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Announcements

e Project #1 artifacts voting.
e Project #2 camera.



Outline

e Nonlinear least square methods
e Camera projection models

e Camera calibration

e Bundle adjustment



Nonlinear least square methods



Least square

Least Squares Problem

Find x*. a local minimizer for
Tr
2
Fx) = 13 ()2,
i=1

where f; : R" — R, i=1, ..., m are given functions, and m > n.

F, &

It is widely seen in data fitting.




Linear least square

1 *y) =M (x,t) =X, + xt
fi(x) =Yi— M (X’ti)
S t \ prediction
e > residual

M (X,t) = X, + Xt +X,t* is linear, too.



Nonlinear least square

_|_
+rp

model M (x.t) = 3™t + p4e™2"

paramerers X — [:371 o L2,I3, -'3-'4] !

residuals fi(xX) = yi — M(x,1;)
t;

= y; — Tze 1"t — xpye™?

t;



Function minimization

Least square Is related to function minimization.

Global Minimizer
Given F' : R" — R. Find

xT = argmin_{F(x)} .

It Is very hard to solve In general. Here, we only consider
a simpler problem of finding local minimum.

Local Minimizer
Given F' : R" — R. Find x* so that

F(x*) < F(x) for |x—x"||<9d.
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Function minimization

We assume that the cost function F' 1s differentiable and so smooth that the
following Taylor expansion is valid,?

F(x+h) = F(x)+h'g+ h"Hh + O(||h["),
where g 1s the gradient,

- OF i}
0—11(}()

OF
| dxy, (X) J

and H 1s the Hessian,

1 O*F
H=F'(x) = [dzd’r(x)] :
x;0x;




Quadratic functions
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Quadratic functions
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Quadratic functions




Descent methods

1. Find a descent direction hy

2. find a step length giving a good decrease in the F'-value.

Algorithm Descent method
begin
k:=0; x:=Xq; found := false {Starting point }
while (not found) and (k < kyayx)
hy := search_direction(x) {From x and downhill }
if (no such h exists)
found := true {x 1s stationary }
else
«v := step_length(x, hy) {from x 1n direction hgy}
X : =X+ ahyg; k:=k+1 {next iterate }
end




Descent direction

F(x+ah) = F(x) + ah' F/(x) 4+ O(a?)
~ F(x)+ah'F/(x) for a sufficiently small.

We say that h 1s a descent direction if F'(x+cah) 1s a decreasing function of
« at a = 0. This leads to the following definition.

Definition Descent direction.

h is a descent direction for F atx if h'F’(x) < 0.

If no such h exists, then F'/(x) = 0, showing that in this case x 1s stationary.
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Steepest descent method

From (2.5) we see that when we perform a step ah with positive «, then the
relative gain 1n function value satisfies

n F(x) - Fixtah) _ b h'F/'(x) = —||F/(x)]| cos 8 .

2 ol i
where 6 is the angle between the vectors h and F’(x). This shows that we
get the greatest gain rate if # = 7, 1e 1f we use the steepest descent direction
hyq given by

hyg = —F'(x). (2.8)

It has good performance in the initial stage of the
Iterative process.



Steepest descent method
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Newton’s method

We can derive this method from the condition that x* 1s a stationary point.
According to Definition 1.6 it satisfies F'/(x*) = 0. This 1s a nonlinear sys-
tem of equations, and from the Taylor expansion

F/(x+h) = F'(x) + F"”(x)h + O(||h||?)
~ F/(x) 4+ F”(x)h for |h| sufficiently small

we derive Newton'’s method: Find h, as the solutions to
Hh, = -F'(x) with H=F"(x). (2.9a)

Suppose that H 1s positive definite, then it 1s nonsingular (1implying that
(2.9a) has a unique solution), and u' Hu >0 for all nonzero u. Thus, by
multiplying with h! on both sides of (2.9a) we get

0<h/Hh, = —h'F'(x). (2.10)

It has good performance in the final stage of the iterative
process.



Hybrid method

if F'"(x) 1s positive definite
h:= hy

else
h: hsd

X := X + ah

This needs to calculate second-order derivative which
might not be available.



Line search

a>0.

x and h fixed,

pla) = F(x+ah),
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Levenberg-Marquardt method

e LM can be thought of as a combination of
steepest descent and the Newton method.
When the current solution is far from the
correct one, the algorithm behaves like a
steepest descent method: slow, but guaranteed
to converge. When the current solution is close
to the correct solution, it becomes a Newton

method.



Nonlinear least square

Glven a set of measurements x, try to find
the best parameter vector p so that the

squared distance e¢' is minimal. Here,
&=X-X,withx = f (p).



Levenberg-Marquardt method

For a small ||dp||, f(p+dp) = f(p)+ Jdp

J is the Jacobian matrix ﬂ—ﬁfj

it is required to find the 4, that minimizes the quantity

[ = fp+0p)ll = |x = f(p) — Jdpl[ = lle = Jdp|
J' 36, =T
Nép = J'e

N;; = ‘J!TL + [JTJ]H

damping term



Levenberg-Marquardt method BEIVEX

If a covariance matrix 2, for the measured vector x is available, it can be incorporated
into the LM algorithm by minimizing the squared £ -norm ¢’ £ 'e instead of the
Euclidean €' e. Accordingly, the minimum is found by solving a weighted least squares
problem defined by the weighted normal equations

e 136, = 372 te (4)



Algorithm:

k:=0; v:=2; p:=pg;

A=J13; ep:=x— f(p); g:=Tep;
stop:=(||g[lec < €1); p := 7 * maxi—1__m(Aii);
while (not stop) and (k < kyaz)

ki=k+ 1
repeat
Solve (A + pul)d, = g;
if (||dp| < e2|[pl])
stop:=true;
else
Pnew := P + dp;
p:= (llepl|* = I1x = f(Pnew)l|?) /(05 (1dp +8)):
ifp>0
P = Pnew;
A:=J1T: ey =x— f(p); g = TV ep;
stop:=(|[gllec < €1);
[TRENTE ma.xf%J — (20 —-1P); v :=2;
else
[TRENTEN LR VEES E S
endif
endif

until (p > 0) or (stop)
endwhile



Camera projection models



Pinhole camera

illum in rabula per radios Solis , quam in ccelo contin-
git: hoc eftfi in ceelo fuperior pars deliquid pariarur,in
radiis apparcbir inferior deficere, vt ratio exigit optica.

ER\H

Sic nos exadfte Anno .1944 . Louanii eclipfim Solis
obleruauimus, inuenimusly; deficere pauld plus § dex-



Pinhole camera model
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Pinhole camera model
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Pinhole camera model
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Principal point offset

Intrinsic matrix
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Intrinsic matrix

Is this form of K good enough?

non-square pixels (digital video)
skew
radial distortion K —

o O =

*
QD

o O

o —+~ O

O = O»!
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Camera rotation and translation

x ~ K[R[t|X

Nyt
A

extrinsic matrix
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Two Kinds of parameters

e Internal or intrinsic parameters such as focal
length, optical center, aspect ratio:
what kind of camera?

e external or extrinsic (pose) parameters
Including rotation and translation:
where Is the camera?



Other projection models

perspective

weak perspective

increasing focal length

L —
-

increasing distance from camera

Y



Orthographic projection

* Special case of perspective projection
— Distance from the COP to the PP is infinite

O OO
= O O

1

O O
O rr O

RN e 8
]
|

— Also called “parallel projection™. (X, vy, z) - (X, Y)



Other types of projection

» Scaled orthographic
— Also called “weak perspective”

1 00 O o .
010 0 [|7] =]y
000 1/d]|] 1/d

o Affine projection
— Also called “paraperspective”

a,bcd_m
e f g h Y
000 1]]]

= (dx, dy)



Fun with perspective




Perspective cues




Perspective cues




Fun with perspective

perceived wall

perceived
size

real =
Ames room perceived
size real
5ize

viewing point



Forced perspective in LOTR




Camera calibration
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Camera calibration

e Estimate both intrinsic and extrinsic parameters
e Mainly, two categories:

1. Photometric calibration: use reference objects
with known geometry

2. Self calibration: only assume static scene, e.qg.
structure from motion



Camera calibration approaches

1. linear regression (least squares)
2. nonlinear optinization
3. multiple planar patterns







Linear regression

x ~ K[Rt]X = MX

U

U
1

moo
mio
m20

mo1
mii

m21

mop2 mo3
mi2 mi3

Moo 1
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Linear regression

e Directly estimate 11 unknowns in the M matrix
using known 3D points (X;,Y;,Z;) and measured
feature positions (u;,V;)




- - JIVFX
Linear regression e

w = mooX; T Mo1Y; T mp2Z; + Mo3
mooX; + m21Y; + mopZ; + 1

v = m10X; + m11Y; +mi12Z; +m13
mooX; + mo1Y; + mopZ; + 1

wi(m2oX; + m21Y; + moaZ; + 1) = mooX; + mo1Y; + mo2Z; + mo3

vi(mooX; + mo1Y; + mooZ; + 1) = m1oX; +m11Y; + m12Z; +mi3

Solve for Projection Matrix M using least-square
techniques



Normal equation

Given an overdetermined system

AX=Db

the normal equation is that which minimizes the
sum of the square differences between left and

right sides

A'Ax=A"b



Linear regression

e Advantages:
- All specifics of the camera summarized in one matrix
- Can predict where any world point will map to in the
Image
e Disadvantages:
- Doesn’t tell us about particular parameters

- Mixes up internal and external parameters
e pose specific: move the camera and everything breaks
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Nonlinear optimization

e Feature measurement equatiOnS
f(M: Xi) T Ny — a’@ + ng, g ~ N(Oa O-)

v, = gMix;) +m; =v; +my, my ~ N(O,0)

U;

 Likelihood of M given {(u;,v;)}

L = H p(u;| ;) p(v;|0;)

I o—(ui—1;)? /0% —(v;—7;)%/0?



Optimal estimation

* Log likelihood of M given {(u;,v;)}
C=—logL=> (u; —1;)%)of + (v; — ;)% /07

e How do we minimize C?

* Non-linear regression (least squares), because
U; and v; are non-linear functions of M

 We can use Levenberg-Marquardt method to
minimize it



Multi-plane calibration

Ml imane1 [1-4] AREE Qiwage 1-4] EARE Ciwoos) 1-4) EEE G iwaged 1-4) HEE

Dy el [1-4] [ S

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

e Only requires a plane
e Don’t have to know positions/orientations
e Good code available online!

Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

Matlab version by Jean-Yves Bouget:
http://www.vision.caltech.edu/bouguetj/calib doc/index.html

Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/




Step 1: data acquisition BEIVFx
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Step 2: specify corner order

Click on tha four exireme comers of the ractangilar patbam ffirst coener = ongin). . lmage 1 Click on tha four exirems comers of jhe reciangular paltem lﬁrq.', comsr = anging . lmage 1

g B

§E 5 & B

100 a0 3m 400 = L] &0

Chck on ibe four estrerne comers of the rectangular pattesn (fest corner = origin.. bmage 1 Chck o the faur gxtreme comars of the mctangulse pattem (fisst comer = origin). . Imags 1




Step 3: corner extraction

The red crasses should be close to the image corners
Rt | _—
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corner extracti

Step 3
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Step 4: minimize projection error

Reprajection error (in pixel) - Ta exit: right buttan
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] 4 3 2 -1 o 1 2 3 4
Calibration res .
Focal Length: fc = [ 657.46298  657.94673 ] = [ B8.31819 A.34846 ]
Principal point: cc = [ 383.13665 242 56935 ] = [ B.64682 8.59218 ]
Skew: alpha_ c = [ 8.88888 ] = [ 8.488888 | =» angle of pixel axes =
Distortion: kc = [ —-8.25483 8.12143 —-8.88821 A.0886882 0.08088 ]
Pixel error: err = [ B.11689 B.11588 ]
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Step 5: refinement

Reprojection error {in pixel) - To exit: right button

0.4

0.2

0.1

03+

04F




Bundle adjustment
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Bundle adjustment

e Bundle adjustment (BA) is a technique for
simultaneously refining the 3D structure and
camera parameters

e |t Is capable of obtaining an optimal
reconstruction under certain assumptions on
Image error models. For zero-mean Gaussian
Image errors, BA is the maximum likelihood
estimator.
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Bundle adjustment

e n 3D points are seen in m views

= X;; Is the projection of the i-th point on image ]
= g; Is the parameters for the j-th camera

e b. Is the parameters for the i-th point

e BA attempts to minimize the projection error

rrl

2
1’111115 E d(Q(a;, b;), xi;)

a;j,b ti=1 j=1 ‘
predicted projection

Euclidean distance



Digi\Yl 2.4

Bundle adjustment

=

bl 4 3 |
=




Algorithm:

k:=0; v:=2; p:=pg;

A=J13; ep:=x— f(p); g:=Tep;
stop:=(||g[lec < €1); p := 7 * maxi—1__m(Aii);
while (not stop) and (k < kyaz)

ki=k+ 1
repeat
Solve (A + pul)d, = g;
if (||dp| < e2|[pl])
stop:=true;
else
Pnew := P + dp;
p:= (llepl|* = I1x = f(Pnew)l|?) /(05 (1dp +8)):
ifp>0
P = Pnew;
A:=J1T: ey =x— f(p); g = TV ep;
stop:=(|[gllec < €1);
[TRENTE ma.xf%J — (20 —-1P); v :=2;
else
[TRENTEN LR VEES E S
endif
endif

until (p > 0) or (stop)
endwhile



Bundle adjustment

3 views and 4 points

A 0 0 B 0 0 0 3
0 Ap 0 Bz 0 0 0
0 0 A; Bis 0 0 0
Aaq 0 D 0 By 0 0
0 Ay O O By 0 0
X B D 0 Aaq D By 0 0
P |A;; 0O O O O By 0
0 Ay, O O O Bsyp 0
0 0 Az O 0 By; 0
Ay, 0 ©0O ©0O ©0 0 By
0 Ao 0 0 0 0 Bais
0 0 Asy3 O 0 0 B/



Typical Jacobian




Bundle adjustment

r" U]_ 0 0 Wj_]_ W*gj_
0 U, 0 Wy Wy
0 0 U, Wiz Wy
Wil W' Wit vy 0
Wal Wl Wa' 0 V2
Wl Wi Wit o0 0
\ Wyl Wl W' o0 0
Lo I 1'[? 1?* g
U* = ( 0 U n*) V= 0 uﬂ vi
0o 0 U 0o o0 o

Wi Wa\ /da,\  [€a;
Wi Wy Oa, €a,
Wiz Wy Og., €ag
0 0 ﬁbl = Fhl
0 0 f'fi]:.E Eha
Vg 0 fib,»; Eh,»g
0 V.f,l }J l'h fibr‘ )" l'". £h, )l
0
0 ( Wi Wy W3 Wy )
0 W= | Wi Wx W; Wy
v Wiz Wy Wiy Wy



Block structure of normal equation
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W

i

W




Bundle adjustment

Multiplied by (I —Wv*‘l)
0 I

(U*—wv*—le 0 ) (ﬁa) B (Ea—wv*—l Eh)
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Recognising panoramas

e Parameterise each camera by rotation and
focal length

p 0 —6;3 05 ]
R; = el¥ilx, [9,]« = 03 0O —0;1
—0i> 01 0

Sh O
= O O

e This gives pairwise homographies

i, = H;;i;, H

__ Tye—1
ij o = K;RRj K;

1]



Error function

e Sum of squared projection errors

623: S: Z f(rfj)z

1=15€Z(7) keF (i.5)

— n = #images
— I(1) = set of image matches to image |
— F(1, J) = set of feature matches between images i,]
— r;;* = residual of k™" feature match between images
,]
e Robust error function

f(x) = {X’ it |x| < Tmaz

Tmax, T \X\ > Tmax



A sparse BA software using LM Digil[:

e sba is a generic C implementation for bundle

adjustment using Levenberg-Marquardt method.
It Is available at

http://www.ics.forth.gr/~lourakis/sba.
e You can use this library for your project #2.




MatchMove
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