/**
@page axfunctionlist AX Supported Functions This page holds the full list of functions currently supported by AX. It is usually automatically updated from the most recent output of the @ref vdbaxbinary "vdb_ax binary's" function option. @section axfunccontents Functions
@anchor axabs @par abs Computes the absolute value of an integer number. @code{.c} int64(int64 n); int32(int32 n); double(double n); float(float n); @endcode @anchor axacos @par acos Computes the principal value of the arc cosine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axacosh @par acosh Computes the inverse hyperbolic cosine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axaddtogroup @par addtogroup Add the current point to the given group name, effectively setting its membership to true. If the group does not exist, it is implicitly created. This function has no effect if the point already belongs to the given group. @code{.c} void(string); @endcode @anchor axadjoint @par adjoint Returns the adjoint of a 3x3 matrix. That is, the transpose of its cofactor matrix. @code{.c} mat3d(mat3d input); mat3f(mat3f input); @endcode @anchor axargsort @par argsort Returns a vector of the indexes that would sort the input vector. @code{.c} vec3i(vec3d v); vec3i(vec3f v); vec3i(vec3i v); vec4i(vec4d v); vec4i(vec4f v); vec4i(vec4i v); @endcode @anchor axasin @par asin Computes the principal value of the arc sine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axasinh @par asinh Computes the inverse hyperbolic sine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axatan @par atan Computes the principal value of the arc tangent of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axatan2 @par atan2 Computes the arc tangent of y/x using the signs of arguments to determine the correct quadrant. @code{.c} double(double y; double x); float(float y; float x); @endcode @anchor axatanh @par atanh Computes the inverse hyperbolic tangent of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axatof @par atof Parses the string input, interpreting its content as a floating point number and returns its value as a double. @code{.c} double(i8* str); @endcode @anchor axatoi @par atoi Parses the string input interpreting its content as an integral number, which is returned as a value of type int. @code{.c} int32(i8* str); @endcode @anchor axcbrt @par cbrt Computes the cubic root of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axceil @par ceil Computes the smallest integer value not less than arg. @code{.c} double(double n); float(float n); @endcode @anchor axclamp @par clamp Clamps the first argument to the minimum second argument value and maximum third argument value @code{.c} double(double in; double min; double max); float(float in; float min; float max); int64(int64 in; int64 min; int64 max); int32(int32 in; int32 min; int32 max); @endcode @anchor axcofactor @par cofactor Returns the cofactor matrix of a 3x3 matrix. That is, the matrix of its cofactors. @code{.c} mat3d(mat3d input); mat3f(mat3f input); @endcode @anchor axcos @par cos Computes the cosine of arg (measured in radians). @code{.c} double(double n); float(float n); @endcode @anchor axcosh @par cosh Computes the hyperbolic cosine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axcross @par cross Returns the length of the given vector @code{.c} vec3d(vec3d a; vec3d b); vec3f(vec3f a; vec3f b); vec3i(vec3i a; vec3i b); @endcode @anchor axcurlsimplexnoise @par curlsimplexnoise Generates divergence-free 3D noise, computed using a curl function on Simplex Noise. @code{.c} vec3d(vec3d pos); vec3d(double pos; double; double); @endcode @anchor axdegrees @par degrees Converts the number of radians to degrees. @code{.c} double(double radians); float(float radians); @endcode @anchor axdeletepoint @par deletepoint Delete the current point from the point set. Note that this does not stop AX execution - any additional AX commands will be executed on the point and it will remain accessible until the end of execution. @code{.c} void(); @endcode @anchor axdeterminant @par determinant Returns the determinant of a matrix. @code{.c} double(mat3d mat); float(mat3f mat); double(mat4d mat); float(mat4f mat); @endcode @anchor axdiag @par diag Create a diagonal matrix from a vector, or return the diagonal components of a matrix as a vector. @code{.c} vec3d(mat3d vec); vec3f(mat3f vec); vec4d(mat4d vec); vec4f(mat4f vec); mat3d(vec3d mat); mat3f(vec3f mat); mat4d(vec4d mat); mat4f(vec4f mat); @endcode @anchor axdot @par dot Computes the dot product of two vectors. @code{.c} double(vec3d a; vec3d b); float(vec3f a; vec3f b); int32(vec3i a; vec3i b); @endcode @anchor axeuclideanmod @par euclideanmod Euclidean modulo, where by the result of the division operator on (dividend / divisor) is floored or ceiled depending on its sign, guaranteeing that the return value is always positive. The remainder is thus calculated with D - d * (d < 0 ? ceil(D/d) : floor(D/d)). This is NOT equal to a%b in AX. See truncatemod(), floormod(). @code{.c} double(double dividend; double divisor); float(float dividend; float divisor); int64(int64 dividend; int64 divisor); int32(int32 dividend; int32 divisor); @endcode @anchor axexp @par exp Computes e (Euler's number, 2.7182818...) raised to the given power arg. @code{.c} double(double n); float(float n); @endcode @anchor axexp2 @par exp2 Computes 2 raised to the given power arg. @code{.c} double(double n); float(float n); @endcode @anchor axexternal @par external Find a custom user parameter with a given name of type 'float' in the Custom data provided to the AX compiler. If the data can not be found, or is not of the expected type 0.0f is returned. @code{.c} float(string str); @endcode @anchor axexternalv @par externalv Find a custom user parameter with a given name of type 'vector float' in the Custom data provided to the AX compiler. If the data can not be found, or is not of the expected type { 0.0f, 0.0f, 0.0f } is returned. @code{.c} vec3f(string str); @endcode @anchor axfabs @par fabs Computes the absolute value of a floating point value arg. @code{.c} double(double n); float(float n); @endcode @anchor axfit @par fit Fit the first argument to the output range by first clamping the value between the second and third input range arguments and then remapping the result to the output range fourth and fifth arguments @code{.c} double(double value; double omin; double omax; double nmin; double nmax); float(float value; float omin; float omax; float nmin; float nmax); double(int64 value; int64 omin; int64 omax; int64 nmin; int64 nmax); double(int32 value; int32 omin; int32 omax; int32 nmin; int32 nmax); @endcode @anchor axfloor @par floor Computes the largest integer value not greater than arg. @code{.c} double(double n); float(float n); @endcode @anchor axfloormod @par floormod Floored modulo, where the result of the division operator on (dividend / divisor) is floored. The remainder is thus calculated with D - d * floor(D/d). This is the implemented modulo % operator of AX. This is equal to the python % implementation. See trucnatemod(), euclideanmod(). @code{.c} double(double dividend; double divisor); float(float dividend; float divisor); int64(int64 dividend; int64 divisor); int32(int32 dividend; int32 divisor); @endcode @anchor axgetcoordx @par getcoordx Returns the current voxel's X index value in index space as an integer. @code{.c} int32(); @endcode @anchor axgetcoordy @par getcoordy Returns the current voxel's Y index value in index space as an integer. @code{.c} int32(); @endcode @anchor axgetcoordz @par getcoordz Returns the current voxel's Z index value in index space as an integer. @code{.c} int32(); @endcode @anchor axgetvoxelpws @par getvoxelpws Returns the current voxel's position in world space as a vector float. @code{.c} vec3f(); @endcode @anchor axhash @par hash Return a hash of the provided string. @code{.c} int64(string str); @endcode @anchor axidentity3 @par identity3 Returns the 3x3 identity matrix @code{.c} mat3f(); @endcode @anchor axidentity4 @par identity4 Returns the 4x4 identity matrix @code{.c} mat4f(); @endcode @anchor axingroup @par ingroup Return whether or not the current point is a member of the given group name. This returns false if the group does not exist. @code{.c} bool(string); @endcode @anchor axinverse @par inverse Return the inverse of a 3x3 matrix.If the matrix is singular, returns the input matrix. @code{.c} mat3d(mat3d input); mat3f(mat3f input); @endcode @anchor axisfinite @par isfinite Returns whether the value is finite i.e. not infinite or NaN. For matrix and vector types will return false if any element is not finite. @code{.c} bool(vec2d); bool(vec2f); bool(vec3d); bool(vec3f); bool(vec4d); bool(vec4f); bool(mat3f); bool(mat3d); bool(mat4f); bool(mat4d); bool(double arg); bool(float arg); @endcode @anchor axisinf @par isinf Returns whether the value is inf. For matrix and vector types will return true if any element is inf. @code{.c} bool(vec2d); bool(vec2f); bool(vec3d); bool(vec3f); bool(vec4d); bool(vec4f); bool(mat3f); bool(mat3d); bool(mat4f); bool(mat4d); bool(double arg); bool(float arg); @endcode @anchor axisnan @par isnan Returns whether the value is NaN (not-a-number). @code{.c} bool(vec2d); bool(vec2f); bool(vec3d); bool(vec3f); bool(vec4d); bool(vec4f); bool(mat3f); bool(mat3d); bool(mat4f); bool(mat4d); bool(double arg); bool(float arg); @endcode @anchor axlength @par length Returns the length of the given vector @code{.c} double(vec2d v); float(vec2f v); double(vec2i v); double(vec3d v); float(vec3f v); double(vec3i v); double(vec4d v); float(vec4f v); double(vec4i v); @endcode @anchor axlengthsq @par lengthsq Returns the squared length of the given vector @code{.c} double(vec2d v); float(vec2f v); int32(vec2i v); double(vec3d v); float(vec3f v); int32(vec3i v); double(vec4d v); float(vec4f v); int32(vec4i v); @endcode @anchor axlerp @par lerp Performs bilinear interpolation between the values. If the amount is outside the range 0 to 1, the values will be extrapolated linearly. If amount is 0, the first value is returned. If it is 1, the second value is returned. This implementation is guaranteed to be monotonic. @code{.c} double(double a; double b; double amount); float(float a; float b; float amount); @endcode @anchor axlog @par log Computes the natural (base e) logarithm of arg. @code{.c} double(double n); float(float n); @endcode @anchor axlog10 @par log10 Computes the common (base-10) logarithm of arg. @code{.c} double(double n); float(float n); @endcode @anchor axlog2 @par log2 Computes the binary (base-2) logarithm of arg. @code{.c} double(double n); float(float n); @endcode @anchor axmax @par max Returns the larger of the given values. @code{.c} double(double a; double b); float(float a; float b); int64(int64 a; int64 b); int32(int32 a; int32 b); @endcode @anchor axmin @par min Returns the smaller of the given values. @code{.c} double(double a; double b); float(float a; float b); int64(int64 a; int64 b); int32(int32 a; int32 b); @endcode @anchor axnormalize @par normalize Returns the normalized result of the given vector. @code{.c} vec3d(vec3d v); vec3f(vec3f v); vec3d(vec3i v); vec4d(vec4d v); vec4f(vec4f v); vec4d(vec4i v); @endcode @anchor axpolardecompose @par polardecompose Decompose an invertible 3x3 matrix into its orthogonal (unitary) matrix and symmetric matrix components. If the determinant of the unitary matrix is 1 it is a rotation, otherwise if it is -1 there is some part reflection. @code{.c} bool(mat3d input; mat3d unitary; mat3d symmetric); bool(mat3f input; mat3f unitary; mat3f symmetric); @endcode @anchor axpostscale @par postscale Post-scale a given matrix by the provided vector. @code{.c} void(mat4d transform; vec3d vec); void(mat4f transform; vec3f vec); @endcode @anchor axpow @par pow Computes the value of the first argument raised to the power of the second argument. @code{.c} double(double base; double exp); float(float base; float exp); double(double base; int32 exp); @endcode @anchor axprescale @par prescale Pre-scale a given matrix by the provided vector. @code{.c} void(mat4d transform; vec3d vec); void(mat4f transform; vec3f vec); @endcode @anchor axpretransform @par pretransform Return the transformed vector by transpose of this matrix. This function is equivalent to pre-multiplying the matrix. @code{.c} vec3d(mat3d vec; vec3d mat); vec3f(mat3f vec; vec3f mat); vec3d(mat4d vec; vec3d mat); vec3f(mat4f vec; vec3f mat); vec4d(mat4d vec; vec4d mat); vec4f(mat4f vec; vec4f mat); @endcode @anchor axprint @par print Prints the input to the standard output stream. Warning: This will be run for every element. @code{.c} void(double n); void(float n); void(int64 n); void(int32 n); void(string n); void(vec2i n); void(vec2f n); void(vec2d n); void(vec3i n); void(vec3f n); void(vec3d n); void(vec4i n); void(vec4f n); void(vec4d n); void(mat3f n); void(mat3d n); void(mat4f n); void(mat4d n); @endcode @anchor axradians @par radians Converts the number of degrees to radians. @code{.c} double(double degrees); float(float degrees); @endcode @anchor axrand @par rand Creates a random number based on the provided seed. The number will be in the range of 0 to 1. The same number is produced for the same seed. Note that if rand is called without a seed the previous state of the random number generator is advanced for the currently processing element. This state is determined by the last call to rand() with a given seed. If rand is not called with a seed, the generator advances continuously across different elements which can produce non-deterministic results. It is important that rand is always called with a seed at least once for deterministic results. @code{.c} double(); double(double seed); double(int64 seed); @endcode @anchor axrand32 @par rand32 Creates a random number based on the provided 32 bit seed. The number will be in the range of 0 to 1. The same number is produced for the same seed. NOTE: This function does not share the same random number generator as rand(). rand32() may provide a higher throughput on some architectures, but will produce different results to rand(). NOTE: If rand32 is called without a seed the previous state of the random number generator is advanced for the currently processing element. This state is determined by the last call to rand32() with a given seed. If rand32 is not called with a seed, the generator advances continuously across different elements which can produce non-deterministic results. It is important that rand32 is always called with a seed at least once for deterministic results. @code{.c} double(); double(double seed); double(int32 seed); @endcode @anchor axremovefromgroup @par removefromgroup Remove the current point from the given group name, effectively setting its membership to false. This function has no effect if the group does not exist. @code{.c} void(string); @endcode @anchor axround @par round Computes the nearest integer value to arg (in floating-point format), rounding halfway cases away from zero. @code{.c} double(double n); float(float n); @endcode @anchor axsign @par sign Implements signum, determining if the input is negative, zero or positive. Returns -1 for a negative number, 0 for the number zero, and +1 for a positive number. Note that this function does not check the sign of floating point +/-0.0 values. See signbit(). @code{.c} int32(double n); int32(float n); int32(int64 n); int32(int32 n); @endcode @anchor axsignbit @par signbit Determines if the given floating point number input is negative. Returns true if arg is negative, false otherwise. Will return true for -0.0, false for +0.0 @code{.c} bool(double n); bool(float n); @endcode @anchor axsimplexnoise @par simplexnoise Compute simplex noise at coordinates x, y and z. Coordinates which are not provided will be set to 0. @code{.c} double(double x); double(double x; double y); double(double x; double y; double z); double(vec3d pos); @endcode @anchor axsin @par sin Computes the sine of arg (measured in radians). @code{.c} double(double n); float(float n); @endcode @anchor axsinh @par sinh Computes the hyperbolic sine of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axsort @par sort Returns the sorted result of the given vector. @code{.c} vec3d(vec3d v); vec3f(vec3f v); vec3i(vec3i v); vec4d(vec4d v); vec4f(vec4f v); vec4i(vec4i v); @endcode @anchor axsqrt @par sqrt Computes the square root of arg. @code{.c} double(double n); float(float n); @endcode @anchor axtan @par tan Computes the tangent of arg (measured in radians). @code{.c} double(double n); float(float n); @endcode @anchor axtanh @par tanh Computes the hyperbolic tangent of the input. @code{.c} double(double arg); float(float arg); @endcode @anchor axtrace @par trace Return the trace of a matrix, the sum of the diagonal elements. @code{.c} double(mat3d mat); float(mat3f mat); double(mat4d mat); float(mat4f mat); @endcode @anchor axtransform @par transform Return the transformed vector by the provided matrix. This function is equivalent to post-multiplying the matrix, i.e. vec * mult. @code{.c} vec3d(vec3d vec; mat3d mat); vec3f(vec3f vec; mat3f mat); vec3d(vec3d vec; mat4d mat); vec3f(vec3f vec; mat4f mat); vec4d(vec4d vec; mat4d mat); vec4f(vec4f vec; mat4f mat); @endcode @anchor axtranspose @par transpose Returns the transpose of a matrix @code{.c} mat3d(mat3d mat); mat3f(mat3f mat); mat4d(mat4d mat); mat4f(mat4f mat); @endcode @anchor axtruncatemod @par truncatemod Truncated modulo, where the result of the division operator on (dividend / divisor) is truncated. The remainder is thus calculated with D - d * trunc(D/d). This is equal to the C/C++ % implementation. This is NOT equal to a%b in AX. See floormod(), euclideanmod(). @code{.c} double(double dividend; double divisor); float(float dividend; float divisor); int64(int64 dividend; int64 divisor); int32(int32 dividend; int32 divisor); @endcode
*/