
Course overview

Digital Image Synthesis
Yung-Yu Chuang

with slides by Mario Costa Sousa, Pat Hanrahan and Revi Ramamoorthi

Logistics

• Meeting time: 2:20pm-5:20pm, Thursday
• Classroom: CSIE Room 111
• Instructor: Yung-Yu Chuang (cyy@csie.ntu.edu.tw)

• TA:陳育聖

• Webpage:
http://www.csie.ntu.edu.tw/~cyy/rendering
id/password

• Mailing list: rendering@cmlab.csie.ntu.edu.tw
Please subscribe via
https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/rendering/

Prerequisites

• C++ programming experience is required.
• Basic knowledge on algorithm and data

structure is essential.
• Knowledge on linear algebra, probability,

calculus and numerical methods is a plus.
• Though not required, it is recommended that

you have background knowledge on computer
graphics.

Requirements (subject to change)

• 3 programming assignments (60%)
• Class participation (5%)
• Final project (35%)

Textbook

Physically Based Rendering from Theory to Implementation,
2nd ed, by Matt Pharr and Greg Humphreys

•Authors have a lot of
experience on ray tracing

•Complete (educational) code,
more concrete

•Has been used in many courses
and papers

•Implement some advanced or
difficult-to-implement methods:
subdivision surfaces, Metropolis
sampling, BSSRDF, PRT.

•3rd edition is coming next year!

pbrt won Oscar 2014

• To Matt Pharr, Greg Humphreys and Pat
Hanrahan for their formalization and reference
implementation of the concepts behind
physically based rendering, as shared in their
book Physically Based Rendering.

Physically based rendering has
transformed computer graphics lighting by
more accurately simulating materials and
lights, allowing digital artists to focus on
cinematography rather than the intricacies
of rendering. First published in
2004, Physically Based Rendering is both
a textbook and a complete source-code
implementation that has provided a widely
adopted practical roadmap for most
physically based shading and lighting
systems used in film production.

Literate programming

• A programming paradigm proposed by Knuth
when he was developing Tex.

• Programs should be written more for people’s
consumption than for computers’ consumption.

• The whole book is a long literate program. That
is, when you read the book, you also read the
complete program.

Features

• Mix prose with source: description of the code
is as important as the code itself

• Allow presenting the code to the reader in a
different order than to the compiler

• Easy to make index
• Traditional text comments are usually not

enough, especially for graphics
• This decomposition lets us present code a few

lines at a time, making it easier to understand.
• It looks more like pseudo code.

LP example
@\section{Selection Sort: An Example for LP}

We use {\it selection sort} to illustrate the concept of
{it literate programming}.
Selection sort is one of the simplest sorting algorithms.
It first find the smallest element in the array and exchange
it with the element in the first position, then find the
second smallest element and exchange it the element in the
second position, and continue in this way until the entire
array is sorted.
The following code implement the procedure for selection sort
assuming an external array [[a]].

<<*>>=
<<external variables>>
void selection_sort(int n) {

<<init local variables>>
for (int i=0; i<n-1; i++) {

<<find minimum after the ith element>>
<<swap current and minimum>>

}
}

LP example
<<find minimum after the ith element>>=
min=i;
for (int j=i+1; j<n; j++) {

if (a[j]<a[min]) min=j;
}

<<init local variables>>=
int min;

@ To swap two variables, we need a temporary variable [[t]] which is declared
at the beginning of the procedure.
<<init local variables>>=
int t;

@ Thus, we can use [[t]] to preserve the value of [[a[min]] so that the
swap operation works correctly.
<<swap current and minimum>>=
t=a[min]; a[min]=a[i]; a[i]=t;

<<external variables>>=
int *a;

LP example (tangle)
int *a;

void selection_sort(int n) {
int min;

int t;

for (int i=0; i<n-1; i++) {
min=i;
for (int j=i+1; j<n; j++) {

if (a[j]<a[min]) min=j;
}

t=a[min]; a[min]=a[i]; a[i]=t;

}
}

LP example (weave)

pbrt

• Pbrt is designed to be
– Complete: includes features found in commercial

high-quality renderers.
– Illustrative: select and implement elegant methods.
– Physically based

• Efficiency was given a lower priority (the
unofficial fork luxrender could be more
efficient)

• Source code browser

LuxRender (http://www.luxrender.net)

Mitsuba (http://www.mitsuba-renderer.org/)

New features of pbrt2

• Remove plug-in architecture, but still an
extensible architecture

• Add multi-thread support (automatic or --
ncores)

• OpenEXR is recommended, not required
• HBV is added and becomes default
• Can be full spectral, do it at compile time
• Animation is supported
• Instant global illumination, extended photon

map, extended infinite light source
• Improved irradiance cache

New features of pbrt2

• BSSRDF is added
• Metropolis light transport
• Precomputed radiance transfer
• Support measured BRDF

Reference books

References

• SIGGRAPH proceedings
• SIGGRAPH Asia proceedings
• Proceedings of Eurographics Symposium on

Rendering
• Eurographics proceedings
• Most can be found at this link.

Image synthesis (Rendering)

• Create a 2D picture of a 3D world

Computer graphics

modeling rendering

animation

Physically-based rendering

uses physics to simulate the interaction between
matter and light, realism is the primary goal

• Shadows
• Reflections (Mirrors)
• Transparency
• Interreflections
• Detail (Textures…)
• Complex Illumination
• Realistic Materials
• And many more

Realism

Other types of rendering

• Non-photorealistic rendering
• Image-based rendering
• Point-based rendering
• Volume rendering
• Perceptual-based rendering
• Artistic rendering

Pinhole camera

Introduction to ray tracing

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

nls

i

n
isidiaa VRkNLkIIk

1

Ray Casting (Appel, 1968)

direct illumination

Whitted ray tracing algorithm

Whitted ray tracing algorithm

Shading

Ray tree

Recursive ray tracing (Whitted, 1980)

Components of a ray tracer

• Cameras
• Films
• Lights
• Ray-object intersection
• Visibility
• Surface scattering
• Recursive ray tracing

Minimal ray tracer

• Minimal ray tracer contest on comp.graphics,
1987

• Write the shortest Whitted-style ray tracer in C
with the minimum number of tokens. The scene
is consisted of spheres. (specular reflection and
refraction, shadows)

• Winner: 916 tokens
• Cheater: 66 tokens (hide source in a string)
• Almost all entries have six modules: main, trace,

intersect-sphere, vector-normalize, vector-add,
dot-product.

Minimal ray tracer (Heckbert 1994)

What it can do

Another business card raytracer

That’s it?

• In this course, we will study how state-of-art
ray tracers work.

Issues

• Better Lighting + Forward Tracing
• Texture Mapping
• Sampling
• Modeling
• Materials
• Motion Blur, Depth of Field, Blurry

Reflection/Refraction
– Distributed Ray-Tracing

• Improving Image Quality
• Acceleration Techniques (better structure,

faster convergence)

Disney's Practical Guide to Path Tracing

Really Practical Guide to Path Tracing

)ωp,(ooL)ω,p(oeL

iω
2

d
s iiio θcos)ωp,()ω,ωp,(iLf

Complex lighting

Complex lighting

Refraction/dispersion

Caustics

Realistic materials

Translucent objects

Texture and complex materials

Even more complex materials

Complex material (luxrender)

Depth of field (luxrender)

Motion blur (luxrender)

Refraction (Luxrender)

Applications

• Movies
• Interactive entertainment
• Industrial design
• Architecture
• Culture heritage

IKEA

• Today (2014), around 60-75% of all IKEA’s product
(single product) images are CG. About 35% of all IKEA
Communication’s non-product images are fully CG.

IKEA

• They use 3DStudio Max and V-Ray.

Animation production pipeline

story text treatment storyboard

voice storyreal look and feel

Animation production pipeline

layout animation

shading/lighting

modeling/articulation

rendering final touch

Monster University Progression

Pixar in a Box

Ray tracing finally catches up

Arnold renderer

Manuka (Weta digital)

http://www.fxguide.com/featured/manuka-weta-digitals-new-renderer/

Hyperion (Disney)

Pixar Renderman Timeline

Monster University

The blue umbrella

Homework #0

• Download and install pbrt2.
• Run several examples
• Set it up in a debugger environment so that you

can trace the code
• Optionally, create your own scene

