
Sampling and Reconstruction

Digital Image Synthesisg g y
Yung-Yu Chuang

with slides by Pat Hanrahan, Torsten Moller and Brian Curless

Sampling theory

• Sampling theory: the theory of taking discrete
sample values (grid of color pixels) from sample values (grid of color pixels) from
functions defined over continuous domains
(incident radiance defined over the film plane)(incident radiance defined over the film plane)
and then using those samples to reconstruct new
functions that are similar to the original functions that are similar to the original
(reconstruction).

Sampler: selects sample points on the image plane
Filter: blends multiple samples together

Aliasing

• Reconstruction generates an approximation to
the original function Error is called aliasingthe original function. Error is called aliasing.

l l
sampling reconstruction

sample value

l i isample position

Sampling in computer graphics

• Artifacts due to sampling - Aliasing
J i– Jaggies

– Moire
Fli k i ll bj t– Flickering small objects

– Sparkling highlights
l b h h l ff– Temporal strobing (such as Wagon-wheel effect)

• Preventing these artifacts - Antialiasing

Jaggies

Retort sequence by Don Mitchell

Staircase pattern or jaggies

Moire pattern

• Sampling the
equationequation

)sin(22 yx

Fourier analysis

• Can be used to evaluate the quality between
the reconstruction and the originalthe reconstruction and the original.

• The concept was introduced to Graphics by
R b t C k i 1986 (t d d b D Mit h ll)Robert Cook in 1986. (extended by Don Mitchell)

Rob Cook

V.P. of Pixar
1981 M.S. Cornell1981 M.S. Cornell
1987 SIGGRAPH Achievement

award
1999 Fellow of ACM
2001 Academic Award with

Ed Catmull and Loren Ed Catmull and Loren
Carpenter (for Renderman)

Fourier transforms

• Most functions can be decomposed into a
weighted sum of shifted sinusoidsweighted sum of shifted sinusoids.

• Each function has two representations
– Spatial domain - normal representation
– Frequency domain - spectral representation

• The Fourier transform converts between the
spatial and frequency domain

Spatial Frequency
() () i xF f x e dx

Spatial
Domain

Frequency
Domain1() ()

2
i xf x F e d

)(xf)(F
2

Fourier analysis

spatial domain frequency domain

Fourier analysis

spatial domain frequency domain

Fourier analysis

spatial domain frequency domain

Convolution

• Definition

() () ()h x f g f x g x x dx
• Convolution Theorem: Multiplication in the frequency

domain is equivalent to convolution in the space
domaindomain.

f g F G

• Symmetric Theorem: Multiplication in the space
domain is equivalent to convolution in the frequency domain is equivalent to convolution in the frequency
domain.

f g F G f g

1D convolution theorem example 2D convolution theorem example
f(x,y) g(x,y) h(x,y)

F(sx,sy) G(sx,sy) H(sx,sy)

The delta function

• Dirac delta function, zero width, infinite height
and unit areaand unit area

Sifting and shifting

Shah/impulse train function

frequency domainspatial domain

,

Sampling
band limited

Reconstruction

The reconstructed function is obtained by interpolating The reconstructed function is obtained by interpolating
among the samples in some manner

In math forms

)()III())((~ FF)()III(s))((ssFF

)(sinc)III)((~ x(x)xff

i

ifixxf)()(sinc)(~
i

Reconstruction filters
The sinc filter, while ideal,
has two drawbacks:
• It has a large support (slow

to compute)
I i d i i i • It introduces ringing in
practice

The box filter is bad because
its Fourier transform is a sinc its Fourier transform is a sinc
filter which includes high
frequency contribution from
th i fi it i f th the infinite series of other
copies.

Aliasing

increase sample decrease sample increase sample
spacing in
spatial domain

p
spacing in
frequency domain

Aliasing

high-frequency
d t il l k i tdetails leak into
lower-frequency
regionsregions

Sampling theorem

Sampling theorem Aliasing due to under-sampling

Sampling theorem

• For band limited functions, we can just
increase the sampling rateincrease the sampling rate

• However, few of interesting functions in
t hi b d li it d i computer graphics are band limited, in

particular, functions with discontinuities.
• It is mostly because the discontinuity always

falls between two samples and the samples
provides no information about this discontinuity.

Aliasing

• Prealiasing: due to sampling under Nyquist rate
P li i d f i f • Postaliasing: due to use of imperfect
reconstruction filter

Antialiasing

• Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
– Not solvable in general

2. Uniform supersampling and resamplep p g p
3. Nonuniform or stochastic sampling

Antialiasing (Prefiltering)

It is blurred, but
better than aliasing

Uniform supersampling

• Increasing the sampling rate moves each copy
of the spectra further apart potentially of the spectra further apart, potentially
reducing the overlap and thus aliasing
R lti l t b l d (filt d) • Resulting samples must be resampled (filtered)
to image sampling rate

s s
s

Pixel w Sample

Samples Pixel

Point vs. Supersampled

Point 4x4 Supersampled

Checkerboard sequence by Tom Duff

Analytic vs. Supersampled

Exact Area 4x4 Supersampled

Non-uniform sampling

• Uniform sampling
– The spectrum of uniformly spaced samples is also a set of The spectrum of uniformly spaced samples is also a set of

uniformly spaced spikes
– Multiplying the signal by the sampling pattern corresponds to

l i f h h ik (i f)placing a copy of the spectrum at each spike (in freq. space)
– Aliases are coherent (structured), and very noticeable

• Non uniform sampling• Non-uniform sampling
– Samples at non-uniform locations have a different spectrum; a

single spike plus noise
– Sampling a signal in this way converts aliases into broadband

noise
Noise is incoherent (structureless) and much less objectionable– Noise is incoherent (structureless), and much less objectionable

• Aliases can’t be removed, but can be made less
noticeablenoticeable.

Antialiasing (nonuniform sampling)

• The impulse train is modified as

 iTx-

2
1

• It turns regular aliasing into noise But random

 i 2

• It turns regular aliasing into noise. But random
noise is less distracting than coherent aliasing.

Jittered vs. Uniform Supersampling

4x4 Jittered Sampling 4x4 Uniform

Prefer noise over aliasing

reference aliasing noise

Jittered sampling

Add uniform random jitter to each sampleAdd uniform random jitter to each sample

Poisson disk noise (Yellott)

• Blue noise
S h ld b i d l k • Spectrum should be noisy and lack any
concentrated spikes of energy (to avoid

h t li i)coherent aliasing)
• Spectrum should have deficiency of low-

frequency energy (to hide aliasing in less
noticeable high frequency)

Distribution of extrafoveal cones

Monkey eye
cone distribution

Fourier transform
cone distribution

Yellott theory
 Aliases replaced by noisep y
 Visual system less sensitive to high freq noise

Example

Aliasing

frequency
domain

function (a) function (b)

domain

alias=false
frequency

Stochastic sampling

Stochastic sampling
function (a) function (b)

Replace structure
alias by structurelessalias by structureless
(high-freq) noise

Antialiasing (adaptive sampling)

• Take more samples only when necessary.
However in practice it is hard to know where However, in practice, it is hard to know where
we need supersampling. Some heuristics could
be usedbe used.

• It only makes a less aliased image, but may not
b ffi i t th i l li be more efficient than simple supersampling
particular for complex scenes.

Application to ray tracing

• Sources of aliasing: object boundary, small
objects textures and materialsobjects, textures and materials

• Good news: we can do sampling easily
• Bad news: we can’t do prefiltering (because we

do not have the whole function)
• Key insight: we can never remove all aliasing,

so we develop techniques to mitigate its impact p q g p
on the quality of the final image.

pbrt sampling interface

• Creating good sample patterns can substantially
improve a ray tracer’s efficiency allowing it to improve a ray tracer s efficiency, allowing it to
create a high-quality image with fewer rays.
B l ti di i tl it t • Because evaluating radiance is costly, it pays to
spend time on generating better sampling.

• core/sampling.*, samplers/*
• random.cpp, stratified.cpp, pp pp
bestcandidate.cpp,
lowdiscrepancy.cpp, p y pp

An ineffective sampler A more effective sampler

Main rendering loop for each task
void SamplerRenderer::Run() {

Sampler *sampler
= mainSampler >GetSubSampler(taskNum taskCount);= mainSampler->GetSubSampler(taskNum, taskCount);

...
// Allocate space for samples and intersections
int maxSamples = sampler >MaximumSampleCount();int maxSamples = sampler->MaximumSampleCount();
Sample *samples=origSample->Duplicate(maxSamples);
RayDifferential *rays=new RayDifferential[maxSamples];
Spectrum *Ls = new Spectrum[maxSamples];Spectrum *Ls = new Spectrum[maxSamples];
Spectrum *Ts = new Spectrum[maxSamples];
Intersection *isects = new Intersection[maxSamples]
...

Main rendering loop for each task
while ((sCnt=sampler->GetMoreSamples(samples,rng))>0){

for (int i = 0; i < sCnt; ++i) {
...
float rayWeight = camera->GenerateRayDifferential(

samples[i], &rays[i]);
...
if (rayWeight > 0.f)

Ls[i] = rayWeight * renderer->Li(scene, rays[i],
l [i] i [i] [i])&samples[i], rng, arena, &isects[i], &Ts[i]);

...
} // end for
if (l >R tR lt (l L))if (sampler->ReportResults(samples, rays, Ls, …))

for (int i = 0; i < sCnt; ++i) {
...

>fil >AddS l (l [i] L [i])camera->film->AddSample(samples[i], Ls[i]);
}

} // end while
camera >film >UpdateDisplay(camera->film->UpdateDisplay(

sampler->xPixelStart, sampler->yPixelStart,
sampler->xPixelEnd+1, sampler->yPixelEnd+1);

Sampler
Generates a good pattern of multidimensional samples.
class Sampler {class Sampler {
…

virtual int GetMoreSamples(Sample *samplevirtual int GetMoreSamples(Sample *sample,
RNG &rng) = 0;

virtual int MaximumSampleCount() 0;
random number
generator for pre-allocating memoryvirtual int MaximumSampleCount() = 0;
virtual bool ReportResults(…);

report radiance for things like adaptive sampling…
const int xPixelStart, xPixelEnd;

t i t Pi lSt t Pi lE d range of pixels

report radiance for things like adaptive sampling

const int yPixelStart, yPixelEnd;
const int samplesPerPixel;

g p

sample per pixel
const float shutterOpen, shutterClose;

}

Sampler
void Sampler::ComputeSubWindow(int num, int count,
int *XStart, int *XEnd, int *YStart, int *YEnd) {, , ,) {
int dx=xPixelEnd-xPixelStart,dy=yPixelEnd-yPixelStart;
int nx = count, ny = 1;
while ((nx & 0x1) == 0 && 2 * dx * ny < dy * nx) {

nx >>= 1; ny <<= 1;
}}
int xo = num % nx, yo = num / nx;
float tx0=float(xo)/float(nx),tx1=float(xo+1)/float(nx);() (), () ()
float ty0=float(yo)/float(ny),ty1=float(yo+1)/float(ny);
*XStart = Floor2Int(Lerp(tx0,xPixelStart,xPixelEnd));
*XEnd = Floor2Int(Lerp(tx1,xPixelStart,xPixelEnd));
*YStart = Floor2Int(Lerp(ty0,yPixelStart,yPixelEnd));
*YEnd = Floor2Int(Lerp(ty1 yPixelStart yPixelEnd));*YEnd = Floor2Int(Lerp(ty1,yPixelStart,yPixelEnd));

}

Sample
struct CameraSample {

float imageX, imageY;
store required information
for generating camera raysg , g ;

float lensU, lensV;
float time;

};
struct Sample : public CameraSample {

Sample(Sampler *sampler SurfaceIntegrator *surf

store required information for one eye ray sample

Sample(Sampler *sampler, SurfaceIntegrator *surf,
VolumeIntegrator *vol, const Scene *scene);

uint32 t Add1D(uint32 t num);_ (_)
uint32_t Add2D(uint32_t num);
…

Note that it stores all samples // Sample Public Data
vector<uint32_t> n1D, n2D;
float **oneD **twoD;

Note that it stores all samples
required for one eye ray. That
is, it may depend on depth.float **oneD, **twoD;

};

Sample
• Sample is allocated once in Render(). Sampler is called

to fill in the information for each eye ray The to fill in the information for each eye ray. The
integrator can ask for multiple 1D and/or 2D samples,
each with an arbitrary number of entries, e.g.
depending on #lights. For example, WhittedIntegrator
does not need samples. DirectLighting needs samples
proportional to #lightsproportional to #lights.

• The structure of sample is initiated once and Sampler is
responsible for filling in requested sample structure responsible for filling in requested sample structure
with well-behaved samples.

Data structure
•Different types of lights require different numbers of
samples, usually 2D samples.samples, usually 2D samples.

•Sampling BRDF requires 2D samples.
•Selection of BRDF components requires 1D samples.

3 1 2

D t D
n1D n2D 2 2 1 1 2 2 sample

allocate together to avoid cache miss

filled in by integrators

oneD twoD allocate together to avoid cache miss

mem

lightNumOffset
1 2 3

lightSampleOffset bsdfSampleOffset
1 3 5 2 4 6 PathIntegrator

lightNumOffset lightSampleOffset bsdfSampleOffset

Sample
Sample::Sample(Sampler *sampler, SurfaceIntegrator

*surf, VolumeIntegrator *vol, Scene *scene)
{

if (surf) surf->RequestSamples(sampler,this,scene);
if (l) l S l (l hi)if (vol) vol->RequestSamples(sampler, this, scene);
AllocateSampleMemory();

}}

void Sample::AllocateSampleMemory() {
int nPtrs = n1D.size() + n2D.size();
if (!nPtrs) {

D t D NULL toneD = twoD = NULL; return;
}
oneD = AllocAligned<float *>(nPtrs);oneD AllocAligned<float >(nPtrs);
twoD = oneD + n1D.size();

Sample
int totSamples = 0;
for (uint32 t i = 0; i < n1D.size(); ++i)(_ ; ();)

totSamples += n1D[i];
for (uint32_t i = 0; i < n2D.size(); ++i)

totSamples += 2 * n2D[i];

float *mem = AllocAligned<float>(totSamples);float *mem = AllocAligned<float>(totSamples);
for (uint32_t i = 0; i < n1D.size(); ++i) {

oneD[i] = mem; mem += n1D[i];[] []
}
for (uint32_t i = 0; i < n2D.size(); ++i) {

twoD[i] = mem; mem += 2 * n2D[i];
}

}}

PathIntegrator::RequestSamples
void PathIntegrator::RequestSamples(Sampler *sampler,

Sample *sample, const Scene *scene)
{
for (int i = 0; i < SAMPLE_DEPTH; ++i) {

lightSampleOffsets[i]=LightSampleOffsets(1 sample);lightSampleOffsets[i]=LightSampleOffsets(1,sample);
bsdfSampleOffsets[i]=BSDFSampleOffsets(1,sample);
pathSampleOffsets[i]=BSDFSampleOffsets(1,sample);

}
}

LightSampleOffsets
struct LightSampleOffsets {

LightSampleOffsets(int count, Sample *sample);
int nSamples, componentOffset, posOffset;

};

LightSampleOffsets::LightSampleOffsets(int count,
Sample *sample) {

lnSamples = count;
componentOffset = sample->Add1D(nSamples);
posOffset = sample->Add2D(nSamples);p p (p)

}

Li htS l Off t Li htS lLightSampleOffsets LightSample

DirectLighting::RequestSamples
void DirectLightingIntegrator::RequestSamples(

Sampler *sampler, Sample *sample, Scene *scene) {
if (t t SAMPLE ALL UNIFORM) {if (strategy == SAMPLE_ALL_UNIFORM) {

uint32_t nLights = scene->lights.size();
lightSampleOffsets=new LightSampleOffsets[nLights];
b dfS l Off t BSDFS l Off t [Li ht]bsdfSampleOffsets = new BSDFSampleOffsets[nLights];
for (uint32_t i = 0; i < nLights; ++i) {

const Light *light = scene->lights[i];
i S l li h S lint nSamples = light->nSamples;
if (sampler) nSamples=sampler->RoundSize(nSamples);
lightSampleOffsets[i]

= LightSampleOffsets(nSamples, sample);
bsdfSampleOffsets[i]

= BSDFSampleOffsets(nSamples, sample);
}
lightNumOffset = -1;

}

DirectLighting::RequestSamples
else {

lightSampleOffsets = new LightSampleOffsets[1];
li htS l Off t [0]lightSampleOffsets[0]

= LightSampleOffsets(1, sample);
lightNumOffset = sample->Add1D(1);
b dfS l Off t BSDFS l Off t [1]bsdfSampleOffsets = new BSDFSampleOffsets[1];
bsdfSampleOffsets[0] = BSDFSampleOffsets(1, sample);

}
}}

Random sampler
Just for illustration; does
not work well in practice

RandomSampler::RandomSampler(int xstart, int xend,
int ystart, int yend, int ns,
float sopen, float sclose) {

xPos = xPixelStart;
yPos = yPixelStart;
nSamples = ns;
imageSamples = AllocAligned<float>(5 * nSamples);
lensSamples = imageSamples + 2 * nSamples;p g p p ;
timeSamples = lensSamples + 2 * nSamples;
// prepare samples for the first pixel
RNG rng(xstart + ystart * (xend-xstart));RNG rng(xstart + ystart (xend xstart));
for (int i = 0; i < 5 * nSamples; ++i)

imageSamples[i] = rng.RandomFloat();
for (int o = 0; o < 2 * nSamples; o += 2) {for (int o = 0; o < 2 * nSamples; o += 2) {

imageSamples[o] += xPos;
imageSamples[o+1] += yPos; }

l 0
private copy of the
current pixel position

samplePos = 0;
} #samples consumed for current pixel

Random sampler
Sampler *RandomSampler::GetSubSampler(

int num, int count) ,)
{

int x0, x1, y0, y1;
ComputeSubWindow(num, count, &x0, &x1, &y0, &y1);
if (x0 == x1 || y0 == y1) return NULL;
return new RandomSampler(x0 x1 y0 y1 nSamplesreturn new RandomSampler(x0, x1, y0, y1, nSamples,

shutterOpen, shutterClose);
}}

Random sampler
int RandomSampler::GetMoreSamples(

Sample *sample, RNG &rng) {p p , g) {
if (samplePos==nSamples) {

if(xPixelStart==xPixelEnd || yPixelStart==yPixelEnd)
return 0;

if (++xPos == xPixelEnd) {xPos=xPixelStart; ++yPos;}
if (yPos == yPixelEnd) return 0;if (yPos == yPixelEnd) return 0;

for (int i = 0; i < 5 * nSamples; ++i)
generate all samples for one pixel at once

(p)
imageSamples[i] = rng.RandomFloat();

for (int o = 0; o < 2 * nSamples; o += 2) {
imageSamples[o]+=xPos; imageSamples[o+1]+=yPos;

}
samplePos = 0;samplePos = 0;

}

Random sampler
sample->imageX = imageSamples[2*samplePos];
sample->imageY = imageSamples[2*samplePos+1];p g g p [p];
sample->lensU = lensSamples[2*samplePos];
sample->lensV = lensSamples[2*samplePos+1];
sample->time = Lerp(timeSamples[samplePos],

shutterOpen, shutterClose);
for (uint32 t i = 0; i < sample >n1D size(); ++i)for (uint32_t i = 0; i < sample->n1D.size(); ++i)

for (uint32_t j = 0; j < sample->n1D[i]; ++j)
sample->oneD[i][j] = rng.RandomFloat();p [][j] g ()

for (uint32_t i = 0; i < sample->n2D.size(); ++i)
for (uint32_t j = 0; j < 2*sample->n2D[i]; ++j)

sample->twoD[i][j] = rng.RandomFloat();
++samplePos;
return 1;return 1;

}

Random sampling
a pixel

completely
randomrandom

Stratified sampling

• Subdivide the sampling domain into non-
overlapping regions (strata) and take a single overlapping regions (strata) and take a single
sample from each one so that it is less likely to
miss important featuresmiss important features.

Stratified sampling

completely
random

stratified
uniform

stratified
jitteredrandom uniform jittered

turns aliasing
into noiseinto noise

Comparison of sampling methods

256 l i l f256 samples per pixel as reference

1 sample per pixel (no jitter)

Comparison of sampling methods

1 l i l (ji d)1 sample per pixel (jittered)

4 samples per pixel (jittered)

Stratified sampling

reference random stratified
ji djittered

High dimension

• D dimension means ND cells.
S l i k l d i • Solution: make strata separately and associate
them randomly, also ensuring good distributions.

StratifiedSampler::GetMoreSamples
if (yPos == yPixelEnd) return 0;
int nSamples = xPixelSamples * yPixelSamples;
// Generate initial stratified samples
float *bufp = sampleBuf;
float *imageSamples = bufp; bufp += 2 * nSamples;
float *lensSamples = bufp; bufp += 2 * nSamples;
float *timeSamples = bufp;p p;
StratifiedSample2D(imageSamples, xPixelSamples,

yPixelSamples, rng, jitterSamples);
StratifiedSample2D(lensSamples xPixelSamplesStratifiedSample2D(lensSamples, xPixelSamples,

yPixelSamples, rng, jitterSamples);
StratifiedSample1D(timeSamples, xPixelSamples *

yPixelSamples rng jitterSamples);yPixelSamples, rng, jitterSamples);
for (int o=0;o<2*xPixelSamples*yPixelSamples;o+=2){

i S l [] i S l [1]imageSamples[o]+=xPos; imageSamples[o+1]+=yPos;
}

StratifiedSampler::GetMoreSamples
Shuffle(lensSamples,xPixelSamples*yPixelSamples,2,rng);
Shuffle(timeSamples,xPixelSamples*yPixelSamples,1,rng);
for (int i = 0; i < nSamples; ++i) {

samples[i].imageX = imageSamples[2*i];
samples[i].imageY = imageSamples[2*i+1];
samples[i].lensU = lensSamples[2*i];
samples[i].lensV = lensSamples[2*i+1];
samples[i].time = Lerp(timeSamples[i], p [] p(p [],

shutterOpen, shutterClose);
for (uint32_t j = 0; j < samples[i].n1D.size(); ++j)

LatinHypercube(samples[i] oneD[j]LatinHypercube(samples[i].oneD[j],
samples[i].n1D[j], 1, rng);

for (uint32_t j = 0; j < samples[i].n2D.size(); ++j)
LatinHypercube(samples[i] twoD[j]LatinHypercube(samples[i].twoD[j],

samples[i].n2D[j], 2, rng);
}
if (i l d) { i lS }if (++xPos == xPixelEnd) {xPos = xPixelStart; ++yPos;}
return nSamples;

}

Stratified sampling
void StratifiedSample1D(float *samp, int nSamples,

RNG &rng, bool jitter) {
/

n stratified samples within [0..1]
float invTot = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i) {

float delta = jitter ? rng.RandomFloat() : 0.5f;
*samp++ = min((i+delta)*invTot, OneMinusEpsilon);

}
} nx*ny stratified samples within [0..1]X[0..1]}
void StratifiedSample2D(float *samp, int nx, int ny,

RNG &rng, bool jitter) {
float dx = 1 f / nx dy = 1 f / ny;

nx ny stratified samples within [0..1]X[0..1]

float dx = 1.f / nx, dy = 1.f / ny;
for (int y = 0; y < ny; ++y)

for (int x = 0; x < nx; ++x) {
float jx = jitter ? rng RandomFloat() : 0 5f;float jx = jitter ? rng.RandomFloat() : 0.5f;
float jy = jitter ? rng.RandomFloat() : 0.5f;
*samp++ = min((x + jx) * dx, OneMinusEpsilon);
* i ((j) * d O i il)*samp++ = min((y + jy) * dy, OneMinusEpsilon);

}
}

Shuffle
template <typename T>
void Shuffle(T *samp, int count, int dims, RNG &rng) (p, , , g)
{

for (int i = 0; i < count; ++i) {
u_int other = i+(rng.RandomUInt()%(count-i));
for (int j = 0; j < dims; ++j)

swap(samp[dims*i + j] samp[dims*other + j]);swap(samp[dims*i + j], samp[dims*other + j]);
}

}
d-dimensional vector swap

}

Latin hypercube sampling

• Integrators could request an arbitrary n samples.
nx1 or 1xn doesn’t give a good sampling patternnx1 or 1xn doesn t give a good sampling pattern.

A worst case for stratified samplingA worst case for stratified sampling
LHS can prevent this to happen

Latin Hypercube
void LatinHypercube(float *samples,

int nSamples, int nDim, RNG &rng)
{

// Generate LHS samples along diagonal
float delta = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i)

for (int j = 0; j < nDim; ++j)
samples[nDim*i+j] = min((i+(rng.RandomFloat())) p [j] (((g ()))

*delta, OneMinusEpsilon);
// Permute LHS samples in each dimension
for (int i = 0; i < nDim; ++i) {

note the difference with shuffle
for (int i = 0; i < nDim; ++i) {

for (int j = 0; j < nSamples; ++j) {
u_int other=j+(rng.RandomUInt() % (nSamples-j));
swap(samples[nDim * j + i]swap(samples[nDim * j + i],

samples[nDim * other + i]);
}

}}
}

Stratified sampling Stratified sampling

1 l d 16 h d l i l

This is better because StratifiedSampler
could generate a good LHS pattern for this case

1 camera sample and 16 shadow samples per pixel

16 camera samples and each with 1 shadow sample per pixel

Low discrepancy sampling

• A possible problem with stratified sampling

• Discrepancy can be used to evaluate the quality
of patternsof patterns

Low discrepancy sampling

set of N sample points
a family of shapes

p p
maximal difference

volume estimated
by sample number

real
volume

When B is the set of AABBs
with a corner at the origin with a corner at the origin,
this is called star discrepancy

1D discrepancy

Uniform is optimal! However, we have learnt that
irregular patterns are perceptually superior to uniform
samples. Fortunately, for higher dimension, the low-
discrepancy patterns are less uniform and works discrepancy patterns are less uniform and works
reasonably well as sample patterns in practice.
Next, we introduce methods specifically designed for , p y g
generating low-discrepancy sampling patterns.

Radical inverse
• A positive number n can be expressed in a base b as

• A radical inverse function in base b converts a
nonnegative integer n to a floating-point number in [0,1)g g g p [,)

inline double RadicalInverse(int n int base) {inline double RadicalInverse(int n, int base) {
double val = 0;
double invBase = 1. / base, invBi = invBase;
while (n > 0) {while (n > 0) {

int d_i = (n % base);
val += d_i * invBi;

/n /= base;
invBi *= invBase;

}
return val;

}

van der Corput sequence

• The simplest sequence
R i l li 1D li i h lf l • Recursively split 1D line in half, sample centers

• Achieve minimal possible discrepancy

High-dimensional sequence

• Two well-known low-discrepancy sequences
H lt– Halton

– Hammersley

Halton sequence

• Use relatively prime numbers as bases for each
dimension recursively split the dimension dimension recursively split the dimension

into pd parts, sample centers

• Achieve best possible discrepancy for N-Dp p y

• Can be used if N is not known in advance
• All prefixes of a sequence are well distributed

so as additional samples are added to the
sequence, low discrepancy will be maintained

Hammersley sequence

• Similar to Halton sequence.
Sli h l b di h H l• Slightly better discrepancy than Halton.

• Needs to know N in advance.

Folded radical inverse

• Add the offset i to the ith digit di and take the
modulus bmodulus b.

• It can be used to improve Hammersley and p y
Halton, called Hammersley-Zaremba and
Halton-Zaremba.

Radial inverse

Halton Hammersley
Better for that there Better for that there
are fewer clumps.

Folded radial inverse

Halton Hammersley
The improvement isThe improvement is
more obvious

Low discrepancy sampling

t tifi d jitt d 1 l / i lstratified jittered, 1 sample/pixel

Hammersley sequence, 1 sample/pixel

Best candidate sampling

• Stratified sampling doesn’t guarantee good
sampling across pixelssampling across pixels.

• Poisson disk pattern addresses this issue. The
P i di k tt i f i t ith Poisson disk pattern is a group of points with no
two of them closer to each other than some

ifi d di tspecified distance.
• It can be generated by dart throwing. It is

time-consuming.
• Best-candidate algorithm by Dan Mitchell. It g y

randomly generates many candidates but only
inserts the one farthest to all previous samples.p p

Best candidate sampling

stratified jittered best candidate

It avoids holes and clustersIt avoids holes and clusters.

Best candidate sampling

• Because of it is costly to generate best
candidate pattern pbrt computes a “tilable candidate pattern, pbrt computes a tilable
pattern” offline (by treating the square as a
rolled torus)rolled torus).

• tools/samplepat.cpp
→ sampler/bestcandidate o t→ sampler/bestcandidate.out

Best candidate sampling

t tifi d jitt d 1 l / i lstratified jittered, 1 sample/pixel

best candidate, 1 sample/pixel

Best candidate sampling

t tifi d jitt d 4 l / i lstratified jittered, 4 sample/pixel

best candidate, 4 sample/pixel

Comparisons

reference low-discrepancy best candidate

Adaptive sampling

• More efficiently generate high-quality images
by adding extra samples in parts of the image by adding extra samples in parts of the image
that are more complex than others.
b t t t ki d f i l fi t • pbrt supports two kinds of simple refinement

criteria: (1) to check to see if different shapes
 i t t d b diff t l i di ti are intersected by different samples, indicating

a likely geometric discontinuity and (2) to
h k f i t t b t th l check for excessive contrast between the colors

of different samples.

Main rendering loop for each task
while ((sCnt=sampler->GetMoreSamples(samples,rng))>0){

for (int i = 0; i < sCnt; ++i) {
...
float rayWeight = camera->GenerateRayDifferential(

samples[i], &rays[i]);
...
if (rayWeight > 0.f)

Ls[i] = rayWeight * renderer->Li(scene, rays[i],
l [i] i [i] [i])&samples[i], rng, arena, &isects[i], &Ts[i]);

...
} // end for
if (l >R tR lt (l L))if (sampler->ReportResults(samples, rays, Ls, …))

for (int i = 0; i < sCnt; ++i) {
...

>fil >AddS l (l [i] L [i])camera->film->AddSample(samples[i], Ls[i]);
}

} // end while
camera >film >UpdateDisplay(camera->film->UpdateDisplay(

sampler->xPixelStart, sampler->yPixelStart,
sampler->xPixelEnd+1, sampler->yPixelEnd+1);

AdaptiveSampler
class AdaptiveSampler : public Sampler {

…
int xPos, yPos;
int minSamples, maxSamples;

current position
least and max numberp , p ;

float *sampleBuf; of samples

enum AdaptiveTest { ADAPTIVE_COMPARE_SHAPE_ID,
ADAPTIVE_CONTRAST_THRESHOLD };

AdaptiveTest method;
bool supersamplePixel;

which criterion to use

}; whether the current pixel
needs extra samples

AdaptiveSampler
1. supersamplePixel is set to false initially
2 The initial set of minSamples is generated by 2. The initial set of minSamples is generated by

GetMoreSamples.
3 Rendering loop evaluates these samples and report 3. Rendering loop evaluates these samples and report

them back to ReportResults.
4. If more samples are needed, ReportResults sets to p , p

true and leave (xPos, yPos) unchanged.
5. The next call to GetMoreSamples generates a new p g

set of maxSamples samples
6. When more samples are not needed or maxSamples

samples have been used, supersamplePixel is set
false and (xPos, yPos) is advanced.

AdaptiveSampler
int AdaptiveSampler::GetMoreSamples(…) {

……
if (supersamplePixel) {

LDPixelSample(xPos, yPos, shutterOpen,
shutterClose, maxSamples, samples,
sampleBuf, rng);

return maxSamples;
} else {

if (Pos Pi elEnd) ret rn 0if (yPos == yPixelEnd) return 0;
LDPixelSample(xPos, yPos, shutterOpen,

shutterClose, minSamples, samples,shutterClose, minSamples, samples,
sampleBuf, rng);

return minSamples;
}

}

AdaptiveSampler
bool AdaptiveSampler::ReportResults(…) {

if (supersamplePixel) {(p p) {
supersamplePixel = false;
if (++xPos == xPixelEnd) {

xPos = xPixelStart; ++yPos; }
return true;

} else if (needsSupersampling()) {} else if (needsSupersampling(…)) {
supersamplePixel = true;
return false;

} else {
if (++xPos == xPixelEnd) {

xPos = xPixelStart; ++yPos;
}
return true;return true;

}
}

needsSupersampling
bool AdaptiveSampler::needsSupersampling(

Sample *samples, const RayDifferential *rays, p p , y y ,
const Spectrum *Ls, const Intersection *isects,
int count)

{
switch (method) {
case ADAPTIVE COMPARE SHAPE ID:case ADAPTIVE_COMPARE_SHAPE_ID:
for (int i = 0; i < count-1; ++i)
if (isects[i].shapeId != isects[i+1].shapeId ||([] p [] p ||
isects[i].primitiveId != isects[i+1].primitiveId)

return true; Efficient but fails to capture cases like
return false; (1) coplanar triangles with different ids

but without edges (2) a parametric patch
Co ld fold o er and need more samplesCould fold over and need more samples
(3) shadows, textures …

needsSupersampling
case ADAPTIVE_CONTRAST_THRESHOLD:
float Lavg = 0.f;g ;
for (int i = 0; i < count; ++i)

Lavg += Ls[i].y();
Lavg /= count;
const float maxContrast = 0.5f;
for (int i = 0; i < count; ++i)for (int i = 0; i < count; ++i)

if (fabsf(Ls[i].y() - Lavg) / Lavg > maxContrast)
return true;

return false;
}

Not always successful. An example is
ImageTexture which has been filtered

return false;
}

For antialiasing. Even if the samples
have high contrast, it probably does
N t d lNot need more samples.

Adaptive sampling Adaptive sampling (geometry)

Adaptive sampling (contrast) Reconstruction filters

• Given the chosen image samples, we can do the
following to compute pixel valuesfollowing to compute pixel values.
1. reconstruct a continuous function L’ from samples
2 filt L’ t f hi h th 2. prefilter L’ to remove frequency higher than

Nyquist limit
3 sample L’ at pixel locations3. sample L’ at pixel locations

• Because we will only sample L’ at pixel
l ti d t d t li itl locations, we do not need to explicitly
reconstruct L’s. Instead, we combine the first
t ttwo steps.

Reconstruction filters

• Ideal reconstruction filters do not exist because
of discontinuity in rendering We choose of discontinuity in rendering. We choose
nonuniform sampling, trading off noise for
aliasing There is no theory about ideal aliasing. There is no theory about ideal
reconstruction for nonuniform sampling yet.
I t d id i t l ti bl• Instead, we consider an interpolation problem

 i iiii yxLyyxxf
yxI

),(),(
),()(

filter sampled radiance

i ii yyxxf

yxI
),(

),(),(yx

),(ii yx
final value

Filter
• provides an interface to f(x,y)

il t i t t filt d it t • Film stores a pointer to a filter and use it to
filter the output before writing it to disk.

Filt Filt (fl t fl t)
width, half of support

Filter::Filter(float xw, float yw)
float Evaluate(float x, float y);

x y is guaranteed to be within the range;)(yxf

• filters/* (box, gaussian, mitchell, sinc,

x, y is guaranteed to be within the range;
range checking is not necessary

),(yxf

filters/ (box, gaussian, mitchell, sinc,
triangle)

Box filter

• Most commonly used in graphics. It’s just about
the worst filter possible incurring postaliasing the worst filter possible, incurring postaliasing
by high-frequency leakage.

float BoxFilter::Evaluate(float x, float y)
no need to normalize since the weighted {
return 1.;
no need to normalize since the weighted
sum is divided by the total weight later.

}

Triangle filter
float TriangleFilter::Evaluate(float x, float y)
{{

return max(0.f, xWidth-fabsf(x)) *
max(0.f, yWidth-fabsf(y));(, y (y));

}

Gaussian filter

• Gives reasonably good results in practice
float GaussianFilter::Evaluate(float x float y)float GaussianFilter::Evaluate(float x, float y)
{

return Gaussian(x expX)*Gaussian(y expY);return Gaussian(x, expX)*Gaussian(y, expY);
} Gaussian essentially has a infinite support; to compensate

this, the value at the end is calculated and subtracted.this, the value at the end is calculated and subtracted.

Mitchell filter

• parametric filters, tradeoff between ringing
and blurringand blurring

• Negative lobes improve sharpness; ringing starts
t t th i if th b lto enter the image if they become large.

Mitchell filter

• Separable filter
• Two parameters, p ,

B and C, B+2C=1
suggestedgg

FFT of a cubic filter.
Mitchell filter is a
combination of cubic combination of cubic
filters with C0 and C1

Continuity.

Windowed sinc filter

Lanczos

/
/sin)(

x
xxw

sinc

Comparisons

box

Mitchell

Comparisons

windowed sinc

Mitchell

Comparisons

box Gaussian Mitchell

Film

• Film class simulates the sensing device in the
simulated camera It determines samples’ simulated camera. It determines samples
contributions to the nearby pixels and writes
the final floating point image to a file on diskthe final floating-point image to a file on disk.

• Tone mapping operations can be used to display
th fl ti i t i di lthe floating-point image on a display.

• core/film.*

Film
class Film {
public:p

Film(int xres, int yres)
: xResolution(xres), yResolution(yres) { }

add samples for later reconstruction by weighted average
virtual void AddSample(const CameraSample &sample,

const Spectrum &L) = 0;const Spectrum &L) = 0;
simply sum samples’ contributions, not average them. Pixels with
more samples will be brighter. It is used by light transport methods
such as MetropolisRender
virtual void Splat(const CameraSample &sample,

const Spectrum &L) = 0;const Spectrum &L) = 0;

Film
the sample extent could be a bit larger than the pixel extent
virtual void GetSampleExtent(int *xstart, p (,

int *xend, int *ystart, int *yend) const = 0;
virtual void GetPixelExtent(int *xstart,

int *xend, int *ystart, int *yend) const = 0;
be notified when a region has been recently updated. Do nothing as
default.default.
virtual void UpdateDisplay(int x0, int y0, int x1,

int y1, float splatScale = 1.f);
generate the final image for saving to disk or displaying. It accepts
a scale factor.
virtual void WriteImage(float splatScale = 1 f)=0;virtual void WriteImage(float splatScale = 1.f)=0;

const int xResolution, yResolution;y
};

ImageFilm
• film/image.cpp implements the only film

plug in in pbrt It filters samples and writes the plug-in in pbrt. It filters samples and writes the
resulting image to disk.

ImageFilm::ImageFilm(int xres, int yres,Filter *filt,
float crop[4] string &filename bool openWindow)float crop[4],string &filename, bool openWindow)

{in NDC space. useful for
debugging, or rendering on
different computers and

on some system, it can be configured
to open a window and show the
image as it’s being rendered

...
i l l k d i l (i lC

different computers and
assembling later

image as it’s being rendered

pixels = new BlockedArray<Pixel>(xPixelCount,
yPixelCount);

<precompute filter table><precompute filter table>
}

AddSample
extent

sample

i ii

i iiii

yyxxf
yxLyyxxf

yxI
),(

),(),(
),(

precomputed

grid of pixels

Filter table
find the nearest neighbor

h f l bl
grid of pixels

in the filter table

Recent progresses on Poisson sampling

• On-the-fly computing
S ll d i [SIGGRAPH 2006]– Scalloped regions [SIGGRAPH 2006]

• Tile-based
– Recursive Wang tile [SIGGRAPH 2006]

• Parallel
– Li-Yi Wei [SIGGRAPH 2008]

• Show three videos for themShow three videos for them

Fast Poisson-Disk Sampling

Fast Poisson-Disk Sampling Recursive Wang Tiles for Blue Noise

