
High dynamic range imaging

Digital Visual Effects, Spring 2007
Yung-Yu Chuang
2007/3/6

with slides by Fedro Durand, Brian Curless, Steve Seitz and Alexei Efros

Announcements

• Assignment #1 announced on 3/7 (due on 3/27
noon)

• TA/signup sheet/gil/tone mapping
• Considered easy; it is suggested that you

implement at least one bonus (MTB/tone
mapping/other HDR construction)

• You have a total of 10 days of delay without
penalty for assignments; after that, -1 point
per day applies in your final grade until
reaching zero for each project.

Camera is an imperfect device

• Camera is an imperfect device for measuring
the radiance distribution of a scene because it
cannot capture the full spectral content and
dynamic range.

• Limitations in sensor design prevent cameras
from capturing all information passed by lens.

Camera pipeline

12 bits 8 bits

Real-world response functions

In general, the response function is not provided
by camera makers who consider it part of their
proprietary product differentiation. In addition,
they are beyond the standard gamma curves.

High dynamic range image

Short exposure
10-6 106

10-6 106

Real world
radiance

Picture
intensity

dynamic range

Pixel value 0 to 255

Long exposure
10-6 106

10-6 106

Real world
radiance

Picture
intensity

dynamic range

Pixel value 0 to 255

Camera is not a photometer

• Limited dynamic range
⇒ Perhaps use multiple exposures?

• Unknown, nonlinear response
⇒ Not possible to convert pixel values to radiance

• Solution:
– Recover response curve from multiple exposures,

then reconstruct the radiance map

Varying exposure

• Ways to change exposure
– Shutter speed
– Aperture
– Neutral density filters

Shutter speed

• Note: shutter times usually obey a power
series – each “stop” is a factor of 2

• ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500,
1/1000 sec

Usually really is:

¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512,
1/1024 sec

Varying shutter speeds

HDRI capturing from multiple exposures

• Capture images with multiple exposures
• Image alignment (even if you use tripod, it is

suggested to run alignment)
• Ghost/flare removal
• Response curve recovery

Image alignment

• We will introduce a fast and easy-to-implement
method for this task, called Median Threshold
Bitmap (MTB) alignment technique.

• Consider only integral translations. It is enough
empirically.

• The inputs are N grayscale images. (You can
either use the green channel or convert into
grayscale by Y=(54R+183G+19B)/256)

• MTB is a binary image formed by thresholding
the input image using the median of intensities.

Why is MTB better than gradient?

• Edge-detection filters are dependent on image
exposures

• Taking the difference of two edge bitmaps
would not give a good indication of where the
edges are misaligned.

Search for the optimal offset

• Try all possible
offsets.

• Gradient descent
• Multiscale technique

• log(max_offset) levels
• Try 9 possibilities for

the top level
• Scale by 2 when

passing down; try its 9
neighbors

Threshold noise

exclusion bitmap

ignore pixels that are
close to the threshold

Efficiency considerations

• XOR for taking difference
• AND with exclusion maps
• Bit counting by table lookup

Results

Success rate = 84%. 10% failure due to rotation.
3% for excessive motion and 3% for too much
high-frequency content.

Recovering response curve

12 bits 8 bits

•
3
••
33

•
1
••
11 •

2
••
22

ΔΔtt ==
1/4 sec1/4 sec

•
3
••
33

•
1
••
11 •

2
••
22

ΔΔtt ==
1 sec1 sec

•
3
••
33

• 1•• 11
• 2•• 22

ΔΔtt ==
1/8 sec1/8 sec

•
3
••
33

•
1
••
11 •

2
••
22

ΔΔtt ==
2 sec2 sec

Image seriesImage seriesImage series

•
3
••
33

•
1
••
11 •

2
••
22

ΔΔtt ==
1/2 sec1/2 sec

Recovering response curve

Xij =

ln Xij

Recovering response curve

• We want to obtain the inverse of the response
curve

Idea behind the math

Idea behind the math Idea behind the math

Math for recovering response curve Recovering response curve

• The solution can be only up to a scale, add a
constraint

• Add a hat weighting function

Recovering response curve

• We want
If P=11, N~25 (typically 50 is used)

• We prefer that selected pixels are well
distributed and sampled from constant regions.
They picked points by hand.

• It is an overdetermined system of linear
equations and can be solved using SVD

How to optimize?

1. Set partial derivatives zero
2.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→−∑
=

N

2

1

N

2

1

ii

b
:

b
b

x

a
:

a
a

bxa ofsolution square-least)(min
1

2
N

i

Sparse linear system

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Ax=b

256 n

n×p

1

254

g(0)

g(255)
lnE1

lnEn

:

:
:

Questions

• Will g(127)=0 always be satisfied? Why and why
not?

• How to find the least-square solution for an
over-determined system?

Least-square solution for a linear system

bAx =
nm× n m
nm >

The are often mutually incompatible. We instead find x to
minimize the norm of the residual vector .
If there are multiple solutions, we prefer the one with the
minimal length .

bAx −bAx −

x

Least-square solution for a linear system

If we perform SVD on A and rewrite it as

then is the least-square solution.

TUΣA V=
bUVΣx T+=ˆ

pseudo inverse

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=+

000

0
/1

00/1 1

L

O

MM

O

L

rσ

σ

Σ

Proof Proof

Libraries for SVD

• Matlab
• GSL
• Boost
• LAPACK
• ATLAS

Matlab code

Matlab code
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1; %% Include the data-fitting equations
for i=1:size(Z,1)
for j=1:size(Z,2)

wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end
A(k,129) = 1; %% Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end
x = A\b; %% Solve the system using SVD
g = x(1:n);
lE = x(n+1:size(x,1));

Recovered response function

Constructing HDR radiance map

combine pixels to reduce noise and obtain a more
reliable estimation

Reconstructed radiance map

What is this for?

• Human perception
• Vision/graphics applications

Automatic ghost removal

before after

Weighted variance

Moving objects and high-contrast edges render high variance.

Region masking

Thresholding; dilation; identify regions;

Best exposure in each region Lens flare removal

before after

Easier HDR reconstruction

raw image =
12-bit CCD snapshot

Easier HDR reconstruction

Yij=Ei* ΔΔttjj

Exposure (Y)

ΔΔtt

• 12 bytes per pixel, 4 for each channel

sign exponent mantissa

PF
768 512
1
<binary image data>

Floating Point TIFF similar

Text header similar to Jeff Poskanzer’s .ppm
image format:

Portable floatMap (.pfm)

(145, 215, 87, 149) =

(145, 215, 87) * 2^(149-128) =

(1190000, 1760000, 713000)

(145, 215, 87, 103) =

(145, 215, 87) * 2^(103-128) =

(0.00000432, 0.00000641, 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Radiance format (.pic, .hdr, .rad)

Red Green Blue Exponent

32 bits/pixel

ILM’s OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

• Several lossless compression options, 2:1 typical
• Compatible with the “half” datatype in NVidia's Cg
• Supported natively on GeForce FX and Quadro FX

• Available at http://www.openexr.net/

Radiometric self calibration

• Assume that any
response function
can be modeled
as a high-order
polynomial

• No need to know
exposure time in
advance Z

X

∑
=

==
M

m

m
mZcZgX

0
)(

Mitsunaga and Nayar

• To find the coefficients cm to minimize the
following

∑∑ ∑∑
= = =

++
=

⎥
⎦

⎤
⎢
⎣

⎡
−=

N

i

P

j

M

m

m
jimjj

M

m

m
ijm ZcRZc

1 1

2

0
1,1,

0
ε

A guess for the ratio of

111, +++ Δ

Δ
=

Δ

Δ
=

j

j

ji

ji

ji

ij

t
t

tE
tE

X
X

Mitsunaga and Nayar

• Again, we can only solve up to a scale. Thus,
add a constraint f(1)=1. It reduces to M
variables.

• How to solve it?

Mitsunaga and Nayar

• We solve the above iteratively and update the
exposure ratio accordingly

• How to determine M? Solve up to M=10 and pick
up the one with the minimal error. Notice that
you prefer to have the same order for all
channels.

∑
∑

∑
=

=
+

=
+ =

N

i
M

m

m
ji

k
m

M

m

m
ijk

k
m

k
jj

Zc

Zc

N
R

1

0
1,

)(

0

)(

)(
1,

1

Space of response curves

Space of response curves Assorted pixel

Assorted pixel Assorted pixel

Assignment #1 HDR image assemble

• Work in teams of two
• Taking pictures
• Assemble HDR images and optionally the

response curve.
• Develop your HDR using tone mapping

Taking pictures

• Use a tripod to take multiple photos with
different shutter speeds. Try to fix anything
else. Smaller images are probably good enough.

• There are two sets of test images available on
the web.

• We have tripods and a Canon PowerShot G7 for
you to borrow.

• Try not touching the camera during capturing.
But, how?

1. Taking pictures

• Use a laptop and a remote capturing program.
– PSRemote
– AHDRIA

• PSRemote
– Manual
– Not free
– Supports both jpg and raw
– Support most Canon’s PowerShot cameras

• AHDRIA
– Automatic
– Free
– Only supports jpg
– Support less models

AHDRIA/AHDRIC/HDRI_Helper

Image registration

• Two programs can be used to correct small
drifts.
– ImageAlignment from RASCAL
– Photomatix

• Photomatix is recommended.

2. HDR assembling

• Write a program to convert the captured
images into a radiance map and optionally to
output the response curve.

• We will provide image I/O library, gil, which
supports many traditional image formats such
as .jpg and .png, and float-point images such
as .hdr and .exr.

• Paul Debevec’s method. You will need a linear
solver for this method.

• Recover from CCD snapshots. You will need
dcraw.c.

3. Tone mapping

• Apply some tone mapping operation to develop
your photograph.
– Reinhard’s algorithm (HDRShop plugin)
– Photomatix
– LogView
– Fast Bilateral (.exr Linux only)
– PFStmo (Linux only)

pfsin a.hdr | pfs_fattal02 | pfsout o.hdr

Bells and Whistles

• Other methods for HDR assembling algorithms
• Implement tone mapping algorithms
• Implement MTB alignment algorithm
• Others

Submission

• You have to turn in your complete source, the
executable, a html report, pictures you have
taken, HDR image, and an artifact (tone-
mapped image).

• Report page contains:
description of the project, what do you learn, algorithm,
implementation details, results, bells and whistles…

• The class will have vote on artifacts.
• Submission mechanism will be announced later.

Reference software

• Photomatix
• AHDRIA/AHDRIC
• HDRShop
• RASCAL

References References
• Paul E. Debevec, Jitendra Malik, Recovering High Dynamic Range

Radiance Maps from Photographs, SIGGRAPH 1997.

• Tomoo Mitsunaga, Shree Nayar, Radiometric Self Calibration, CVPR
1999.

• Mark Robertson, Sean Borman, Robert Stevenson, Estimation-
Theoretic Approach to Dynamic Range Enhancement using Multiple
Exposures, Journal of Electronic Imaging 2003.

• Michael Grossberg, Shree Nayar, Determining the Camera Response
from Images: What Is Knowable, PAMI 2003.

• Michael Grossberg, Shree Nayar, Modeling the Space of Camera
Response Functions, PAMI 2004.

• Srinivasa Narasimhan, Shree Nayar, Enhancing Resolution Along
Multiple Imaging Dimensions Using Assorted Pixels, PAMI 2005.

• G. Krawczyk, M. Goesele, H.-P. Seidel, Photometric Calibration of
High Dynamic Range Cameras, MPI Research Report 2005.

• G. Ward, Fast Robust Image Registration for Compositing High
Dynamic Range Photographs from Hand-held Exposures, jgt 2003.

