Monte Carlo Integration I

Digital Image Synthesis
Yung-Yu Cbuang
with slides by Pat Hanraban and Torsten Moller

Introduction

$$
\begin{aligned}
L_{o}\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & L_{e}\left(\mathrm{p}, \omega_{\mathrm{o}}\right) \\
& +\int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{i}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
\end{aligned}
$$

- The integral equations generally don't have analytic solutions, so we must turn to numerical methods.
- Standard methods like Trapezoidal integration or Gaussian quadrature are not effective for high-dimensional and discontinuous integrals.

Numerical quadrature

- Suppose we want to calculate $I=\int_{a}^{b} f(x) d x$, but can't solve it analytically. The approximations through quadrature rules have the form

$$
\hat{I}=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

which is essentially the weighted sum of samples of the function at various points

Midpoint rule

$$
\begin{aligned}
\hat{I} & =h \sum_{i=1}^{n} f\left(a+\left(i-\frac{1}{2}\right) h\right) \\
& =h\left[f\left(a+\frac{h}{2}\right)+f\left(a+\frac{3 h}{2}\right)+\cdots+f\left(b-\frac{h}{2}\right)\right]
\end{aligned}
$$

convergence $\hat{I}-I=-\frac{(b-a)^{3}}{24 n^{2}} f^{\prime \prime}(\xi)=O\left(n^{-2}\right)$

Trapezoid rule

$$
\begin{aligned}
\hat{I} & =\sum_{i=1}^{n} \frac{h}{2}[f(a+(i-1) h)+f(a+i h)] \\
& =h\left[\frac{1}{2} f(a)+f(a+h)+f(a+2 h)+\cdots+f(b-h)+\frac{1}{2} f(b)\right]
\end{aligned}
$$

convergence $\hat{I}-I=\frac{(b-a)^{3}}{12 n^{2}} f^{\prime \prime}\left(\xi^{*}\right)=O\left(n^{-2}\right)$

Simpson's rule

- Similar to trapezoid but using a quadratic polynomial approximation

$$
\begin{gathered}
\hat{I}=h\left[\frac{1}{3} f(a)+\frac{4}{3} f(a+h)+\frac{2}{3} f(a+2 h)+\frac{4}{3} f(a+3 h)+\frac{2}{3} f(a+4 h)+\right. \\
\left.\cdots+\frac{4}{3} f(b-h)+\frac{1}{3} f(b)\right]
\end{gathered}
$$

convergence $|\hat{I}-I|=\frac{(b-a)^{5}}{180(2 n)^{4}} f^{(4)}(\xi)=O\left(n^{-4}\right)$
assuming f has a continuous fourth derivative.

Curse of dimensionality and discontinuity

- For an s d function f, $\quad I=\sum_{i_{1}=1} \sum_{i_{2}=1} \cdots \sum_{i_{s}=1} w_{i_{1}} w_{i_{2}} \cdots w_{i_{s}} f\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s}}\right)$
- If the 1d rule has a convergence rate of $O\left(n^{-r}\right)$, the s d rule would require a much larger number (n^{s}) of samples to work as well as the 1d one. Thus, the convergence rate is only $O\left(n^{-r / s}\right)$.
- If f is discontinuous, convergence is $O\left(n^{-1 / s}\right)$ for $s \mathrm{~d}$.

Randomized algorithms

- Las Vegas V.S. Monte Carlo
- Las Vegas: always gives the right answer by using randomness.
- Monte Carlo: gives the right answer on the average. Results depend on random numbers used, but statistically likely to be close to the right answer.

Monte Carlo integration

- Monte Carlo integration: uses sampling to estimate the values of integrals. It only requires to be able to evaluate the integrand at arbitrary points, making it easy to implement and applicable to many problems.
- If n samples are used, its converges at the rate of $O\left(n^{-1 / 2}\right)$. That is, to cut the error in half, it is necessary to evaluate four times as many samples.
- Images by Monte Carlo methods are often noisy. Most current methods try to reduce noise.

Monte Carlo methods

- Advantages
- Easy to implement
- Easy to think about (but be careful of statistical bias)
- Robust when used with complex integrands and domains (shapes, lights, ...)
- Efficient for high dimensional integrals
- Disadvantages
- Noisy
- Slow (many samples needed for convergence)

Basic concepts

- X is a random variable
- Applying a function to a random variable gives another random variable, $Y=f(X)$.
- CDF (cumulative distribution function)

$$
P(x) \equiv \operatorname{Pr}\{X \leq x\}
$$

- PDF (probability density function): nonnegative, sum to 1

$$
p(x) \equiv \frac{d P(x)}{d x}
$$

- canonical uniform random variable ξ (provided by standard library and easy to transform to other distributions)

Discrete probability distributions

- Discrete events $\boldsymbol{X}_{\boldsymbol{i}}$ with probability $\boldsymbol{p}_{\boldsymbol{i}}$

$$
p_{i} \geq 0 \quad \sum_{i=1}^{n} p_{i}=1
$$

- Cumulative PDF (distribution)

$$
P_{j}=\sum_{i=1}^{j} p_{i}
$$

- Construction of samples:

To randomly select an event, Select $\boldsymbol{X}_{\boldsymbol{i}}$ if $P_{i-1}<U \leq P_{i}$

Uniform random variable

Continuous probability distributions

- PDF $p(x)$

Uniform

$$
p(x) \geq 0
$$

- CDF $P(x)$

$$
\begin{aligned}
& P(x)=\int_{0}^{x} p(x) d x \\
& P(x)=\stackrel{P r}{\operatorname{Pr}}(X<x)
\end{aligned}
$$

$$
\operatorname{Pr}(\alpha \leq X \leq \beta)=\int_{\alpha}^{\beta} p(x) d x
$$

$$
=P(\beta)-P(\alpha)
$$

Expected values

- Average value of a function $f(x)$ over some distribution of values $p(x)$ over its domain D

$$
E_{p}[f(x)]=\int_{D} f(x) p(x) d x
$$

- Example: \cos function over $[0, \pi], p$ is uniform

$$
E_{p}[\cos (x)]=\int_{0}^{\pi} \cos x \frac{1}{\pi} d x=0
$$

Variance

- Expected deviation from the expected value
- Fundamental concept of quantifying the error in Monte Carlo methods

$$
V[f(x)]=E\left[(f(x)-E[f(x)])^{2}\right]
$$

Properties

$$
\begin{aligned}
& E[a f(x)]=a E[f(x)] \\
& E\left[\sum_{i} f\left(X_{i}\right)\right]=\sum_{i} E\left[f\left(X_{i}\right)\right] \\
& V[a f(x)]=a^{2} V[f(x)] \\
& \longrightarrow V[f(x)]=E\left[(f(x))^{2}\right]-E[f(x)]^{2}
\end{aligned}
$$

Monte Carlo estimator

- Assume that we want to evaluate the integral of $f(x)$ over [a, b] $\int_{a}^{b} f(x) d x$

$$
E\left[F_{N}\right]=E\left[\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right)\right]
$$

- Given a uniform random variable X_{i} over [a,b],

$$
=\frac{b-a}{N} \sum_{i=1}^{N} E\left[f\left(X_{i}\right)\right]
$$ Monte Carlo estimator

$$
F_{N}=\frac{b-a}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

says that the expected value $E\left[F_{N}\right]$ of the

$$
\begin{aligned}
& =\frac{b-a}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) p(x) d x \\
& =\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) d x \\
& =\int_{a}^{b} f(x) d x
\end{aligned}
$$ estimator F_{N} equals the integral

General Monte Carlo estimator

- Given a random variable X drawn from an arbitrary PDF $p(x)$, then the estimator is

$$
\begin{aligned}
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)} \quad E\left[F_{N}\right] & =E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) d x \\
& =\int_{a}^{b} f(x) d x
\end{aligned}
$$

- Although the converge rate of MC estimator is $O\left(N^{1 / 2}\right)$, slower than other integral methods, its converge rate is independent of the dimension, making it the only practical method for high dimensional integral

Convergence of Monte Carlo

- Chebyshev's inequality: let X be a random variable with expected value μ and variance σ^{2}. For any real number $\mathrm{k}>0$,

$$
\operatorname{Pr}\{|X-\mu| \geq k \sigma\} \leq \frac{1}{k^{2}}
$$

- For example, for $\mathrm{k}=\sqrt{2}$, it shows that at least half of the value lie in the interval $(\mu-\sqrt{2} \sigma, \mu+\sqrt{2} \sigma)$
- Let $Y_{i}=f\left(X_{i}\right) / p\left(X_{i}\right)$, the MC estimate F_{N} becomes

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

Convergence of Monte Carlo

- According to Chebyshev’s inequality,

$$
\begin{gathered}
\operatorname{Pr}\left\{\left|F_{N}-E\left[F_{N}\right]\right| \geq\left(\frac{V\left[F_{N}\right]}{\delta}\right)^{1 / 2}\right\} \leq \delta \\
V\left[F_{N}\right]=V\left[\frac{1}{N} \sum_{i=1}^{N} Y_{i}\right]=\frac{1}{N^{2}} V\left[\sum_{i=1}^{N} Y_{i}\right]=\frac{1}{N^{2}} \sum_{i=1}^{N} V\left[Y_{i}\right]=\frac{1}{N} V[Y]
\end{gathered}
$$

- Plugging into Chebyshev's inequality,

$$
\operatorname{Pr}\left\{\left|F_{N}-I\right| \geq \frac{1}{\sqrt{N}}\left(\frac{V[Y]}{\delta}\right)^{1 / 2}\right\} \leq \delta
$$

So, for a fixed threshold, the error decreases at the rate $N^{-1 / 2}$.

Properties of estimators

- An estimator F_{N} is called unbiased if for all N

$$
E\left[F_{N}\right]=Q
$$

That is, the expected value is independent of N.

- Otherwise, the bias of the estimator is defined as

$$
\beta\left[F_{N}\right]=E\left[F_{N}\right]-Q
$$

- If the bias goes to zero as N increases, the estimator is called consistent

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \beta\left[F_{N}\right]=0 \\
& \lim _{N \rightarrow \infty} E\left[F_{N}\right]=Q
\end{aligned}
$$

Example of a biased consistent estimator

- Suppose we are doing antialiasing on a 1d pixel, to determine the pixel value, we need to evaluate $I=\int_{0}^{1} w(x) f(x) d x$, where $w(x)$ is the filter function with $\int_{0}^{1} w(x) d x=1$
- A common way to evaluate this is

$$
F_{N}=\frac{\sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)}{\sum_{i=1}^{N} w\left(X_{i}\right)}
$$

- When $\mathrm{N}=1$, we have

$$
E\left[F_{1}\right]=E\left[\frac{w\left(X_{1}\right) f\left(X_{1}\right)}{w\left(X_{1}\right)}\right]=E\left[f\left(X_{1}\right)\right]=\int_{0}^{1} f(x) d x \neq I
$$

Example of a biased consistent estimator

- When $\mathrm{N}=2$, we have

$$
E\left[F_{2}\right]=\int_{0}^{1} \int_{0}^{1} \frac{w\left(x_{1}\right) f\left(x_{1}\right)+w\left(x_{2}\right) f\left(x_{2}\right)}{w\left(x_{1}\right)+w\left(x_{2}\right)} d x_{1} d x_{2} \neq I
$$

- However, when N is very large, the bias approaches to zero

$$
F_{N}=\frac{\frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)}{\frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right)}
$$

$\lim _{N \rightarrow \infty} E\left[F_{N}\right]=\frac{\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)}{\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right)}=\frac{\int_{0}^{1} w(x) f(x) d x}{\int_{0}^{1} w(x) d x}=\int_{0}^{1} w(x) f(x) d x=I$

Choosing samples

- $F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}$
- Carefully choosing the PDF from which samples are drawn is an important technique to reduce variance. We want the f / p to have a low variance. Hence, it is necessary to be able to draw samples from the chosen PDF.
- How to sample an arbitrary distribution from a variable of uniform distribution?
- Inversion
- Rejection
- Transform

Inversion method

- Cumulative probability distribution function

$$
P(x)=\operatorname{Pr}(X<x)
$$

- Construction of samples Solve for $\boldsymbol{X}=\boldsymbol{P}^{-1}(\boldsymbol{U})$
- Must know:

1. The integral of $\boldsymbol{p}(\boldsymbol{x})$
2. The inverse function $\boldsymbol{P}^{-1}(\boldsymbol{x})$

Proof for the inversion method

- Let U be an uniform random variable and its CDF is $P_{u}(x)=x$. We will show that $Y=P^{-1}(U)$ has the CDF $P(x)$.

Proof for the inversion method

- Let U be an uniform random variable and its CDF is $P_{u}(x)=x$. We will show that $Y=P^{-1}(U)$ has the CDF $P(x)$.

$$
\operatorname{Pr}\{Y \leq x\}=\operatorname{Pr}\left\{P^{-1}(U) \leq x\right\}=\operatorname{Pr}\{U \leq P(x)\}=P_{u}(P(x))=P(x)
$$

because P is monotonic,

$$
x_{1} \leq x_{2} \Rightarrow P\left(x_{1}\right) \leq P\left(x_{2}\right)
$$

Thus, Y 's CDF is exactly $P(x)$.

Inversion method

- Compute CDF P(x)

- Compute $\mathrm{P}^{-1}(\mathrm{x})$

- Obtain ξ
- Compute $\mathrm{X}_{\mathrm{i}}=\mathrm{P}^{-1}(\xi)$

Example: power function

It is used in sampling Blinn's microfacet model. $p(x) \propto x^{n}$

Example: power function

It is used in sampling Blinn's microfacet model.

- Assume

$$
\begin{aligned}
& p(x)=(n+1) x^{n} \\
& P(x)=x^{n+1} \\
& X \sim p(x) \Rightarrow X=P^{-1}(U)=\sqrt[n+1]{U}
\end{aligned}
$$

$$
\int_{0}^{1} x^{n} d x=\left.\frac{x^{n+1}}{n+1}\right|_{0} ^{1}=\frac{1}{n+1}
$$

Trick (It only works for sampling power distribution)

$$
\begin{aligned}
& Y=\max \left(U_{1}, U_{2}, \cdots, U_{n}, U_{n+1}\right) \\
& \operatorname{Pr}(Y<x)=\prod_{i=1}^{n+1} \operatorname{Pr}(U<x)=x^{n+1}
\end{aligned}
$$

Example: exponential distribution

$p(x)=c e^{-a x}$ useful for rendering participating media.

- Compute CDF P(x)
- Compute $\mathrm{P}^{-1}(\mathrm{x})$
- Obtain ξ
- Compute $\mathrm{X}_{\mathrm{i}}=\mathrm{P}^{-1}(\xi)$

Example: exponential distribution

$p(x)=c e^{-a x}$ useful for rendering participating media.

$$
\int_{0}^{\infty} c e^{-a x} d x=1 \longrightarrow c=a
$$

- Compute CDF P(x) $P(x)=\int_{0}^{x} a e^{-a s} d s=1-e^{-a x}$
- Compute $\mathrm{P}^{-1}(\mathrm{x})$

$$
P^{-1}(x)=-\frac{1}{a} \ln (1-x)
$$

- Obtain ξ
- Compute $\mathrm{X}_{\mathrm{i}} \mathrm{P}^{-1}(\xi) \quad X=-\frac{1}{a} \ln (1-\xi)=-\frac{1}{a} \ln \xi$

Rejection method

- Sometimes, we can't integrate into CDF or invert CDF

$$
\begin{aligned}
I & =\int_{0}^{1} f(x) d x \\
& =\iint_{y<f(x)} d x d y
\end{aligned}
$$

- Algorithm

Pick \boldsymbol{U}_{1} and \boldsymbol{U}_{2}
Accept $\boldsymbol{U}_{\mathbf{1}}$ if $\boldsymbol{U}_{\mathbf{2}}<\boldsymbol{f}\left(\boldsymbol{U}_{\mathbf{1}}\right)$

- Wasteful? Efficiency = Area $/$ Area of rectangle

Rejection method

- Rejection method is a dart-throwing method without performing integration and inversion.

1. Find $q(x)$ so that $p(x)<M q(x)$
2. Dart throwing
a. Choose a pair (X, ξ), where X is sampled from $q(x)$
b. If $(\xi<p(X) / M q(X))$ return X

- Equivalently, we pick point $(X, \xi M q(X)$). If it lies beneath $p(X)$ then we are fine.

Why it works

- For each iteration, we generate X_{i} from q. The sample is returned if $\xi<p(X) / M q(X)$, which happens with probability $p(X) / M q(X)$.
- So, the probability to return x is

$$
q(x) \frac{p(x)}{M q(x)}=\frac{p(x)}{M}
$$

whose integral is $1 / M$

- Thus, when a sample is returned (with probability $1 / M$), X_{i} is distributed according to $p(x)$.

Example: sampling a unit disk

void RejectionSampleDisk(float *x, float *y) \{
float sx, sy;
do \{
sx = 1.f -2.f * RandomFloat();
sy = 1.f -2.f * RandomFloat();
\} while (sx*sx + sy*sy > 1.f)
*x = sx; *y = sy;
\}
$\pi / 4 \sim 78.5 \%$ good samples, gets worse in higher dimensions, for example, for sphere, $\pi / 6 \sim 52.4 \%$

Transformation of variables

- Given a random variable X from distribution $p_{x}(x)$ to a random variable $Y=y(X)$, where y is one-toone, i.e. monotonic. We want to derive the distribution of $Y, p_{y}(y)$.
- $P_{y}(y(x))=\operatorname{Pr}\{Y \leq y(x)\}=\operatorname{Pr}\{X \leq x\}=P_{x}(x)$
- PDF:

Example

$$
\begin{aligned}
& p_{x}(x)=2 x \\
& Y=\sin X
\end{aligned}
$$

$$
p_{y}(y)=(\cos x)^{-1} p_{x}(x)=\frac{2 x}{\cos x}=\frac{2 \sin ^{-1} y}{\sqrt{1-y^{2}}}
$$

Transformation method

- A problem to apply the above method is that we usually have some PDF to sample from, not a given transformation.
- Given a source random variable X with $p_{x}(x)$ and a target distribution $p_{y}(y)$, try transform X into to another random variable Y so that Y has the distribution $p_{y}(y)$.
- We first have to find a transformation $y(x)$ so that $P_{x}(x)=P_{y}(y(x))$. Thus,

$$
y(x)=P_{y}^{-1}\left(P_{x}(x)\right)
$$

Transformation method

- Let's prove that the above transform works. We first prove that the random variable $Z=P_{x}(x)$ has a uniform distribution. If so, then $P_{y}^{-1}(Z)$ should have distribution P_{y} from the inversion method.
$\operatorname{Pr}\{Z \leq x\}=\operatorname{Pr}\left\{P_{x}(X) \leq x\right\}=\operatorname{Pr}\left\{X \leq P_{x}^{-1}(x)\right\}=P_{x}\left(P_{x}^{-1}(x)\right)=x$
Thus, Z is uniform and the transformation works.
- It is an obvious generalization of the inversion method, in which X is uniform and $P_{x}(x)=x$.

Example

$$
p_{x}(x)=x \xrightarrow{y} p_{y}(y)=e^{y}
$$

Example

$$
\begin{gathered}
p_{x}(x)=x \xrightarrow{y} p_{y}(y)=e^{y} \\
P_{x}(x)=\frac{x^{2}}{2} \quad P_{y}(y)=e^{y} \\
P_{y}^{-1}(y)=\ln y \\
y(x)=P_{y}^{-1}\left(P_{x}(x)\right)=\ln \left(\frac{x^{2}}{2}\right)=2 \ln x-\ln 2
\end{gathered}
$$

Thus, if X has the distribution $p_{x}(x)=x$, then the random variable $Y=2 \ln X-\ln 2$ has the distribution $p_{y}(y)=e^{y}$

Multiple dimensions

- Easily generalized - using the Jacobian of

$$
\mathrm{Y}=\mathrm{T}(\mathrm{X}) \quad p_{y}(T(x))=\left|J_{T}(x)\right|^{-1} p_{x}(x)
$$

- Example - polar coordinates

$$
x=r \cos \theta
$$

$$
\begin{aligned}
& J_{T}(x)=\left(\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)=\left(\begin{array}{ll}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right) \\
& p(x, y)=r^{-1} p(r, \theta)
\end{aligned}
$$

We often need the other way around, $p(r, \theta)=r p(x, y)$

Spherical coordinates

- The spherical coordinate representation of directions is $x=r \sin \theta \cos \phi$

$$
\begin{gathered}
y=r \sin \theta \sin \phi \\
z=r \cos \theta \\
\left|J_{T}\right|=r^{2} \sin \theta \\
p(r, \theta, \phi)=r^{2} \sin \theta p(x, y, z)
\end{gathered}
$$

Spherical coordinates

- Now, look at relation between spherical directions and a solid angles

$$
d \omega=\sin \theta d \theta d \phi
$$

- Hence, the density in terms of θ, ϕ

$$
\begin{gathered}
p(\theta, \phi) d \theta d \phi=p(\omega) d \omega \\
p(\theta, \phi)=\sin \theta p(\omega)
\end{gathered}
$$

Multidimensional sampling

- Separable case: independently sample X from p_{x} and Y from $p_{y} \cdot p(x, y)=p_{x}(x) p_{y}(y)$
- Often, this is not possible. Compute the marginal density function $p(x)$ first.

$$
p(x)=\int p(x, y) d y
$$

- Then, compute the conditional density function

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

- Use 1 D sampling with $p(x)$ and $p(y \mid x)$.

Sampling a hemisphere

- Sample a hemisphere uniformly, i.e. $p(\omega)=c$

Sampling a hemisphere

- Sample a hemisphere uniformly, i.e. $p(\omega)=c$

$$
\begin{aligned}
1=\int_{\Omega} p(\omega) \quad c=\frac{1}{2 \pi} \rightarrow p(\omega) & =\frac{1}{2 \pi} \\
& \downarrow(\theta, \phi) \\
t & =\frac{\sin \theta}{2 \pi}
\end{aligned}
$$

- Sample θ first

$$
p(\theta)=\int_{0}^{2 \pi} p(\theta, \phi) d \phi=\int_{0}^{2 \pi} \frac{\sin \theta}{2 \pi} d \phi=\sin \theta
$$

- Now sampling ϕ

$$
p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{1}{2 \pi}
$$

Sampling a hemisphere

- Now, we use inversion technique in order to sample the PDF's

$$
\begin{aligned}
& P(\theta)=\int_{0}^{\theta} \sin \theta^{\prime} d \theta^{\prime}=1-\cos \theta \\
& P(\phi \mid \theta)=\int_{0}^{\phi} \frac{1}{2 \pi} d \phi^{\prime}=\frac{\phi}{2 \pi}
\end{aligned}
$$

- Inverting these:

$$
\begin{aligned}
& \theta=\cos ^{-1} \xi_{1} \\
& \phi=2 \pi \xi_{2}
\end{aligned}
$$

Sampling a hemisphere

- Convert these to Cartesian coordinate

$$
\begin{aligned}
& \theta=\cos ^{-1} \xi_{1} \longrightarrow \begin{aligned}
& x=\sin \theta \cos \phi=\cos \left(2 \pi \xi_{2}\right) \sqrt{1-\xi_{1}^{2}} \\
& \phi=2 \pi \xi_{2}
\end{aligned} \longrightarrow \begin{aligned}
y & =\sin \theta \sin \phi=\sin \left(2 \pi \xi_{2}\right) \sqrt{1-\xi_{1}^{2}} \\
z & =\cos \theta=\xi_{1}
\end{aligned} \\
& \hline
\end{aligned}
$$

- Similar derivation for a full sphere

Sampling a disk

WRONG \neq Equi-Areal
RIGHT = Equi-Areal

$$
\begin{aligned}
& \theta=2 \pi U_{1} \\
& r=U_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=2 \pi U_{1} \\
& r=\sqrt{U_{2}}
\end{aligned}
$$

Sampling a disk

WRONG \neq Equi-Areal
RIGHT = Equi-Areal

$$
\begin{aligned}
& \theta=2 \pi U_{1} \\
& r=U_{2}
\end{aligned}
$$

Sampling a disk

- Uniform $\quad p(x, y)=\frac{1}{\pi} \quad p(r, \theta)=r p(x, y)=\frac{r}{\pi}$
- Sample r first.

$$
p(r)=\int_{0}^{2 \pi} p(r, \theta) d \theta=2 r
$$

- Then, sample θ.

$$
p(\theta \mid r)=\frac{p(r, \theta)}{p(r)}=\frac{1}{2 \pi}
$$

- Invert the CDF.

$$
\begin{array}{ll}
P(r)=r^{2} & P(\theta \mid r)=\frac{\theta}{2 \pi} \\
r=\sqrt{\xi_{1}} & \theta=2 \pi \xi_{2}
\end{array}
$$

Shirley's mapping

\Rightarrow

Sampling a triangle

$$
\begin{aligned}
& u \geq 0 \\
& v \geq 0 \\
& u+v \leq 1 \\
& A=\int_{0}^{1} \int_{0}^{1-u} d v d u=\int_{0}^{1}(1-u) d u=-\left.\frac{(1-u)^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} \\
& p(u, v)=2
\end{aligned}
$$

Sampling a triangle

- Here u and v are not independent! $p(u, v)=2$
- Conditional probability

$$
\begin{aligned}
& p(u) \equiv \int_{1} p(u, v) d v \quad p(u \mid v) \equiv \frac{p(u, v)}{p(v)} \\
& p(u)=2 \int_{0}^{1-u} d v=2(1-u) \quad u_{0}=1-\sqrt{U_{1}} \\
& P\left(u_{0}\right)=\int_{0}^{u_{0}} 2(1-u) d u=\left(1-u_{0}\right)^{2} \quad v_{0}=\sqrt{U_{1}} U_{2} \\
& p(v \mid u)=\frac{1}{(1-u)} \\
& P\left(v_{0} \mid u_{0}\right)=\int_{0}^{v_{0}} p\left(v \mid u_{0}\right) d v=\int_{0}^{v_{0}} \frac{1}{\left(1-u_{0}\right)} d v=\frac{v_{0}}{\left(1-u_{0}\right)}
\end{aligned}
$$

Cosine weighted hemisphere

$p(\omega) \propto \cos \theta$

$$
1=\int_{\Omega} p(\omega) d \omega
$$

$1=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} c \cos \theta \sin \theta d \theta d \phi$
$1=c 2 \pi \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d \theta$

$$
c=\frac{1}{\pi}
$$

$$
p(\theta, \phi)=\frac{1}{\pi} \cos \theta \sin \theta
$$

$d \omega=\sin \theta d \theta d \phi$

Cosine weighted hemisphere

$p(\theta, \phi)=\frac{1}{\pi} \cos \theta \sin \theta$
$p(\theta)=\int_{0}^{2 \pi} \frac{1}{\pi} \cos \theta \sin \theta d \phi=2 \cos \theta \sin \theta=\sin 2 \theta$
$p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{1}{2 \pi}$
$P(\theta)=-\frac{1}{2} \cos 2 \theta+\frac{1}{2}=\xi_{1} \quad \theta=\frac{1}{2} \cos ^{-1}\left(1-2 \xi_{1}\right)$
$P(\phi \mid \theta)=\frac{\phi}{2 \pi}=\xi_{2}$
$\phi=2 \pi \xi_{2}$

Cosine weighted hemisphere

- Malley's method: uniformly generates points on the unit disk and then generates directions by projecting them up to the hemisphere above it. Vector CosineSampleHemisphere(float u1,float u2) \{ Vector ret;
ConcentricSampleDisk(u1, u2, \&ret.x, \&ret.y); ret.z $=\operatorname{sqrtf(\operatorname {max}(0.f,1.f-ret.x*ret.x-1}$ return ret; \}

Cosine weighted hemisphere

- Why does Malley's method work?
- Unit disk sampling $p(r, \phi)=\frac{r}{\pi}$
- Map to hemisphere $(r, \phi) \Rightarrow(\sin \theta, \phi)$

$$
\begin{aligned}
& Y=(r, \phi) \stackrel{T}{r} X=(\theta, \phi) \\
& r=\sin \theta \\
& \phi=\phi \\
& p_{y}(T(x))=\left|J_{T}(x)\right|^{-1} p_{x}(x) \\
& \left|J_{T}(x)\right|=\left|\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & 1
\end{array}\right)\right|=\cos \theta
\end{aligned}
$$

Cosine weighted hemisphere

$$
\begin{gathered}
Y=(r, \phi) \stackrel{T}{\stackrel{T}{2}} X=(\theta, \phi) \\
r=\sin \theta \\
\phi=\phi \\
p_{y}(T(x))=\left|J_{T}(x)\right|^{-1} p_{x}(x) \\
\left|J_{T}(x)\right|=\left|\left(\begin{array}{cc}
\cos \theta & 0 \\
0 & 1
\end{array}\right)\right|=\cos \theta \\
p(\theta, \phi)=\left|J_{T}\right| p(r, \phi)=\frac{\cos \theta \sin \theta}{\pi}
\end{gathered}
$$

Sampling Phong lobe

$p(\omega) \propto \cos ^{n} \theta$

$$
p(\omega)=c \cos ^{n} \theta \rightarrow \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} c \cos ^{n} \theta \sin \theta d \theta d \phi=1
$$

$$
\rightarrow-2 \pi c \int_{\cos \theta=1}^{0} \cos ^{n} \theta d \cos \theta=1 \rightarrow \frac{2 \pi c}{n+1}=1
$$

$$
\rightarrow c=\frac{n+1}{2 \pi}
$$

$p(\theta, \phi)=\frac{n+1}{2 \pi} \cos ^{n} \theta \sin \theta$

Sampling Phong lobe

$$
\begin{aligned}
& p(\theta, \phi)=\frac{n+1}{2 \pi} \cos ^{n} \theta \sin \theta \\
& p(\theta)=\int_{\phi=0}^{2 \pi} \frac{n+1}{2 \pi} \cos ^{n} \theta \sin \theta d \phi=(n+1) \cos ^{n} \theta \sin \theta \\
& P\left(\theta^{\prime}\right)=\int_{\theta=0}^{\theta^{\prime}}(n+1) \cos ^{n} \theta \sin \theta d \theta \\
& =-(n+1) \int_{\theta=0}^{\theta^{\prime}} \cos ^{n} \theta d \cos \theta=-\left.(n+1) \frac{\cos ^{n+1} \theta}{n+1}\right|_{\cos \theta=1} ^{\cos \theta^{\prime}} \\
& =1-\cos ^{n+1} \theta^{\prime} \\
& \theta=\cos ^{-1}\left(\sqrt[n+1]{\xi_{1}}\right)
\end{aligned}
$$

Sampling Phong lobe

$$
p(\theta, \phi)=\frac{n+1}{2 \pi} \cos ^{n} \theta \sin \theta
$$

$$
p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{\frac{n+1}{2 \pi} \cos ^{n} \theta \sin \theta}{(n+1) \cos ^{n} \theta \sin \theta}=\frac{1}{2 \pi}
$$

$$
P\left(\phi^{\prime} \mid \theta\right)=\int_{\phi=0}^{\phi^{\prime}} \frac{1}{2 \pi} d \phi=\frac{\phi^{\prime}}{2 \pi}
$$

$$
\phi=2 \pi \xi_{2}
$$

Sampling Phong lobe

When $\mathrm{n}=1$, it is actually equivalent to cosine-weighted hemisphere

$$
\begin{aligned}
& \mathrm{n}=1,(\theta, \phi)=\left(\cos ^{-1} \sqrt{\xi_{1}}, 2 \pi \xi_{2}\right) \quad(\theta, \phi)=\left(\frac{1}{2} \cos ^{-1}\left(1-2 \xi_{1}\right), 2 \pi \xi_{2}\right) \\
& P(\theta)=1-\cos ^{n+1} \theta=1-\cos ^{2} \theta \quad P(\theta)=-\frac{1}{2} \cos 2 \theta+\frac{1}{2} \\
& -\frac{1}{2} \cos 2 \theta+\frac{1}{2}=-\frac{1}{2}\left(1-2 \sin ^{2} \theta\right)+\frac{1}{2}=\sin ^{2} \theta=1-\cos ^{2} \theta
\end{aligned}
$$

Piecewise-constant 2d distributions

- Sample from discrete 2D distributions. Useful for texture maps and environment lights.
- Consider $f(u, v)$ defined by a set of $n_{u} \times n_{v}$ values $f\left[u_{i}, v_{j}\right]$.
- Given a continuous [u, v], we will use [u ', v '] to denote the corresponding discrete $\left(u_{i}, v_{j}\right)$ indices.

Piecewise-constant 2d distributions

integral $\quad I_{f}=\iint f(u, v) d u d v=\frac{1}{n_{u} n_{v}} \sum_{i=0}^{n_{u}-1} \sum_{j=0}^{n_{v}-1} f\left[u_{i}, v_{j}\right]$
pdf $\quad p(u, v)=\frac{f(u, v)}{\iint f(u, v) d u d v}=\frac{f\left[u^{\prime}, v^{\prime}\right]}{1 /\left(n_{u} n_{v}\right) \sum_{i} \sum_{j} f\left[u_{i}, v_{j}\right]}$
marginal density

$$
p(v)=\int p(u, v) d u=\frac{\left(1 / n_{u}\right) \sum_{i} f\left[u_{i}, v^{\prime}\right]}{I_{f}}
$$

$\begin{gathered}\text { conditional } \\ \text { probability }\end{gathered} p(u \mid v)=\frac{p(u, v)}{p(v)}=\frac{f\left[u^{\prime}, v^{\prime}\right] / I_{f}}{p\left[v^{\prime}\right]}$

Piecewise-constant 2d distributions

Metropolis sampling

- Metropolis sampling can efficiently generate a set of samples from any non-negative function f requiring only the ability to evaluate f.
- Disadvantage: successive samples in the sequence are often correlated. It is not possible to ensure that a small number of samples generated by Metropolis is well distributed over the domain. There is no technique like stratified sampling for Metropolis.

Metropolis sampling

- Problem: given an arbitrary function

$$
f(x) \rightarrow \mathbb{R}, x \in \Omega
$$

assuming $\quad \mathbf{I}(f)=\int_{\Omega} f(x) \mathrm{d} \Omega$

$$
f_{\mathrm{pdf}}=f / \mathbf{I}(f)
$$

generate a set of samples

$$
X=\left\{x_{i}\right\}, x_{i} \sim f_{\mathrm{pdf}}
$$

Metropolis sampling

- Steps
- Generate initial sample x_{0}
- mutating current sample x_{i} to propose x,
- If it is accepted, $x_{i+1}=x$,

Otherwise, $x_{i+1}=x_{i}$

- Acceptance probability guarantees distribution is the stationary distribution f

Metropolis sampling

- Mutations propose x ' given x_{i}
- $T\left(x \rightarrow x^{\prime}\right)$ is the tentative transition probability density of proposing x ' from x
- Being able to calculate tentative transition probability is the only restriction for the choice of mutations
- $a\left(x \rightarrow x^{\prime}\right)$ is the acceptance probability of accepting the transition
- By defining $a(x \rightarrow x$ ') carefully, we ensure $x_{i} \sim f(x)$

Metropolis sampling

- Detailed balance

stationary distribution

Pseudo code

$$
\begin{aligned}
& x=x 0 \\
& \text { for } i=1 \text { to } n \\
& x^{\prime}=\operatorname{mutate}(x) \\
& a=\operatorname{accept}\left(x, x^{\prime}\right) \\
& \text { if }(\operatorname{random}()<a) \\
& x=x \\
& \operatorname{record}(x)
\end{aligned}
$$

Pseudo code (expected value)

$$
x=x 0
$$

$$
\text { for } i=1 \text { to } n
$$

$$
x^{\prime}=\text { mutate }(x)
$$

$$
a=\operatorname{accept}\left(x, x^{\prime}\right)
$$

record(x, (1-a) * weight)
record(x', a * weight)
if (random() < a)

$$
\mathrm{x}=\mathrm{x}
$$

Binary example I

$\Omega=a, b$ and $f(a)=9, f(b)=1$
$\operatorname{mutate}(x)=\left\{\begin{array}{lll}a & : & \xi<0.5 \\ b & : & \text { otherwise }\end{array}\right.$
Then transition densities are

$$
T(\{a, b\} \rightarrow\{a, b\})=1 / 2
$$

It directly follows that

$$
\begin{gathered}
a(a \rightarrow b)=\min (1, f(b) / f(a))=.1111 \ldots \\
a(a \rightarrow a)=a(b \rightarrow a)=a(b \rightarrow b)=1
\end{gathered}
$$

Binary example II

$\Omega=a, b$ and $f(a)=9, f(b)=1$
$\operatorname{mutate}(x)=\left\{\begin{array}{lll}a & : & \xi<8 / 9 \\ b & : & \text { otherwise }\end{array}\right.$
transition densities

$$
T(\{a, b\} \rightarrow a)=8 / 9
$$

$$
\begin{aligned}
T(\{a, b\} \rightarrow b) & =1 / 9 \\
a(a \rightarrow b) & =.9 / .9=1
\end{aligned}
$$

Acceptance probabilities

$$
a(b \rightarrow a)=.9 / .9=1
$$

Better transitions improve acceptance probability

Acceptance probability

- Does not affect unbiasedness; just variance
- Want transitions to happen because transitions are often heading where f is large
- Maximize the acceptance probability
- Explore state space better
- Reduce correlation

Mutation strategy

- Very free and flexible; the only requirement is to be able to calculate transition probability
- Based on applications and experience
- The more mutation, the better
- Relative frequency of them is not so important

Start-up bias

- Using an initial sample not from f's distribution leads to a problem called start-up bias.
- Solution \#1: run MS for a while and use the current sample as the initial sample to re-start the process.
- Expensive start-up cost
- Need to guess when to re-start
- Solution \#2: use another available sampling method to start

1D example

$$
f^{1}(x)=\left\{\begin{array}{rll}
(x-.5)^{2} & : & 0 \leq x \leq 1 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

1D example (mutation)

mutate $_{1}(x) \rightarrow \xi$
$T_{1}\left(x \rightarrow x^{\prime}\right)=1$
mutate $_{2}(x) \rightarrow x+.1 *(\xi-.5)$

$$
T_{2}\left(x \rightarrow x^{\prime}\right)=\left\{\begin{array}{rll}
\frac{1}{0.1} & : & \left|x-x^{\prime}\right| \leq .05 \\
0 & : & \text { otherwise }
\end{array}\right.
$$

1D example

mutation 2
10,000 iterations

1D example

1D example

Periodically using uniform mutations increases ergodicity

2D example (image copy)

void makeHistogram(float $F[w][h]$, float histogram $[w][h]$, int mutations) $\{$

```
int i, x0, x1, y0, y1;
float Fx, Fy, Txy, Tyx, Axy;
// Create an initial sample point
x0 = randomInteger(0, w-1);
x1 = randomInteger(0, h-1);
Fx = F[x0][x1];
// In this example, the tentative transition function T simply chooses
// a random pixel location, so Txy and Tyx are always equal.
Txy=1.0 / (w *h);
Tyx = 1.0 / (w *h);
```


2D example (image copy)

// Create a histogram of values using Metropolis sampling. for ($\mathbf{i}=\mathbf{0} ; \mathbf{i}<$ mutations; $\mathbf{i}++$) $\{$
$/ /$ choose a tentative next sample according to T.
$\mathrm{y} 0=\operatorname{randomInteger}(0, \mathrm{w}-1)$;
$\mathrm{y} 1=\operatorname{randomInteger}(0, \mathrm{~h}-1)$;
$\mathbf{F y}=\mathbf{F}[\mathbf{y} 0][\mathrm{y} 1]$;
$A x y=\operatorname{MIN}(1,(\mathbf{F y} * T x y) /(F x * T y x)) ; / /$ equation 2.
if (randomReal $(\mathbf{0 . 0}, 1.0)<$ Axy) $\{$
$\mathrm{x} 0=\mathrm{y} 0$;
$\mathrm{x} 1=\mathrm{y} 1$;
$\mathbf{F x}=\mathbf{F y}$;
\}
histogram $[\mathrm{x} 0][\mathrm{x} 1]+=1$;
\}
\}

2D example (image copy)

1 sample per pixel

8 samples per pixel

256 samples per pixel

