Tone mapping

Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/13

with slides by Fredo Durand, and Alexei Efros

Preliminaries

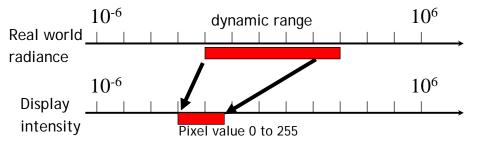
• For color images

$$\begin{bmatrix} R_d \\ G_d \\ B_d \end{bmatrix} = \begin{bmatrix} L_d \frac{K_w}{L_w} \\ L_d \frac{G_w}{L_w} \\ L_d \frac{B_w}{L_w} \end{bmatrix}$$

- Log domain is usually preferred.
- Gaussian filter. Sampling issues. Efficiency issues.

Tone mapping

• How can we display it? Linear scaling?, thresholding?



CRT has 300:1 dynamic range

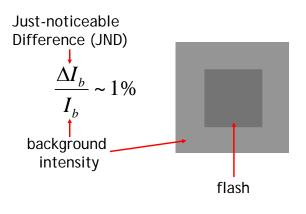
Eye is not a photometer!

• "Every light is a shade, compared to the higher lights, till you come to the sun; and every shade is a light, compared to the deeper shades, till you come to the night."

— John Ruskin, 1879

We are more sensitive to contrast

• Weber's law



low key (0.18)

high key (0.5)

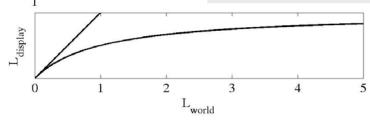
Global operator (Reinhart et al)

$$\overline{L} = \exp\left(\frac{1}{N}\sum_{x,y}\log(\delta + L(x, y))\right)$$

Approximation of scene's key (how light or dark it is). Map to 18% of display range for average-key scene

User-specified; high key or low key





Frequency domain First proposed by Oppenheim in 1968!

• Under simplified assumptions,

image

= illuminance * low-frequency attenuate more

reflectance
 high-frequency
 attenuate less

Oppenheim

- Taking the logarithm to form density image
- Perform FFT on the density image
- Apply frequency-dependent attenuation filter

$$s(f) = (1-c) + c \frac{kf}{1+kf}$$

- Perform inverse FFT
- Take exponential to form the final image

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images

Frédo Durand & Julie Dorsey Laboratory for Computer Science Massachusetts Institute of Technology

A typical photo

- Sun is overexposed
- Foreground is underexposed

Gamma compression

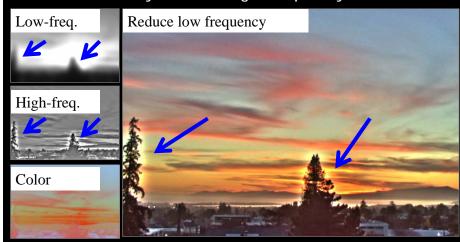
- $X \rightarrow X^{\gamma}$
- Colors are washed-out

Gamma compression on intensity

• Colors are OK, but details (intensity highfrequency) are blurred

The halo nightmare

- For strong edges
- Because they contain high frequency



Chiu et al. 1993

- Reduce contrast of low-frequencies
- Keep high frequencies

Durand and Dorsey

- Do not blur across edges
- Non-linear filtering

Edge-preserving filtering

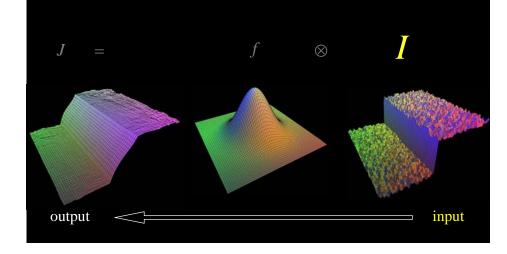
• Blur, but not across edges

Input

- Anisotropic diffusion [Perona & Malik 90]
 - Blurring as heat flow
 - LCIS [Tumblin & Turk]
- Bilateral filtering [Tomasi & Manduci, 98]

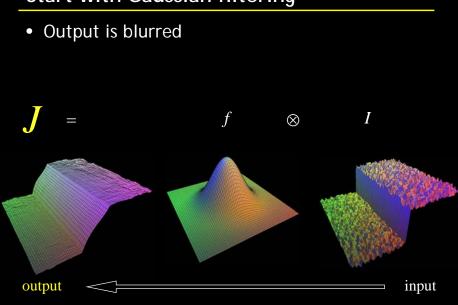
Start with Gaussian filtering

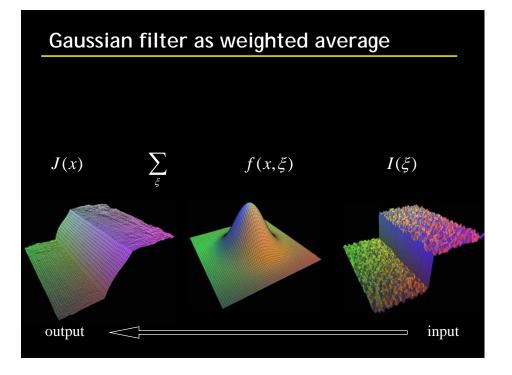
• Here, input is a step function + noise



Start with Gaussian filtering • Spatial Gaussian f \otimes Ι input output

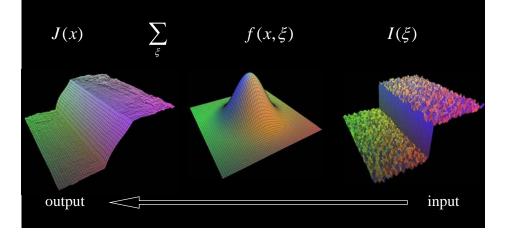
Start with Gaussian filtering





The problem of edges

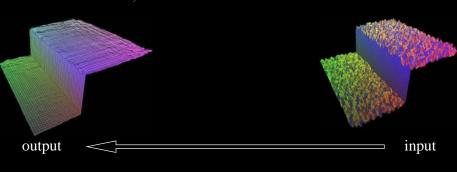
- Here, $I(\xi)$ "pollutes" our estimate J(x)
- It is too different



Principle of Bilateral filtering

- [Tomasi and Manduchi 1998]
- Penalty g on the intensity difference

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x,\xi) \qquad g(I(\xi) - I(x)) \qquad I(\xi)$$



Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f

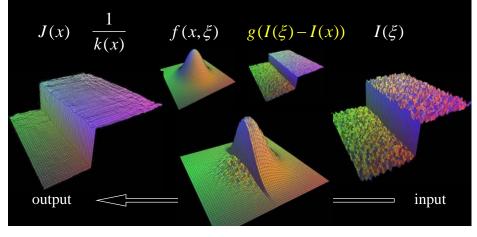
output

$$J(x) \quad \frac{1}{k(x)} \qquad f(x,\xi) \quad g(I(\xi) - I(x)) \quad I(\xi)$$

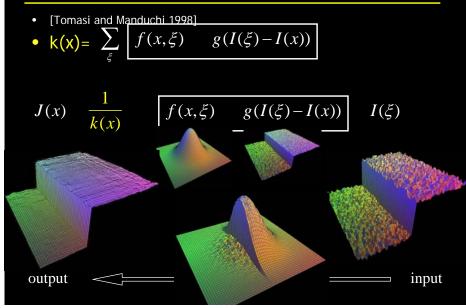
input

Bilateral filtering

- [Tomasi and Manduchi 1998]
- Spatial Gaussian f
- Gaussian g on the intensity difference

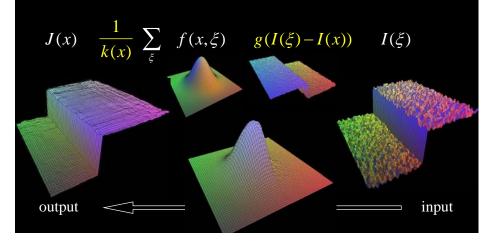


Normalization factor

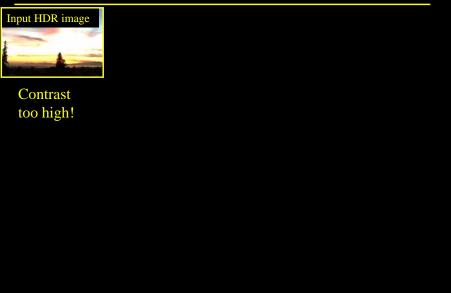


Bilateral filtering is non-linear

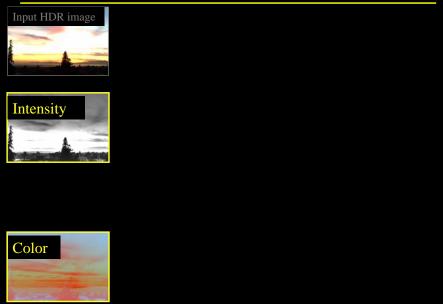
- [Tomasi and Manduchi 1998]
- The weights are different for each output pixel

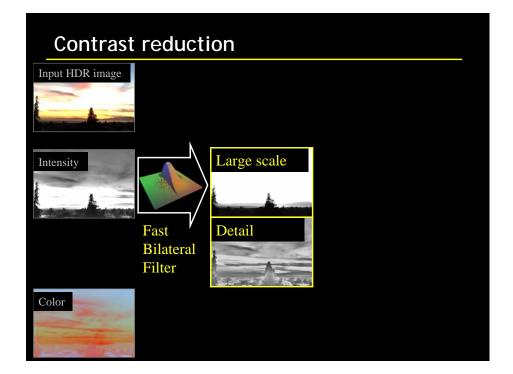


Contrast reduction

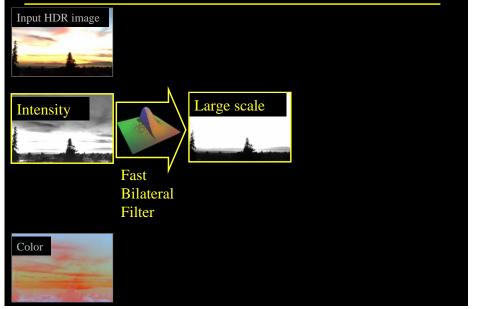


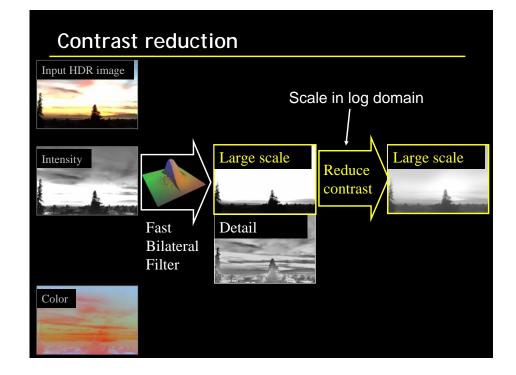
Contrast reduction

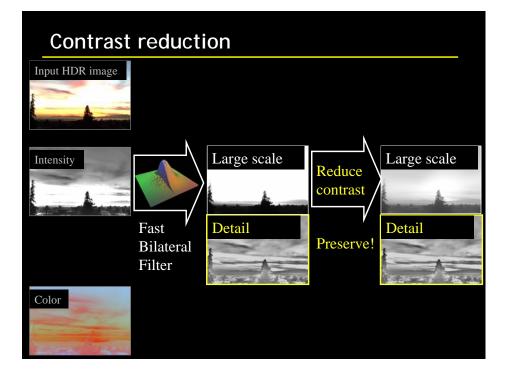




Contrast reduction







Oppenheim

bilateral

