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• The integral equations generally don’t have 

analytic solutions, so we must turn to numerical 
methods.

• Standard methods like Trapezoidal integration p g
or Gaussian quadrature are not effective for 
high-dimensional and discontinuous integrals.g g



Numerical quadrature 

• Suppose we want to calculate                 , but 
can’t solve it analytically  The approximations 
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can t solve it analytically. The approximations 
through quadrature rules have the form





n

i
ii xfwI

1
)(ˆ

which is essentially the weighted sum of 
samples of the function at various pointsp p



Midpoint rule

convergenceconvergence



Trapezoid rule

convergenceconvergence



Simpson’s rule

• Similar to trapezoid but using a quadratic 
polynomial approximationpolynomial approximation

convergenceconvergence

assuming  f has a continuous fourth derivative.



Curse of dimensionality and discontinuity

• For an sd 
f i  ffunction f,

• If the 1d rule has a convergence rate of O(n-r), 
the sd rule would require a much larger number 
(ns) of samples to work as well as the 1d one. 
Thus, the convergence rate is only O(n-r/s).

• If f is discontinuous, convergence is O(n-1/s) for , g ( )
sd.



Randomized algorithms

• Las Vegas v.s. Monte Carlo
L  V  l  i  h  i h   b  • Las Vegas: always gives the right answer by 
using randomness.

• Monte Carlo: gives the right answer on the 
average. Results depend on random numbers 
used, but statistically likely to be close to the 
right answer.



Monte Carlo integration

• Monte Carlo integration: uses sampling to 
estimate the values of integrals  It only estimate the values of integrals. It only 
requires to be able to evaluate the integrand at 
arbitrary points  making it easy to implementarbitrary points, making it easy to implement
and applicable to many problems.
If l   d  it   t th  t  • If n samples are used, its converges at the rate 
of O(n-1/2). That is, to cut the error in half, it is 

 t  l t  f  ti    necessary to evaluate four times as many 
samples.

• Images by Monte Carlo methods are often noisy. 
Most current methods try to reduce noise.



Monte Carlo methods

• Advantages
E  t  i l t– Easy to implement

– Easy to think about (but be careful of statistical bias)
R b t h  d ith l  i t d  d – Robust when used with complex integrands and 
domains (shapes, lights, …)
Efficient for high dimensional integrals– Efficient for high dimensional integrals

• Disadvantages
– Noisy
– Slow (many samples needed for convergence)



Basic concepts

• X is a random variable
A l i   f i    d  i bl  i  • Applying a function to a random variable gives 
another random variable, Y=f(X).

• CDF (cumulative distribution function) 
}Pr{)( xXxP 

• PDF (probability density function): nonnegative, 
sum to 1 xdP )(
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sum to 1

i l if  d  i bl  ξ ( id d 
dx

xdPxp )()( 

• canonical uniform random variable ξ (provided 
by standard library and easy to transform to 
th  di t ib ti )other distributions)



Discrete probability distributions
• Discrete events Xi with probability pi
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• Cumulative PDF (distribution)
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• Construction of samples:
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• Construction of samples:
To randomly select an event,

Select Xi if 1i iP U P  
0iP 0

Uniform random variable 3X



Continuous probability distributions

• PDF ( )p x Uniform

( ) 0p x 

• CDF
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Expected values

• Average value of a function f(x) over some 
distribution of values p(x) over its domain Ddistribution of values p(x) over its domain D
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• Example: cos function over [0, π], p is uniform
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Variance

• Expected deviation from the expected value
F d l  f if i  h   • Fundamental concept of quantifying the error 
in Monte Carlo methods
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Properties

   )()( xfaExafE    

  







ii XfEXfE )()(  



 ii

   )()( 2 xfVaxafV    )()( xfVaxafV

      22 )()()( xfExfExfV       )()()( xfExfExfV 



Monte Carlo estimator

• Assume that we want to 
evaluate the integral of evaluate the integral of 
f(x) over [a,b]
Gi   if  d  • Given a uniform random 
variable Xi over [a,b], 
M t  C l  ti t  Monte Carlo estimator 
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says that the expected 
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says that the expected 
value E[FN] of the 
estimator FN equals the estimator FN equals the 
integral



General Monte Carlo estimator

• Given a random variable X drawn from an 
arbitrary PDF p(x) then the estimator isarbitrary PDF p(x), then the estimator is
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• Although the converge rate of MC estimator is 
O(N1/2), slower than other integral methods, its ( )
converge rate is independent of the dimension, 
making it the only practical method for high 
dimensional integral 



Convergence of Monte Carlo

• Chebyshev’s inequality: let X be a random 
variable with expected value μ and variance σ2  variable with expected value μ and variance σ2. 
For any real number k>0,
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• For example, for k=    , it shows that at least 
half of the value lie in the interval 
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Convergence of Monte Carlo
• According to Chebyshev’s inequality,
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Plugging into Chebyshev’s inequality
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• Plugging into Chebyshev’s inequality,
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So, for a fixed threshold, the error decreases at 
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the rate N-1/2.



Properties of estimators

• An estimator FN is called unbiased if for all N

That is, the expected value is independent of N.
QFE N ][

• Otherwise, the bias of the estimator is defined 
as 



• If the bias goes to zero as N increases  the 

QFEF NN  ][][

• If the bias goes to zero as N increases, the 
estimator is called consistent
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Example of a biased consistent estimator

• Suppose we are doing antialiasing on a 1d pixel, 
to determine the pixel value  we need to to determine the pixel value, we need to 
evaluate                        , where         is the 
filter function with
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1)( dfilter function with
• A common way to evaluate this is
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• When N=1, we have 
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Example of a biased consistent estimator

• When N=2, we have 

Idxdx
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• However, when N is very large, the bias 
approaches to zeropp
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Choosing samples

• 
N

i
N X

Xf
N

F
)(
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• Carefully choosing the PDF from which samples 
are drawn is an important technique to reduce 
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are drawn is an important technique to reduce 
variance. We want the f/p to have a low 
variance  Hence  it is necessary to be able to variance. Hence, it is necessary to be able to 
draw samples from the chosen PDF.

• How to sample an arbitrary distribution from a • How to sample an arbitrary distribution from a 
variable of uniform distribution?
– Inversionve s o
– Rejection
– Transform



Inversion method

• Cumulative probability distribution function

( ) Pr( )P x X x 

• Construction of samples
Solve for X=P-1(U)

1

Solve for X P (U)

• Must know:

U

• Must know:
1. The integral of p(x)

12. The inverse function P-1(x)
X

0



Proof for the inversion method

• Let U be an uniform random variable and its 
CDF is P (x) x  We will show that Y P-1(U) has CDF is Pu(x)=x. We will show that Y=P-1(U) has 
the CDF P(x).



Proof for the inversion method

• Let U be an uniform random variable and its 
CDF is P (x) x  We will show that Y P-1(U) has CDF is Pu(x)=x. We will show that Y=P-1(U) has 
the CDF P(x).

      )())(()(Pr)(PrPr 1 xPxPPxPUxUPxY u  

because P is monotonic,
)()( 2121 xPxPxx 

Thus, Y’s CDF is exactly P(x).
)()( 2121



Inversion method

• Compute CDF P(x)

• Compute P-1(x)

• Obtain ξξ

• Compute Xi=P-1(ξ)



Example: power function
It is used in sampling Blinn’s microfacet model.
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Example: power function

A

It is used in sampling Blinn’s microfacet model.

• Assume
( ) ( 1) np x n x 
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Trick (It only works for sampling power distribution)
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Example: exponential distribution

useful for rendering participating media.
axcexp )(

• Compute CDF P(x)

• Compute P-1(x)• Compute P (x)

Obt i  ξ• Obtain ξ
• Compute Xi=P-1(ξ)



Example: exponential distribution

useful for rendering participating media.
axcexp )(

1
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  dxce ax ac 

• Compute CDF P(x)

0
axx as edsaexP    1)(

• Compute P-1(x)

edsaexP   1)(
0

1• Compute P (x)

Obt i  ξ
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• Obtain ξ
• Compute Xi=P-1(ξ)  ln1)1ln(1X   )(
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Rejection method

• Sometimes, we can’t integrate into CDF or 
invert CDF

1

( )I f x dx 

invert CDF

0
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dx dy
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• Algorithm
( )y f x

dx dy


 
• Algorithm

Pick U1 and U2
Accept U if U < f(U )Accept U1 if U2 < f(U1)

• Wasteful?  Efficiency = Area / Area of rectangle• Wasteful?  Efficiency = Area / Area of rectangle



Rejection method

• Rejection method is a dart-throwing method 
without performing integration and inversion  without performing integration and inversion. 

1. Find q(x) so that p(x)<Mq(x)
2. Dart throwing

a. Choose a pair (X, ξ), where X is sampled from q(x)
b. If (ξ<p(X)/Mq(X)) return X

• Equivalently, we pick a qu vale tly, we p c  a 
point (X, ξMq(X)). If 
it lies beneath (X)it lies beneath p(X)
then we are fine.



Why it works

• For each iteration, we generate Xi from q. The 
sample is returned if ξ<p(X)/Mq(X) which sample is returned if ξ<p(X)/Mq(X), which 
happens with probability p(X)/Mq(X). 
S  th  b bilit  t  t  i  • So, the probability to return x is 

xpxpxq )()()( 

whose integral is 1/M

MxMq
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whose integral is 1/M
• Thus, when a sample is returned (with 

probability 1/M)  X is distributed according to probability 1/M), Xi is distributed according to 
p(x).



Example: sampling a unit disk
void RejectionSampleDisk(float *x, float *y) {

float sx, sy;, y;
do {

sx = 1.f -2.f * RandomFloat();
sy = 1.f -2.f * RandomFloat();

} while (sx*sx + sy*sy > 1.f)
*x = sx; *y = sy;*x = sx;  *y = sy;

}

π/4～78.5% good samples, gets worse in higher 
dimensions, for example, for sphere, π/6～52.4% dimensions, for example, for sphere, π/6 52.4% 



Transformation of variables

• Given a random variable X from distribution px(x)
to a random variable Y y(X)  where y is one toto a random variable Y=y(X), where y is one-to-
one, i.e. monotonic. We want to derive the 
distribution of Y  p (y)distribution of Y, py(y).

• )(}Pr{)}(Pr{))(( xPxXxyYxyP xy 
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• PDF: 
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Transformation method

• A problem to apply the above method is that 
we usually have some PDF to sample from  not we usually have some PDF to sample from, not 
a given transformation.
Gi    d  i bl  X ith ( ) d • Given a source random variable X with px(x) and 
a target distribution py(y), try transform X into 
t  th  d  i bl  Y  th t Y h  th  to another random variable Y so that Y has the 
distribution py(y).

• We first have to find a transformation y(x) so 
that Px(x)=Py(y(x)). Thus, y

))(()( 1 xPPxy xy




Transformation method

• Let’s prove that the above transform works.
W  fi   h  h  d  i bl  ( )We first prove that the random variable Z= Px(x) 
has a uniform distribution. If so, then )(1 ZPy



should have distribution Py from the inversion 
method.

Thus  Z is uniform and the transformation works
      xxPPxPXxXPxZ xxxx   ))(()(Pr)(PrPr 11

Thus, Z is uniform and the transformation works.
• It is an obvious generalization of the inversion 

method  in which X is uniform and P (x)=xmethod, in which X is uniform and Px(x)=x.



Example
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Example
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Multiple dimensions

We often need the other way around,



Spherical coordinates

• The spherical coordinate representation of 
directions is idirections is
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Spherical coordinates

• Now, look at relation between spherical 
directions and a solid anglesdirections and a solid angles

 ddd sin
• Hence, the density in terms of   ,

 dpddp )(),(   dpddp )(),(
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Multidimensional sampling

• Separable case: independently sample X from px
and Y from p  p(x y) p (x)p (y)and Y from py. p(x,y)=px(x)py(y)

• Often, this is not possible. Compute the 
i l d it  f ti  ( ) fi tmarginal density function p(x) first.

 dyyxpxp )()(

• Then  compute the conditional density function 

 dyyxpxp ),()(

• Then, compute the conditional density function 
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• Use 1D sampling with p(x) and p(y|x).
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Sampling a hemisphere

• Sample a hemisphere uniformly, i.e. cp )(



Sampling a hemisphere

• Sample a hemisphere uniformly, i.e. cp )(
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Sampling a hemisphere

• Now, we use inversion technique in order to 
sample the PDF’ssample the PDF s
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• Inverting these:
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Sampling a hemisphere

• Convert these to Cartesian coordinate
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• Similar derivation for a full sphere



Sampling a disk

RIGHT  Equi-ArealWRONG  Equi-Areal RIGHT Equi ArealWRONG  Equi Areal
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Sampling a disk

RIGHT  Equi-ArealWRONG  Equi-Areal RIGHT Equi ArealWRONG  Equi Areal
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Sampling a disk

• Uniform

1),( yxp
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• Sample r first. 
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• Then  sample   

rdrprp 2),()(
0

  

• Then, sample   .
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Shirley’s mapping
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Sampling a triangle
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Sampling a triangle

• Here u and v are not independent! ( , ) 2p u v 
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• Conditional probability
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Cosine weighted hemisphere
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Cosine weighted hemisphere
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Cosine weighted hemisphere

• Malley’s method: uniformly generates points on 
the unit disk and then generates directions by the unit disk and then generates directions by 
projecting them up to the hemisphere above it.

Vector CosineSampleHemisphere(float u1 float u2){Vector CosineSampleHemisphere(float u1,float u2){
Vector ret;
ConcentricSampleDisk(u1 u2 &ret x &ret y);ConcentricSampleDisk(u1, u2, &ret.x, &ret.y);
ret.z = sqrtf(max(0.f,1.f - ret.x*ret.x -

ret.y*ret.y));ret.y ret.y));
return ret;

}}

r



Cosine weighted hemisphere

• Why does Malley’s method work?
U i  di k li  r)(• Unit disk sampling

• Map to hemisphere


rp ),(

),(sin),(  r

i
),( rY  ),( XT





 sinr



 
)()())(( 1 xpxJxTp xTy




)()())(( pp xTy




cos
0cos

)( 





xJ cos
10

)( 





xJT



Cosine weighted hemisphere

),( rY  ),( XT

 sinr
),(  ),( 

 
)()())(( 1 xpxJxTp  )()())(( xpxJxTp xTy 

 0cos









cos
10
0cos

)( 







xJT

 sincos),(),(  rpJp T 
 ),(),( pp T



Sampling Phong lobe
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Sampling Phong lobe




 sincos
2

1),( nnp 


sincos)1(sincos
2

1)(
2

0












  nn ndnp

sincos)1()'(
'

0






  n dnP

cos)1(coscos)1(
'cos1'

0










 


n

n ndn

'cos1

1
)1(coscos)1(

1
1cos0













 

n

n
ndn

cos1 

 1
1

1cos  n 



Sampling Phong lobe
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Sampling Phong lobe



cosine-weighted hemisphereWhen n=1, it is actually equivalent to
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Piecewise-constant 2d distributions

• Sample from discrete 2D distributions. Useful 
for texture maps and environment lightsfor texture maps and environment lights.

• Consider f(u, v) defined by a set of nunv values 
f[ ]f[ui, vj]. 

• Given a continuous [u, v], we will use [u’, v’] to 
denote the corresponding discrete (ui, vj) 
indices.



Piecewise-constant 2d distributions
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Piecewise-constant 2d distributions
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Metropolis sampling

• Metropolis sampling can efficiently generate a 
set of samples from any non negative function fset of samples from any non-negative function f
requiring only the ability to evaluate f.
Di d t  i  l  i  th  • Disadvantage: successive samples in the 
sequence are often correlated. It is not possible 
t   th t  ll b  f l  to ensure that a small number of samples 
generated by Metropolis is well distributed over 
th  d i  Th  i   t h i  lik  the domain. There is no technique like 
stratified sampling for Metropolis.



Metropolis sampling

• Problem: given an arbitrary function

assuming 

generate a set of samples



Metropolis sampling

• Steps
G  i i i l l  – Generate initial sample x0

– mutating current sample xi to propose x’
– If it is accepted, xi+1 = x’

Otherwise  xi 1 = xiOtherwise, xi+1  xi

• Acceptance probability guarantees distribution 
is the stationary distribution fis the stationary distribution f



Metropolis sampling

• Mutations propose x’ given xi

• T(x→x’) is the tentative transition probability 
density of proposing x’ from xy p p g

• Being able to calculate tentative transition 
probability is the only restriction for the choice probability is the only restriction for the choice 
of mutations

• a(x→x’) is the acceptance probability of 
accepting the transition

• By defining a(x→x’) carefully, we ensure 



Metropolis sampling

• Detailed balance

stationary distributionstationary distribution



Pseudo code



Pseudo code (expected value)



Binary example I



Binary example II



Acceptance probability

• Does not affect unbiasedness; just variance
W  i i   h  b  i i  • Want transitions to happen because transitions 
are often heading where f is large

• Maximize the acceptance probability
– Explore state space better
– Reduce correlation



Mutation strategy

• Very free and flexible; the only requirement is 
to be able to calculate transition probabilityto be able to calculate transition probability

• Based on applications and experience
• The more mutation, the better
• Relative frequency of them is not so importantq y p



Start-up bias

• Using an initial sample not from f’s distribution 
leads to a problem called start up bias  leads to a problem called start-up bias. 

• Solution #1: run MS for a while and use the 
t l   th  i iti l l  t  t t current sample as the initial sample to re-start 

the process.
– Expensive start-up cost
– Need to guess when to re-start

• Solution #2: use another available sampling 
method to start



1D example



1D example (mutation)



1D example

mutation 1 mutation 2
10,000 iterations



1D example

mutation 1 mutation 2
300,000 iterations



1D example

mutation 1 90% mutation 2
+ 10% mutation 1

Periodically using uniform mutations increases ergodicity



2D example (image copy)



2D example (image copy)



2D example (image copy)

1 sample 
 i l

8 samples 
 i l

256 samples 
 i lper pixel per pixel per pixel


