Feature matching

Digital Visual Effects, Spring 2005

Yung-Yu Chuang

2005/3/16

with slides by Trevor Darrell, Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim
Announcements

• Project #1 is online, you have to write a program, not just using available software.
• Send me the members of your team.
• Sign up for scribe at the forum.
Blender

http://www.blender3d.com/cms/Home.2.0.html

Blender could be used for your project #3 matchmove.
In the forum

- Barycentric coordinate
- RBF
Outline

- Block matching
- Features
- Harris corner detector
- SIFT
- SIFT extensions
- Applications
Correspondence by block matching

- Points are individually ambiguous
- More unique matches are possible with small regions of images
Correspondence by block matching

Left

Right

scanline

criterion function:

error

disparity
Sum of squared distance

\(w_L \) and \(w_R \) are corresponding \(m \) by \(m \) windows of pixels.

We define the window function:

\[
W_m(x, y) = \{u, v \mid x - \frac{m}{2} \leq u \leq x + \frac{m}{2}, y - \frac{m}{2} \leq v \leq y + \frac{m}{2}\}
\]

The SSD cost measures the intensity difference as a function of disparity:

\[
C_r(x, y, d) = \sum_{(u, v) \in W_m(x, y)} [I_L(u, v) - I_R(u - d, v)]^2
\]
Image blocks as a vector

Each window is a vector in an m^2 dimensional vector space. Normalization makes them unit length.

“Unwrap” image to form vector, using raster scan order
Image blocks as a vector
Matching metrics

Distance?

W_L

$W_R(d)$

Angle?
Features

- Properties of features
- Detector: locates feature
- Descriptor and matching metrics: describes and matches features

- In the example for block matching:
 - Detector: none
 - Descriptor: block
 - Matching: distance
Desired properties for features

• Invariant: invariant to scale, rotation, affine, illumination and noise for robust matching across a substantial range of affine distortion, viewpoint change and so on.

• Distinctive: a single feature can be correctly matched with high probability.
Harris corner detector
Moravec corner detector (1980)

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity
Moravec corner detector

flat
Moravec corner detector

flat
Moravec corner detector

flat

edge
Moravec corner detector

- flat
- edge
- corner isolated point
Moravec corner detector

Change of intensity for the shift \([u,v]\):

\[
E(u,v) = \sum_{x,y} w(x,y) [I(x+u, y+v) - I(x, y)]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x,y) = 1\) in window, 0 outside

Four shifts: \((u,v) = (1,0), (1,1), (0,1), (-1, 1)\)

Look for local maxima in \(\min\{E\}\)
Problems of Moravec detector

• Noisy response due to a binary window function
• Only a set of shifts at every 45 degree is considered
• Responds too strong for edges because only minimum of E is taken into account

⇒ Harris corner detector (1988) solves these problems.
Harris corner detector

Noisy response due to a binary window function

- Use a Gaussian function

\[w(x, y) = \exp \left(- \frac{(x^2 + y^2)}{2\sigma^2} \right) \]

Window function \(w(x, y) = \) Gaussian
Harris corner detector

Only a set of shifts at every 45 degree is considered

- Consider all small shifts by Taylor’s expansion

\[
E(u, v) = \sum_{x,y} w(x, y) \left[I(x+u, y+v) - I(x, y) \right]^2
\]

\[
= \sum_{x,y} w(x, y) \left[I_x u + I_y v + O(u^2, v^2) \right]^2
\]

\[
E(u, v) = Au^2 + 2Cuv + Bv^2
\]

\[
A = \sum_{x,y} w(x, y) I_x^2(x, y)
\]

\[
B = \sum_{x,y} w(x, y) I_y^2(x, y)
\]

\[
C = \sum_{x,y} w(x, y) I_x (x, y) I_y (x, y)
\]
Harris corner detector

Equivalently, for small shifts \([u, v]\) we have a *bilinear* approximation:

\[
E(u, v) \cong [u, v] \ M [u, v]^T
\]

where \(M\) is a \(2 \times 2\) matrix computed from image derivatives:

\[
M = \sum_{x, y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]
Harris corner detector

Responds too strong for edges because only minimum of E is taken into account

- A new corner measurement
Harris corner detector

Intensity change in shifting window: eigenvalue analysis

$E(u, v) \cong [u, v] \begin{bmatrix} u \\ v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$

λ_1, λ_2 – eigenvalues of M

Ellipse $E(u, v) = \text{const}$

direction of the fastest change
direction of the slowest change

$(\lambda_{\text{max}})^{-1/2}$

$(\lambda_{\text{min}})^{-1/2}$
Harris corner detector

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are large; $\lambda_1 \sim \lambda_2$; E increases in all directions
- $\lambda_1 > > \lambda_2$ for edge
- $\lambda_2 > > \lambda_1$ for edge
- λ_1 and λ_2 are small; E is almost constant in all directions

Corner

Illustration: Diagram showing the classification of image points into edge, flat, and corner based on the eigenvalues λ_1 and λ_2. The diagram includes regions for different conditions of λ_1 and λ_2.
Measure of corner response:

\[R = \det M - k \left(\text{trace } M \right)^2 \]

\[\det M = \lambda_1 \lambda_2 \]
\[\text{trace } M = \lambda_1 + \lambda_2 \]

\((k - \text{empirical constant}, \ k = 0.04-0.06)\)
Another view
Another view

The distribution of the x and y derivatives is very different for all three types of patches.
Another view

The distribution of x and y derivatives can be characterized by the shape and size of the principal component ellipse.

- **Corner**
 - $R = 28.07$

- **Linear Edge**
 - $R = 0.3328$

- **Flat**
 - $R = 0.25$
Summary of Harris detector

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

2. Compute products of derivatives at every pixel

$$I_{x2} = I_x I_x \quad I_{y2} = I_y I_y \quad I_{xy} = I_x I_y$$

3. Compute the sums of the products of derivatives at each pixel

$$S_{x2} = G_{\sigma t} * I_{x2} \quad S_{y2} = G_{\sigma t} * I_{y2} \quad S_{xy} = G_{\sigma t} * I_{xy}$$

4. Define at each pixel (x, y) the matrix

$$H(x, y) = \begin{bmatrix} S_{x2}(x, y) & S_{xy}(x, y) \\ S_{xy}(x, y) & S_{y2}(x, y) \end{bmatrix}$$

5. Compute the response of the detector at each pixel

$$R = \text{Det}(H) - k(\text{Trace}(H))^2$$

6. Threshold on value of R. Compute nonmax suppression.
Harris corner detector (input)
Corner response R
Threshold on R
Local maximum of R
Harris corner detector
Harris Detector: Summary

- Average intensity change in direction $[u,v]$ can be expressed as a bilinear form:

$$E(u,v) \cong [u,v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

- Describe a point in terms of eigenvalues of M: measure of corner response

$$R = \lambda_1 \lambda_2 - k (\lambda_1 + \lambda_2)^2$$

- A good (corner) point should have a large intensity change in all directions, i.e. R should be large positive
Harris Detector: Some Properties

- Partial invariance to *affine intensity* change

 ✓ Only derivatives are used =>
 invariance to intensity shift \(I \rightarrow I + b \)

 ✓ Intensity scale: \(I \rightarrow aI \)
Harris Detector: Some Properties

- Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector is rotation invariant

Repeatability rate:
\[
\frac{\text{# correspondences}}{\text{# possible correspondences}}
\]
Harris Detector: Some Properties

- But: non-invariant to *image scale*!

All points will be classified as *edges*.

Corner!
Harris Detector: Some Properties

• Quality of Harris detector for different scale changes

Repeatability rate:
\[
\frac{\text{# correspondences}}{\text{# possible correspondences}}
\]

![Graph showing repeatability rate against scale factor]
SIFT
(Scale Invariant Feature Transform)
SIFT

- SIFT is an carefully designed procedure with empirically determined parameters for the invariant and distinctive features.
SIFT stages:

- Scale-space extrema detection
- Keypoint localization
- Orientation assignment
- Keypoint descriptor

A 500x500 image gives about 2000 features
1. Detection of scale-space extrema

- For scale invariance, search for stable features across all possible scales using a continuous function of scale, scale space.
- SIFT uses DoG filter for scale space because it is efficient and as stable as scale-normalized Laplacian of Gaussian.
DoG filtering

Convolution with a variable-scale Gaussian

\[L(x, y, \sigma) = G(x, y, \sigma) \ast I(x, y), \]
\[G(x, y, \sigma) = \frac{1}{(2\pi\sigma^2)} \exp\left(-\frac{x^2+y^2}{\sigma^2}\right) \]

Difference-of-Gaussian (DoG) filter

\[G(x, y, k\sigma) - G(x, y, \sigma) \]

Convolution with the DoG filter

\[D(x, y, \sigma) = L(x, y, k\sigma) - L(x, y, \sigma) \]
Scale space

σ doubles for the next octave

$K=2^{(1/s)}$, $s+3$ images for each octave
Keypoint localization

X is selected if it is larger or smaller than all 26 neighbors
Decide scale sampling frequency

- It is impossible to sample the whole space, tradeoff efficiency with completeness.
- Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations.
Decide scale sampling frequency

$S=3$, for larger s, too many unstable features
Decide scale sampling frequency
Pre-smoothing

\[\sigma = 1.6, \text{ plus a double expansion} \]
Scale invariance
2. Accurate keypoint localization

- Reject points with low contrast and poorly localized along an edge
- Fit a 3D quadratic function for sub-pixel maxima
Accurate keypoint localization

Taylor expansion (up to the quadratic terms) of the scale-space function, $D(x, y, \sigma)$, shifted so that the origin is at the sample point:

$$D(x) = D + \frac{\partial D^T}{\partial x} x + \frac{1}{2} x^T \frac{\partial^2 D}{\partial x^2} x$$ \hspace{1cm} (2)

where D and its derivatives are evaluated at the sample point and $x = (x, y, \sigma)^T$ is the offset from this point. The location of the extremum, \hat{x}, is determined by taking the derivative of this function with respect to x and setting it to zero, giving

$$\hat{x} = -\frac{\partial^2 D}{\partial x^2}^{-1} \frac{\partial D}{\partial x}.$$ \hspace{1cm} (3)

If \hat{x} has offset larger than 0.5, sample point is changed.

$$D(\hat{x}) = D + \frac{1}{2} \frac{\partial D^T}{\partial x} \hat{x}.$$ \hspace{1cm} (4)

If $|D(\hat{x})|$ is less than 0.03 (low contrast), it is discarded.
Eliminating edge responses

\[H = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \]

\[\text{Tr}(H) = D_{xx} + D_{yy} = \alpha + \beta, \]
\[\text{Det}(H) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha \beta. \]

Let \(\alpha = r \beta \)
\[\frac{\text{Tr}(H)^2}{\text{Det}(H)} = \frac{(\alpha + \beta)^2}{\alpha \beta} = \frac{(r \beta + \beta)^2}{r \beta^2} = \frac{(r + 1)^2}{r} \]

Keep the points with \[\frac{\text{Tr}(H)^2}{\text{Det}(H)} < \frac{(r + 1)^2}{r}. \]
\(r = 10 \)
Keypoint detector

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures
3. Orientation assignment

- By assigning a consistent orientation, the keypoint descriptor can be orientation invariant.
- For a keypoint, L is the image with the closest scale,

$$m(x, y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2}$$

$$\theta(x, y) = \tan^{-1}((L(x, y + 1) - L(x, y - 1))/(L(x + 1, y) - L(x - 1, y)))$$

orientation histogram
Orientation assignment

Dx

Dy

M

Θ
Orientation assignment

- Keypoint location = extrema location
- Keypoint scale is scale of the DOG image
Orientation assignment

- Gaussian image (at closest scale, from pyramid)
- Gradient magnitude
- Gradient orientation
Orientation assignment

gradient magnitude

weighted by 2D gaussian kernel

weighted gradient magnitude
Orientation assignment

weighted gradient magnitude

weighted orientation histogram. Each bucket contains sum of weighted gradient magnitudes corresponding to angles that fall within that bucket.

gradient orientation

36 buckets
10 degree range of angles in each bucket, i.e.

$0 \leq \text{ang} < 10 : \text{bucket 1}$

$10 \leq \text{ang} < 20 : \text{bucket 2}$

$20 \leq \text{ang} < 30 : \text{bucket 3}$ …
Orientation assignment

weighted gradient magnitude

weighted orientation histogram.

gradient orientation

Orientation of keypoint is approximately 25 degrees
There may be multiple orientations.

In this case, generate duplicate keypoints, one with orientation at 25 degrees, one at 155 degrees.

Design decision: you may want to limit number of possible multiple peaks to two.
Orientation assignment

36-bin orientation histogram over 360°, weighted by m and 1.5*scale falloff
Peak is the orientation
Local peak within 80% creates multiple orientations
About 15% has multiple orientations
Orientation invariance
4. Local image descriptor

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions
- Normalized, clip the components larger than 0.2
Why 4×4×8?

![Graph showing the percentage of correct nearest descriptor versus the width of the descriptor (n) for different numbers of orientations (16, 8, 4). The graph plots the percentage of correct nearest descriptors on the y-axis and the width of the descriptor on the x-axis. The title of the graph is not visible.]
Sensitivity to affine change

![Graph showing sensitivity to affine change](image)

- **Correctly matched (%)**
- **Viewpoint angle (degrees)**

Lines represent:
- Keypoint location
- Location & orientation
- Nearest descriptor
SIFT demo
Maxima in D
Remove low contrast
Remove edges
SIFT descriptor
Estimated rotation

• Computed affine transformation from rotated image to original image:
 0.7060 -0.7052 128.4230
 0.7057 0.7100 -128.9491
 0 0 1.0000

• Actual transformation from rotated image to original image:
 0.7071 -0.7071 128.6934
 0.7071 0.7071 -128.6934
 0 0 1.0000
SIFT extensions
PCA

Average face:

Top ten eigenfaces (left = highest eigenvalue, right = lowest eigenvalue):
PCA-SIFT

- Only change step 4
- Pre-compute an eigen-space for local gradient patches of size 41x41
- $2 \times 39 \times 39 = 3042$ elements
- Only keep 20 components
- A more compact descriptor
GLOH (Gradient location-orientation histogram)

17 location bins
16 orientation bins

Analyze the 17x16=272-d eigen-space, keep 128 components
Applications
Recognition

SIFT Features
3D object recognition
3D object recognition
Office of the past

Video of desk

Images from PDF

Internal representation

Track & recognize

Scene Graph
Image retrieval

change in viewing angle

> 5000 images
Image retrieval

22 correct matches
Image retrieval

change in viewing angle + scale change

> 5000 images
Robot location
Robotics: Sony Aibo

SIFT is used for

- Recognizing charging station
- Communicating with visual cards
- Teaching object recognition

- soccer
Structure from Motion

- The SFM Problem
 - Reconstruct scene geometry and camera motion from two or more images

SFM Pipeline

- Track 2D Features
- Estimate 3D
- Optimize (Bundle Adjust)
- Fit Surfaces
Structure from Motion

Poor mesh

Good mesh
Augmented reality
Automatic image stitching

• SIFT Keypoint Detector, David Lowe.

• Matlab SIFT Tutorial, University of Toronto.