') + \frac{v \cdot Perpendicular(Q' - P')}{\|Q' - P'\|}$$
(3)

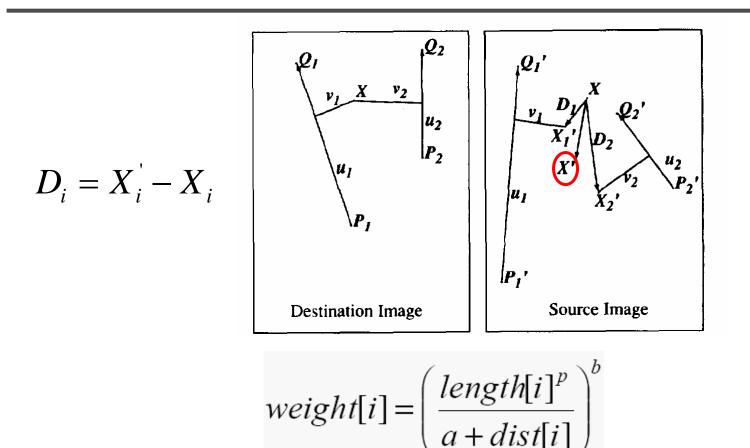
- For each X in the destination image:
 - 1. Find the corresponding u,v
 - 2. Find X' in the source image for that u,v
 - 3. destinationImage(X) = sourceImage(X')
- Examples:



Affine transformation



Multiple Lines

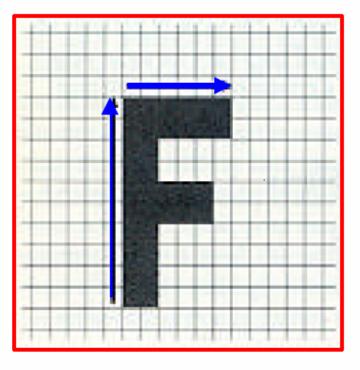


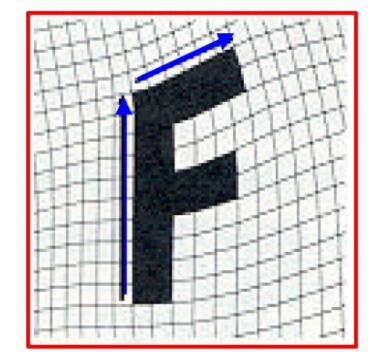
length = length of the line segment, *dist* = distance to line segment The influence of *a*, *p*, *b*. The same as the average of X_i'

Full Algorithm

```
WarpImage(SourceImage, L'[...], L[...])
begin
    foreach destination pixel X do
         XSum = (0,0)
         WeightSum = 0
         foreach line L[i] in destination do
              X'[i] = X transformed by (L[i], L'[i])
              weight[i] = weight assigned to X'[i]
              XSum = Xsum + X'[i] * weight[i]
              WeightSum += weight[i]
         end
         X' = XSum/WeightSum
         DestinationImage(X) = SourceImage(X')
    end
    return Destination
end
```

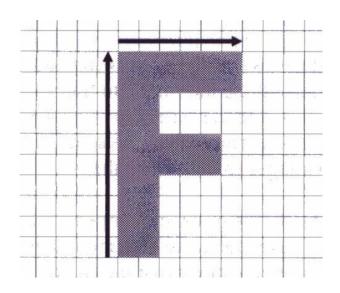

Resulting warp

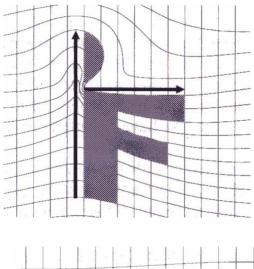


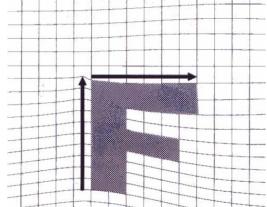


Comparison to mesh morphing

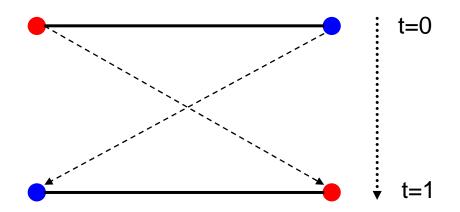
- Pros: more expressive
- Cons: speed and control







- How do we create an intermediate warp at time t?
 - linear interpolation for line end-points
 - But, a line rotating 180 degrees will become 0 length in the middle
 - One solution is to interpolate line mid-point and orientation angle



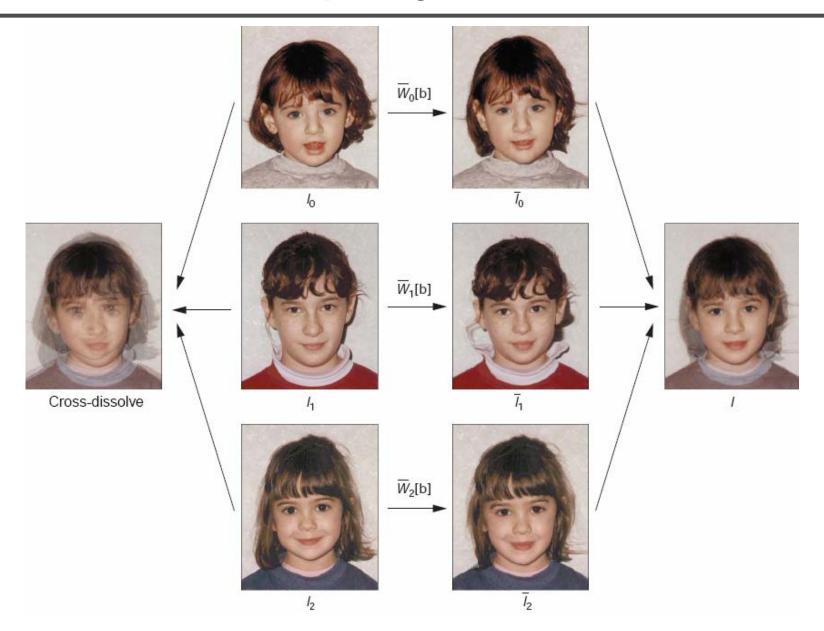

```
GenerateAnimation(Image<sub>0</sub>, L_0[...], Image<sub>1</sub>, L_1[...])
begin
     foreach intermediate frame time t do
           for i=1 to number of line-pairs do
                 L[i] = line t-th of the way from L_0[i] to L_1[i].
           end
           Warp_0 = WarpImage(Image_0, L_0[...], L[...])
           Warp_1 = WarpImage(Image_1, L_1[...], L[...])
           foreach pixel p in FinalImage do
                 FinalImage(p) = (1-t) Warp<sub>0</sub>(p) + t Warp<sub>1</sub>(p)
           end
     end
end
```


- Specify keyframes and interpolate the lines for the inbetween frames
- Require a lot of tweaking

Results

Michael Jackson's MTV "Black or White"

Multi-source morphing



Multi-source morphing



References

- Thaddeus Beier, Shawn Neely, <u>Feature-Based Image Metamorphosis</u>, SIGGRAPH 1992, pp35-42.
- Detlef Ruprecht, Heinrich Muller, <u>Image Warping with Scattered</u> <u>Data Interpolation</u>, IEEE Computer Graphics and Applications, March 1995, pp37-43.
- Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, <u>Image</u> <u>Metamorphosis Using Snakes and Free-Form Deformations</u>, SIGGRAPH 1995.
- Seungyong Lee, Wolberg, G., Sung Yong Shin, <u>Polymorph: morphing</u> <u>among multiple images</u>, IEEE Computer Graphics and Applications, Vol. 18, No. 1, 1998, pp58-71.
- Peinsheng Gao, Thomas Sederberg, <u>A work minimization approach</u> to image morphing, The Visual Computer, 1998, pp390-400.
- George Wolberg, <u>Image morphing: a survey</u>, The Visual Computer, 1998, pp360-372.