Making faces

Digital Visual Etfects, Spring 2005
Yung-Yu Chuang
2005/6/8

with slides by Richard Szeliski, Steve Seitz and Alex Efros



Announcements

e Project #3 artifacts voting



Outline

e 3D acquisition for faces

e Statistical methods

e Face models from single images
e Image-based faces

e Relighting for faces




3D acquisition for faces



Cyberware scanners

face & head scanner whole body scanner



Making facial expressions from photoi@

e Similar to Facade, use a generic face model
and view-dependent texture mapping

e Procedure
1. Take multiple photographs of a person
2. Establish corresponding feature points

3. Recover 3D points and camera
parameters

4. Deform generic face model to fit points
5. Extract textures from photos



Reconstruct a 3D model

Input photographs

generic 3D pose more deformed
face model estimation features model



Mesh deformation

e |Involves two steps:
— Compute displacement of feature points
— Apply scattered data interpolation



Mesh deformation
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Texture extraction

e The color at each point is a weighted
combination of the colors in the photos

e Texture can be:
— View-independent
— View-dependent

e Considerations for weighting
— Occlusion
— Smoothness
— Positional certainty
— View similarity



Texture extraction




Texture extraction




Texture extraction

view-independent view-dependent



Model reconstruction

Use images to adapt a generic face model.



DITTVFX

Creating new expressions

e |In addition to global blending we can use:
— Regional blending
— Painterly interface



Digi2d

Creating new expressions

New expressions are created with 3D morphing:

Applying a global blend



Creating new expressions

Applying a region-based blend



Creating new expressions

Using a painterly interface



Drunken smile




Animating between expressions

Morphing over time creates animation:

“neutral” > ‘“Jjoy




Video

Digi2d




Spacetime faces




Spacetime faces

black & white cameras

‘i!\ | /color Cameras\
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Spacetime Stereo
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Spacetime Stereo

surface motion\

time=2



Spacetime Stereo
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Spacetime Stereo
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Spacetime Stereo

Face surface

surface motion\

time=5
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Spacetime Stereo

surface motion\’,

 spatial resolution




Spacetime stereo matching

A moving oblique surface
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Editing Animation




Fitting

A sequence of
depth map pairs:
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FacelK

Face Editing




Animation







extra 3M



Digi2d

3D face applications: Spiderman 2




Statistical methods



Digi\Yl 2.4

Statistical methods

para- observed
z — |f(2)te| — :
meters 2) Y signal
N Example:
L7 = mflx P(z]y) super-resolution
de-noising
— maX P(y‘ Z)P(Z) de-blocking
2 P(y) Inpainting

= mzin L(y|z)+ L(2)



Digi2d

Statistical methods

para- ey ] _. obs_erved
meters (2)te y signal

Z* = mzin L(y | z) + L(2)
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Statistical methods

There are approximately 102%° possible 10x10
gray-level images. Even human being has not
seen them all yet. There must be a strong
statistical bias.

Takeo Kanade

Approximately 8X10'! blocks per day per person.



Digi2d

Generic priors

“Smooth images are good images.”

L(2) = D p(V(X))

Gaussian MRF p(d) =d?
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Generic priors
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Example-based priors

“Existing iImages are good images.”
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Example-based priors




Example-based priors

high-resolution

low-resolution
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Model-based priors

“Face images are good images when
working on face images ...”

Parametric

model Z2Wkh L)

Z* = mzin L(y | z) + L(2)

(X* =minL(y WX + z) + L(X)
7% = WX * + 11
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PCA Digia.

* Principal Components Analysis (PCA):
approximating a high-dimensional data set
with a lower-dimensional subspace

Second principal component First principal component

>

Original axes

Data points



PCA

* Given n k-d points

o Calculate the mean

o Calculate the covariance matrix

* SVD (eigen-analysis) on the covariance matrix




SVD
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Digill.!

PCA on faces: “eigenfaces”

First principal component
Average

face \

Other
components

For all except average,
‘gray” = 0,

“white” > 0,

“black” <0




Digi2d

Model-based priors

“Face images are good images when
working on face images ...”

Parametric

model Z2Wkh L)

Z* = mzin L(y | z) + L(2)

(X* =minL(y WX + z) + L(X)
7% = WX * + 11
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Super-resolution
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Face models from single images



Morphable model of 3D faces

o Start with a catalogue of 200 aligned 3D
Cyberware scans

3D Database

) % Modaler
Face A
' Analyzer T ———

20 Input 30 COutput

Morphable

™ Face Model

« Build a model of average shape and texture,
and principal variations using PCA



Morphable model

1 —1

m—1
Smodet = S + Z @i8i, Tmodet =T + Z Giti, (1)
i=1 i=1
a, 5 c ™!, The probability for coefficients & is given by

p(@) ~ eapl—3 3 (ai/o:)’], @)
1=1



Morphable model of 3D faces

Segments

Prototype Average

Divide face into 4
regions (eyes, nose,
mouth, head)

For each new
prototype, find
amount of deviation
from the reference
shape and texture.




Morphable model of 3D faces

Digill.!

e Adding some variations
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¢ee
¢ee

SMILE FROWN WEIGHT

FEMALE

¢
@

HOOKED NOSE




Reconstruction from single image

2D Input

f(Flnitializing
the
Morphable Model

rough interactive
alignmeant of
GD average head







Animating from a single image

Digill.!

3D Heconstruction
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Video

A Morphable Model
for the
Synthesis of 3D Faces

Volker Blanz & Thomas Vetter

MPI for Biological Cybernetics
Tubingen, Germany




Reanimating faces

Learning:

e D

= smile

uu. u

Application:

input output

1 |
open 158 smmile

35 static scans at
different expressions

3D reconstruction rendering
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Videos

exercise




Exchanging faces
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Exchanging faces

Source Image (customer)




Exchanging faces
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Morphable model for human body

L\ .

-20 kg -40kg -20kg  original +20 kg +40 kg +20 kg
-20 cm +20 cm



Image-based faces
(lip sync.)



Video rewrite

Analysis
stage

Synthesis
stage

Video
Model
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Results

e Video database
- 8 minutes of Ellen

- 2 minutes of JFK

e Only half usable
e Head rotation

training video

Read my lips.

| never met Forest Gump.




Relighting faces



Light Is additive







Light stage 1.0




Input Images




Reflectance function

occlusion

flare




Digi2d

Relighting

=l vl 7

normalized reflectance lighting product
light map function

lighting product rendered
pixel




Results




Changing viewpoints

{a) (b} R

(g} {h)



Results




Video




Spiderman 2

synthetic



Light stage 3




Application: The Matrix Reloaded




Digi2d

Application: The Matrix Reloaded
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