Course overview

Digital Image Synthesis
Yung-Yn Chuang

with slides by Mario Costa Sousa, Pat Hanrabhan and Revi Ramamoorthi

Logistics

e Meeting time: 2:20pm-5:20pm, Thursday
Classroom: CSIE Room 111

Instructor: Yung-Yu Chuang (cyy@csie.ntu.edu.tw)
TA: 5 ¥

Webpage:

http://www.csie.ntu.edu.tw/~cyy/rendering
id/password

Mailing list: rendering@cmlab.csie.ntu.edu.tw
Please subscribe via

https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/rendering/

Prerequisites

Requirements (subject to change)

C++ programming experience is required.
Basic knowledge on algorithm and data
structure is essential.

Knowledge on linear algebra, probability,
calculus and numerical methods is a plus.
Though not required, it is recommended that
you have background knowledge on computer
graphics.

e 3 programming assignments (60%)
e Class participation (5%)
e Final project (35%)

Textbook

Physically Based Rendering from Theory to Implementation,
2nd ed, by Matt Pharr and Greg Humphreys

PP - Authors have a lot of
PHYSICALLY BASED experience on ray tracing

BENDERIDIR eComplete (educational) code,
more concrete

From Theory tg,Implementation
5 %"y

Second Editior

eHas been used in many courses
and papers

eImplement some advanced or
difficult-to-implement methods:
subdivision surfaces, Metropolis
sampling, BSSRDF, PRT.

«3rd edition is coming next year!

pbrt won Oscar 2014

e To Matt Pharr, Greg Humphreys and Pat
Hanrahan for their formalization and reference
implementation of the concepts behind
physically based rendering, as shared in their
book Physically Based Rendering.

Physically based rendering has
transformed computer graphics lighting by
more accurately simulating materials and
lights, allowing digital artists to focus on
cinematography rather than the intricacies
of rendering. First published in

2004, Physically Based Rendering is both
a textbook and a complete source-code
implementation that has provided a widely
adopted practical roadmap for most
physically based shading and lighting
systems used in film production.

Literate programming

e A programming paradigm proposed by Knuth
when he was developing Tex.

e Programs should be written more for people’s
consumption than for computers’ consumption.

» The whole book is a long literate program. That
is, when you read the book, you also read the
complete program.

weave i TEX —| document

object
codde:

tangle —+| compiler —w

Processing a WEB

Features

e Mix prose with source: description of the code
Is as important as the code itself

= Allow presenting the code to the reader in a
different order than to the compiler

e Easy to make index
e Traditional text comments are usually not
enough, especially for graphics

e This decomposition lets us present code a few
lines at a time, making it easier to understand.

« |t looks more like pseudo code.

LP example

LP example

@\section{Selection Sort: An Example for LP}

We use {\it selection sort} to illustrate the concept of

{it literate programming}.

Selection sort is one of the simplest sorting algorithms.

It first find the smallest element in the array and exchange

it with the element in the first position, then find the

second smallest element and exchange it the element in the
second position, and continue in this way until the entire
array is sorted.

The following code implement the procedure for selection sort
assuming an external array [[a]].

<< S>>
<<external variables>>
void selection_sort(int n) {
<<init local variables>>
for (int i=0; i<n-1; i++) {
<<find minimum after the ith element>>
<<swap current and minimum>>

<<find minimum after the ith element>>=
min=i;
for (int j=i+1; j<n; j++) {

if (a[j]<a[min]) min=j;

}

<<init local variables>>=
int min;

@ To swap two variables, we need a temporary variable [[t]] which is declared
at the beginning of the procedure.

<<init local variables>>=

int t;

@ Thus, we can use [[t]] to preserve the value of [[a[min]] so that the
swap operation works correctly.

<<swap current and minimum>>=

t=a[min]; a[min]=a[i]; a[i]=t;

<<external variables>>=
int *a;

LP example (tangle)

LP example (weave)

int *a;

void selection_sort(int n) {
int min;
int t;
for (int i=0; i<n-1; i++) {
min=i;
for (int j=i+1; j<n; j++) {
if (a[j]l<a[min]) min=j;

t=a[min]; a[min]=a[i]; a[i]=t;

1 Selection Sort: An Example for LP

We use selection sort to illustrate the concept of it literate programming,. Se-
lection sort is one of the simplest sorting algorithms. It first find the smallest
element in the array and exchange it with the element in the first position, then
find the second smallest element and exchange it the element in the second po-
sition, and continute in this way until the entire array is sorted. The following
code implement the procedure for seletion sort assuming an external array a.
la (*1a)=
(external variables 1f)
void selection_sort(int n) {
{init local variables 1c)
for (int i=0; i<n-1; i++) {
(find minimum after the ith element 1b)
(swap current and minimum le)

+
+
1b (find minimum after the ith element 1b)= (1a)
min=i;

for (int j=i+1; j<m; j++) {
if (aljl<almin]) min=j;

¥

pbrt

e Pbrt is designed to be

- Complete: includes features found in commercial
high-quality renderers.

- Illustrative: select and implement elegant methods.
- Physically based

= Efficiency was given a lower priority (the
unofficial fork luxrender could be more
efficient)

e Source code browser

LuxRender (http://www.luxrender.net

Home | About Download | Documentation Community | Development

Development News Qverview Community News
More... More...
LuxRendar is a physically based and unbiased rendenng engine. Based on

Hew halr support state of the art algorithms, LuxRender simulatas the flow of bght according to

New exporter for Carrara

coming physical equations, thus producing reakistic images of photographic quality. Luis, & commarcial exparter
& much mproved har for Carrara to LuxRender,
sy being added to Get LuxRender hae just bean officially

¥ . TH it results r ed.
i ’.‘1” b .“I 1 To get started with LuxRender, choose a package: Sjeased
are quite promising.
== = —

A Ci‘; A OB |5 LuxRender advertized

SLG renderer - - = with Paser 10

Blender 2,490 Biender 2.6x 30S Max

The SLG renderer branch card adver

has just been marged with o and LuxRendar is prasant in
mainling. This means from = L evary Poser 10 box thanks
naw on LuxRender has a full . 2 to RunBmeNA,

GPU accelerated render

tizing Reality

skatchup can yag Studio

mode, it wil Be avalable in

Mitsuba (http://www.mitsuba-renderer.org/

mitsuba-renderer.org about documentation download misc +bugs ~blog

Mitsuba

Prysicacry Basep RENDERER

==
m ArouT [fax| INTEGRATORS

Mitsuba is a research-oriented rendering system in A wide range of rendering techniques are available,
the style of PBRT, from which it derives much including:

inspiration. It is written in portable €+, implements e

unbiased as well as biased techniques, and contains o Direct illumination

heavy optimizations targeted towards current CPU + Monte-Carlo path tracer which sclves the
architectures. Mitsuba is extremely modular: it full Radiative Transfer Equation

consists of a small set of core libraries and over 100 + Photon mapper with irradiance gradients
different plugins that implement functionality + Adjoint particle tracer

ranging from materials and light sources to complete + Bidirectional path tracer

rendering algerithms. + Instant Radiosity (hardware-accelerated)

In comparison to other open source renderers, + Progressive Photon Mapper

Mitsuba places a strong emphasis on experimental + Stochastic Progressive Photon Mapper
rendering techniques, such as path-based + Path Space Metropolis Light Transport
formulations of Metropolis Light Transport and « Primary Sample Space Metropolis Light
volumetric modeling approaches. Thus, it may be of ‘Transport

genuine interest to those who would like to + Energy redistribution path tracer

...

New features of pbrt2

e Remove plug-in architecture, but still an
extensible architecture

e Add multi-thread support (automatic or --
ncores)

e OpenEXR is recommended, not required

e HBV is added and becomes default

e Can be full spectral, do it at compile time
e Animation is supported

e Instant global illumination, extended photon
map, extended infinite light source

e Improved irradiance cache

New features of pbrt2

Reference books

» BSSRDF is added

» Metropolis light transport

» Precomputed radiance transfer
e Support measured BRDF

T “URAY

gﬁ;g;ced o TRACING

lumination

Henrik Hann Jensen

Realistic Image
Sunthesis
Using Fhoton
Mapping

References

Image synthesis (Rendering)

e SIGGRAPH proceedings
SIGGRAPH Asia proceedings

Proceedings of Eurographics Symposium on
Rendering

Eurographics proceedings
Most can be found at this link.

e Create a 2D picture of a 3D world

Computer graphics

rendering

Physically-based rendering

uses physics to simulate the interaction between
matter and light, realism is the primary goal

Realism

e Shadows

= Transparency

e Interreflections

e Detail (Textures...)

e Complex Illumination
e Realistic Materials

« And many more

Other types of rendering

Non-photorealistic rendering
Image-based rendering
Point-based rendering
Volume rendering
Perceptual-based rendering
= Artistic rendering

Pinhole camera

Introduction to ray tracing

/\.-.

Image plune

!& c"‘]

Ray Casting (Appel, 1968) Ray Casting (Appel, 1968)

vA¢ vA¢
3 0t

Ray Casting (Appel, 1968)

vA¢
<@>

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

direct illumination

Whitted ray tracing algorithm

¢ Combines eye ray tracing + rays to light
* Recursively traces rays

Whitted ray tracing algorithm

1. For each pixel, trace a primary ray in direction V to the
first visible surface.
2. For each intersection, trace secondary rays:

+ Shadow rays in directions L; to light sources

+ Reflected ray in direction R.

+ Refracted ray or transmitted ray in direction T.

Shading

If I(P,, u) 1s the intensity seen from point P along direction u
](P > ll) =]direrr +]reﬂecred +]rmnsmifted

where
I, = Shade(N, L, u, R) (e.g. Phong shading model)

direct

]eﬁeden’ - kr](P= R)

7

— Qo R
Itrmzsmifted =k t I (P > T) 79:
L
Typically, we set k.= k, and £k,
u
Pf’

Eye ray

Object 3

Recursive ray tracing (Whitted, 1980)

Components of a ray tracer

e Cameras

Films

Lights

Ray-object intersection
Visibility

Surface scattering
Recursive ray tracing

Minimal ray tracer

e Minimal ray tracer contest on comp.graphics,
1987

e Write the shortest Whitted-style ray tracer in C
with the minimum number of tokens. The scene
is consisted of spheres. (specular reflection and
refraction, shadows)

e Winner: 916 tokens

e Cheater: 66 tokens (hide source in a string)

e Almost all entries have six modules: main, trace,
intersect-sphere, vector-normalize, vector-add,
dot-product.

Minimal ray tracer (Heckbert 1994)

typedef struct{double x,y,z}vec,vec U black,amb={.02,.02,.02};struct sphere{ vec cen color;
double rad kd ks ktklir}'s, "best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,2,850.,1.7-1.8.-51.,5.21,
7,3,0.,05121.8.,-5.1,.8.1.3.70,0.,.23.-6.,15,1.,81.,7.,0.,0.,0.,6,15-3.-3.12,
8,1.,1.,5.,0.,0.0.,.5,1.5 }yx;double u,b,tmin,sqrt(),tan(};double vdot(A Bjvec A ,B{return A.x

‘B.x+Ay*'B.y+A.z'B.z;Jvec veomb(a,A B)double a;vec A B;{B.x+=a" A.x;B.y+=a*A.y;B.z+=a*Az;

return B;}vec vunit(Ajvec A;{return vcomb(1./sqrt(vdot(A A)),A black);}struct sphere*intersect
(P,Djvec P,D:{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P s->cen)),
u=b"b-vdot(U,U)+s->rad"s ->rad,u=u>07sqrt(u):1e31,u=b-u>1e-7?b-u:b+u tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;Jvec trace(level,P,D)vec P,D;{double d.eta,e;vec N,color;
struct sphere’s,"l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit{vcomb(-1.,P=vcomb(tmin,D,P),s->cen })};if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=] ->kI*vdot(N,U=vunit{vcomb(-1.,P I->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,I->color,color),U=s->color;color.x"=U.x;color.y “=U.y;color.z
=U.z;e=1-eta” eta(1-d*d);return veomb(s->kt,e>07trace(level,P ,vcomb(eta,D,vcombieta‘d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));Jmain(){printf("%d %d\n",32,32);while(yx<32"32) U.x=yx%32-32/2,U.2=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black vunit(U}),black),printf
("%.0f %.0f %.0fn",U);}/*minray!"/

What it can do

Another business card raytracer That’s it?

 In this course, we will study how state-of-art
ray tracers work.

Issues Disney's Practical Guide to Path Tracing

Better Lighting + Forward Tracing
Texture Mapping

Sampling

Modeling

Materials

Motion Blur, Depth of Field, Blurry
Reflection/Refraction

- Distributed Ray-Tracing

Improving Image Quality

Acceleration Techniques (better structure,
faster convergence)

Really Practical Guide to Path Tracing
L, (p,»,) = L.(p,0,)
+_L2 f(pawoswi)l—i(pawi)

cosO,| do;

HETHnUNnnnannnnmnn

Complex lighting

Complex lighting

Refraction/dispersion

Caustics Realistic materials

Translucent objects Texture and complex materials

Even

more complex materials

Complex material (luxrender)

Motion blur (luxrender)

Refraction (Luxrender)

Applications

Movies
Interactive entertainment
Industrial design
Architecture

e Culture heritage

IKEA

IKEA

* Today (2014), around 60-75% of all IKEA’s product
(single product) images are CG. About 35% of all IKEA
Communication’s non-product images are fully CG.

e e ﬂ;‘:_.";__f,_,,ff;,,ﬁ% —E

Ee———— ;

i [y ¥ =
= | if
| o
r o P&% .‘l -:-J—-
ll ; ¥ - 2 ,‘L.'
i i = 1 I
=l = = E
2l {d . i B i
bl | i ‘ S0 S

Animation production pipeline

—_-

“Beiep PIXAR

FAONSTERS, INC.) g
TREATMENT B Yq‘é) S L5

story text treatment
| E

voice storyreal

storyboard |

b es?

look anf:

e

N A
e Y

Animation production pipeline

B

modeling/articulation

ering

s &

animation

final touc

Monster University Progression

N\

7/

Z

Ray tracing finally catches up

i -/-hf ¥ :'F‘,,,. .. 2
1#

t'}" o5 ‘?;"'ﬂfriﬂ 1%

ﬁﬂ il

T T -

Arnold renderer

Hyperion (Disney)

http://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/

HYPERION

Pixar Renderman Timeline Monster University

25 Years of Pixar’s RenderMan

1988 1989 1990 1991 } 1992 1993 I 1994
74‘7

BEFORE...

Homework #0

Download and install pbrt2.
Run several examples

Set it up in a debugger environment so that you
can trace the code

Optionally, create your own scene

