Surtace Integrators

Digital Image Synthesis
Yung-Yu Chuang

with slides by Peter Shirley, Pat Hanrahan, Henrik Jensen, Mario Costa Sousa and Torsten Moller

luminaire

(0

R(x)

/ Le(z,5") cos0da’
all &'

w

Direct lighting via Monte Carlo integration{

parameterization over hemisphere

R(x
L(x) = Le(x) + = / Le(x,d") cos 8 dd’
all &’

|

dA cos b
2" — z||?

=/ __

W =

parameterization over surface

R(1A cost’
L(:r) — LE(-;;;) + (T) f L-E(:.r:“')cos@‘{‘ ; LUHHQ
T all =’ L=

have to add visibility

A e
L(ﬂ_”) — LE("T') _|_ R(T) / L‘E(;T.!) COS 95(3_"?._,:1.){]A COS 6'
all =’

T

2" — |2

Direct lighting via Monte Carlo integration{

take one sample according to a density function z’ ~ P

R(x)

s(x,z") cos b

L(z) = Le(a L(a') cos
let’stake p = 1/A | |
R A s(z,2") cosb

L(I) ~ LE’ (I) _I_ (I) LE(II) COSQ 5(I! T)C()b

. o — o]

spectrum directligni(x, n)
pick random point x’ with normal vector i’ on light

d= (2 — z)
if ray x + td hits at x' then

return AL.(2') (7 - d)(—7 - d)/||d]*
else

return 0

Direct lighting via Monte Carlo integration{ '

1 sample/pixel

100 samples/pixel

Lights’ sizes matter

more than shapes.

Noisy because

eX’ could be on the
back

eCOS varies

Noise reduction

R(x s(x, ") cos &
() L.(+) cost s(a,x") cos

. P =l

L(w) ~ Lo(x) +

choose better density function p(2') o cos@' /|2’ — x||2

It is equivalent to uniformly sampling over
the cone cap in the last lecture.

cos@=(1-¢&)+& cosb_

¢ =27, cosa,...

{cosa}: 1_514_51‘\/1_(#)2

O

luminaire

Direct lighting from many luminaries

o Given a pair (£1,&2), use it to select light and
generate new pair (¢],&2) for sampling that light.
a could be constant for proportional to power

Ol Oy
| Oy - O3 > | <> |a O |
| | | |
§1=0 £1=0.45 £1=0.75 £1=1.0
>~
Actual £; chosen means we £.=055
- 1. . . u.:.l .
pick luminaire 3.
‘.-__ ‘H‘-" ."h_x
| | |
G1=0 $1=0.33 $1=1.0

Rendering

e Rendering is handled by Renderer class.
class Renderer {

given a scene, render an image or a set of measurements
virtual void Render(Scene *scene) = 0;
computer radiance along a ray
virtual Spectrum Li(Scene *scn, RayDifferential &r,
for MC sampling Sample *sample, RNG &rng,
MemoryArena &arena, Intersection *isect,
transmittance Spectrum *T) const = 0;
return transmittance along a ray
virtual Spectrum Transmittance(Scene *scene,
RayDifferential &ray, Sample *sample,
RNG &rng, MemoryArena &arena) const = 0O;

> The later two are usually relayed to Integrator

SamplerRenderer

class SamplerRenderer : public Renderer {

private:

// SamplerRenderer Private Data

Samp ler *samp ler: choose gamples pn image plane
and for integration

_ determine lens parameters (position,
» orientation, focus, field of view)
with a film

Camera *camera

Surfacelntegrator *surfacelntegrator;

Volumelntegrator *volumelntegrator;
1: calculate the rendering equation

The main rendering loop

o After scene and Renderer are constructed,
Renderer:Render () is invoked.

[Sampler]
Sample Sample / / Ray
Ray
: b
[Samp] erRenderTask: :Run(‘.*J‘ ’{ Integrators J
i\
Radiance

Sample,
Radiance

Renderer:Render()

void SamplerRenderer: :Render(const Scene *scene) {
scene-dependent initialization such photon map
surfacelntegrator->Preprocess(scene,camera,this);
volumelntegrator->Preprocess(scene,camera,this);
sample structure depends on types of integrators
Sample *sample = new Sample(sampler,
surfacelntegrator, volumelntegrator, scene);

We want many tasks to fill in the core (see histogram next page).
If there are too few, some core will be idle. But, threads have

overheads. So, we do not want too many either.
Int nPixels = camera->film->xResolution
* camera->Tilm->yResolution;

_ at [east 32 tasks
Int nTasks = max(32 * NumSystemCores(),fOraCOre

. .., nPixels / (16*16)); a task is about 16x16
power2 easier to divide
nTasks = RoundUpPow2(nTasks);

Renderer:Render()

vector<Task *> renderTasks;
for (int 1 = 0; 1 < nTasks; ++1) .
renderTasks.push_back(new all information gbout renderer
must be passed in

SamplerRendererTask(scene,this,camera,reporter,

sampler, sample, nTasks-1-1, nTasks));

task id total tasks

EnqueueTasks(renderTasks);
WartForAllTasks();
for (int 1 = 0; 1 < renderTasks.size(); ++i1)

delete renderTasks[1];

delete sample;
camera->Film->Writelmage();

SamplerRenderTask: :Run

« When the task system decided to run a task on a
particular processor, SamplerRenderTask: :Run()

will be called.

void SamplerRendererTask::Run() {
// decided which part i1t 1s responsible for

int sampleCount;

while ((sampleCount=sampler ->
GetMoreSamples(samples, rng)) > 0) {
// Generate camera rays and compute radiance

SamplerRenderTask: :Run

for (aint 1 = 0; 1 < sampleCount; ++1) {
for vignetting : :
float rayWeight = camera-> o differential
i i for antialiasing i
GenerateRayDifferential (samples|1i], &rays|[i]);
rays[i1].ScaleDifferentials(
1.f / sgrtf(sampler->samplesPerPixel));

iIT (rayWeight > 0.1)
Ls[1] = rayWeight * renderer->Li1(scene, rays|i],
&samples[i1], rng, arena, &isects|i], &Ts[i1]);
else { Ls[1] = O.Ff; Ts[1] = 1.F; }

for (int 1 = 0; 1 < sampleCount; ++1)
camera->fi1lm->AddSample(samples[i1], Ls[1]);

SamplerRender::L1

Spectrum SamplerRender::Li1(Scene *scene,
RayDifferential &ray, Sample *sample,
.., Intersection *i1sect, Spectrum *T)
{ Spectrum L1 = O.F;
IT (scene->Intersect(ray, i1sect))
L1 = surfacelntegrator->Li(scene, this,
ray, *i1sect, sample,rng, arena);
else { // ray that doesn"t hit any geometry
for (1=0; i1<scene->lights.size(); ++1)
L1 += scene->lights[i1]->Le(ray);
by
Spectrum Lvi = volumelntegrator->Li(scene, this,
ray, sample, rng, T, arena);
return *T * L1 + Lvi;

Surface integrator’s Ll

LO(p’(DO): Le(pamo) O
+.‘.32f(p9m0’®i)|—i(pawi)cosei d/O)i -

<‘* ILo
u

amplerRender::Li

FE :
Y
b e

N
.

Integrators

e core/integrator.* iIntegrator/*

Class Integrator {
virtual void Preprocess(Scene *scene,

Camera *camera, Renderer *renderer){}
virtual void RequestSamples(Sampler
*sampler, Sample *sample, Scene *scene){}

Integrators

e void Preprocess(..)

Called after scene has been initialized:; do scene-
dependent computation such as photon shooting for

photon mapping.
e void RequestSamples(..)

Sample is allocated once in Render(). There, sample’s
constructor will call integrator’s RequestSamples to

allocate appropriate space.
Sample: :Sample(Sampler *sampler, Surfacelntegrator

*surf, Volumelntegrator *vol, Scene *scene) {
iIT (surf)
surf>RequestSamples(sampler,this,scene);
it (vol)
vol->RequestSamples(sampler, this, scene);

Surface integrators

e Responsible for evaluating the integral equation

Whitted, directlighting, path, irradiancecache,
photonmap, igi, exphotonmap

class Surfacelntegrator:public Integrator {
public: We could call Renderer’s

_ _ Li or Transmittance
virtual Spectrum Li(Scene £gcene, ﬁen&erer

*renderer, RayDifferential &ray,
Intersection &isect, Sample *sample,
RNG &rng, MemoryArena &arena) const = O;

¥

Direct lighting

Rendering equation

L, (P, @) = L,(p, @)+ |_f(p,@,,0)L(p,®,)|cos b, | de
If we only consider direct lighting, we can replace
L, by L.

L, (P,@,) =L, (P, @,)+|_f(p,@,,0)Ls(p,@,)|cosb, | do,

« simplest form of equation

e somewhat easy to solve (but a gross approximation)

e major contribution to the final radiance

e not too bad since most energy comes from direct lights
« kind of what we do in Whitted ray tracing

Direct lighting

e Monte Carlo sampling to solve
| f(p.@,, @)L (P, @) cos6, | dey

e Sampling strategy A: sample only one light
pick up one light as the representative for all lights
distribute N samples over that light
Use multiple importance sampling for f and L

i N f(pna)oaa)j)i—d(pawj) | COSH] |

N 75 p(a)j)
Scale the result by the number of lights N,

Randomly pick f or g and then sample,
E[F+ 9] multiply the result by 2

Direct lighting

o Sampling strategy B: sample all lights
- do A for each light
- sum the results

- smarter way would be to sample lights according to
their power

I\lL
ZJ;) f(paa)oaa)i)l—d(j)(p,a)i) | COS@i |da)I
j=1

sample f or g separately and then sum
E[f +9] them together

DirectLighting

enum LightStrategy {
SAMPLE_ALL_UNIFORM, SAMPLE_ONE_UNIFORM

¥ two possible strategies; if there are many image samples for a pixel
(e.g. due to depth of field), we prefer only sampling one light at a
time. On the other hand, if there are few image samples, we often
prefer sampling all lights at once.

class DirectLighting : public Surfacelntegrator {
public:
DirectLighting(
LightStrategy Is = SAMPLE _ALL UNIFORM,
Int md=5 maximal depth

)

Data structure

e Different types of lights require different numbers of

samples, usually 2D samples.

« Sampling BRDF requires 2D samples.
 Selection of BRDF components requires 1D samples.

inlD 311|2 n2D|{2|2(1(1|2]|2 i filled in by integrators Sample
oneD ~ twoD allocate together to avoid cache miss
mem |

1]2]3 TTarsl T 2lale “Pathintegrator

1 1ghtNumOffset

LightSampleOffset bsdfSampleOffset

DirectLighting: :RequestSamples.f

void DirectLightinglntegrator: :RequestSamples(
Sampler *sampler, Sample *sample, Scene *scene) {
iIT (strategy == SAMPLE_ALL_UNIFORM) {

}

uilnt32_t nLights = scene->lights.size();
IightSampleOffsets=new LightSampleOffsets[nLights];
bsdfSampleOffsets = new BSDFSampleOffsets[nLights];
for (uint32_t 1 = 0; 1 < nLights; ++1) {

const Light *light = scene->lights|i];

int nSamples = light->nSamples;

gives sampler a chance to adjust to an appropriate value
IT (sampler) nSamples=sampler->RoundSize(nSamples);
IightSampleOffsets|i]
= LightSampleOffsets(nSamples, sample);

bsdfSampleOffsets[i]
= BSDFSampleOffsets(nSamples, sample);

}
11ghtNumOffset = -1;

DirectLighting: :RequestSamples.{

else {
IightSampleOffsets = new LightSampleOffsets|[1];
IightSampleOffsets|[O]
= LightSampleOffsets(1l, sample);
i which light to sample
11ghtNumOffset = sample->Addl1D(1);
bsdfSampleOffsets = new BSDFSampleOffsets|[1];
bsdfSampleOffsets[0] = BSDFSampleOffsets(l, sample);

}
}

lightSampleOffsets records where the samples are in the sample structure.
With this information, we can drive the required random numbers for
generating light samples and store all random numbers required for one
sample in LightSample. Similar for bsdfSample.

DirectLighting::Li

Spectrum DirectLighting::L1(..)

{
Spectrum L(O0.F);
BSDF *bsdf = i1sect.GetBSDF(ray, arena);
Vector wo = -ray.d;
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
L += 1sect.Le(wo);

IT (scene->lights.size() > 0) {
case SAMPLE_ALL_ UNIFORM:

L += UniformSampleAllLights(scene, renderer,
arena, p, n, wo, isect.rayEpsilon,
ray.time, bsdf, sample, rng,
lightSampleOffsets, bsdfSampleOffsets);

break;

DirectLighting::Li

case SAMPLE ONE_UNIFORM:

L += UniformSampleOneLight(scene, renderer,
arena, p, n, wo, isect.rayEpsilon,
ray.time, bsdf, sample, rng,
11ghtNumOffset, lightSampleOffsets,
bsdfSampleOffsets);

break;

}
}
1T (ray.depth + 1 < maxDepth) {

L += SpecularReflect(.);
L += SpecularTransmit(..);

return L;

} This part is essentially the same as Whitted integrator. The main difference
Is the way they sample lights. Whitted uses sample_L to take one sample for
each light. DirectLighting uses multiple Importance sampling to sample both
lights and BRDFs.

Whitted::-Li

// Add contribution of each light source

for (int 1 = 0; 1 < scene->lights.si1ze(); ++1) {
Vector wi;
float pdf;
VisibilityTester visibility;
Spectrum Li = scene->lights[i1]->Sample L(..);
iIT (Li.IsBlack() || pdf == 0.f) continue;
Spectrum f = bsdf->f(wo, wi);
It (If.IsBlack() && visibility._Unoccluded(scene))

L += £ * L1 * AbsDot(wi, n) *
visibility.Transmittance(.) / pdf;

UniformSampleAllLights

Spectrum UniformSampleAllLights(...)
{
Spectrum L(0.);
for (u_int 1=0;i1<scene->lights.size();++1) {
Light *light = scene->lights|i];
int nSamples IightSampleOffsets ?
IightSampleOffsets[i1].nSamples - 1;
Spectrum Ld(0.);
for (int jJ = 0; J < nSamples; ++j) {
<Find light and BSDF sample values>
[[1ightSample=LightSample(sample, lightSampleOffsets|[i],}1):11

Ld += EstimateDirect(...); }

L += Ld / nSamples; compute contribution for one
1 sample for one light
return L; f(pﬂﬂpaﬁ)Ld(pJQﬂ|C039j|
’ p())

Lo(pawo): Le(pawo)+JQ f(pawwa)i)l-d(paa)i)lcosei |d(()|

UniformSampleOneLight

Spectrum UniformSampleOneLight (...)
{
iInt nLights = Int(scene->lights.size());
iIT (nLights == 0) return Spectrum(0.);
int TightNum;
iIT (lightNumOffset 1= -1)
fightNum =
Floor2Int(sample->oneD[1ightNumOffset][O]*nLights);
else
IightNum = Floor2Int(RandomFloat() * nLights);
LightNum = min(lightNum, nLights-1);
Light *light = scene->lights[li1ghtNum];
<Find light and BSDF sample values>
return (float)nLights * EstimateDirect(...);

}

EstimateDiIrect

Spectrum EstimateDirect(Scene *scene, Renderer *renderer,
Light *light, Point &p, Normal &n, Vector &wo,
float rayEpsilon, float time, BSDF *bsdf, RNG &rng,
LightSample &lightSample, BSDFSample &bsdfSample,
BxDFType flags)

{ f(p,(()o,(()j)l_d(p,(()j)|0089j|
Spectrum Ld(0.);
Vector wi; p(a%)
float lightPdf, bsdfPdf;
VisibilityTester visibility;

Here, we use multiple importance sampling to estimate the above
term by taking one sample according to the light and the other
according to BSDF.

Multiple importance sampling

light

s

0,

0

>y

Weight according to L Weight according to f

1A FXDGDW (X)) 1 S8 TG)w, (V)

N¢ 5 Pi (Xi) Ny = Py (Y;)

(n,p,(x))’

W, (X) = S (0,p.(0) Here, ne=n,=1

Sample light with MIS

Spectrum Li = light->Sample L(p, rayEpsilon, lightSample,
time, &wi, &lightPdf, &visibility);
It (lightPdf > 0. && MLi.IsBlack()) {
Spectrum f = bsdf->F(wo, wi, Flags);
It (MT.IsBlack() && visibility.Unoccluded(scene)) {
L1 *= visibility.Transmittance(.);
iIT (light->IsDeltaLight())
Ld += ¥ * L1 * (AbsDot(wi, n) /7 lightPdf);
else {
bsdfPdf = bsdf->Pdf(wo, wi, flags);
float weight =
PowerHeuristic(l, lightPdf, 1, bsdfPdf);
Ld += ¥ * L1 * (AbsDot(wi, n) * weight /7 lightPdf);

} f(p, @, 0,)Ly(p, ;)| cos 6, |W, (o)

}
¥ p(aﬁ)

Sample BRDF with MIS

if (1light->1sDeltaLight()) { [fitisdeltalight, no need
BxDFType sampledType; to sample BSDF
Spectrum f = bsdf->Sample f(wo, &wi, bsdfSample,
&bsdfPdf, flags, &sampledType);
1T (If.I1sBlack() && bsdfPdf > 0.) {
float weight = 1.F; weight=1 is for specular lights
iIT (1(sampledType & BSDF_SPECULAR)) {
lightPdf = light->Pdf(p, wi);
iIT (lightPdf == 0.) return Ld;
weight = PowerHeuristic(l, bsdfPdf, 1, lightPdf);
+
We need to test whether we can see the light along the sampled direction
Intersection lightlsect;
Spectrum Li(0.F);
RayDifferential ray(p, wi, rayEpsilon, INFINITY, time);

Sample BRDF with MIS

IT (scene->Intersect(ray, &lightlsect)) {
If we can see it, record its Li
iIT (lightlsect.primitive->GetAreaLight() == light)
L1 = lightlsect.Le(-wi);

} else No intersection, but it could be an infinite
L1 = light->Le(ray); area light. For non-infinite-area lights,
Le return O.

iIT (ILi.IsBlack()) {
Li *= renderer->Transmittance(..);
Ld += £ * L1 * AbsDot(wi, n) * weight / bsdfPdf;

}
}

return Ld;

Direct lighting

The light transport equation

« The goal of integrator is to numerically solve
the light transport equation, governing the
equilibrium distribution of radiance in a scene.

L(x,o)=L(x,0)+L(x,0)

=L (x,0)+ j f(x,0, > @)L.(x,m,)cos0. do
H]

The light transport equation

L (pw,)=L,(pw,)+ fs-f fr(p,(U(},(Uf)Lf(p,(uf)‘cos Q.‘da)f

e If no participating media - express Incoming In
terms of outgoing radiance:

Lf(psfﬂ) = L()(f(p,(g),_m) L(,(P ,.—UJ)

I/

p U)

 Need to solve for L (only one unknown)
L(p.w,)=L,(p.w,)+ J’gz ﬁ,(p,wo,(uj)L(r(p,wj),—wj)‘Cos 9!.‘(1(0{.

Analytic solution to the LTE

e In general, it is impossible to find an analytic
solution to the LTE because of complex BRDF,
arbitrary scene geometry and intricate visibility.

e For an extremely simple scene, e.g. inside a
uniformly emitting Lambertian sphere, it is
however possible. This is useful for debugging.

L(p,,m“) =L, + C'J‘HJ L(E‘(ILUJI-)#UJ;)

cos 95‘::! w,

e Radiance should be the same for all points

L=L +caL

Analytic solution to the LTE

L=L +caL
L: Le+pth
=L+ o (L + o L)
=L, + o (L + o (L ...
:ZI—epri\h
i=0
L

Surface form of the LTE

e Expressing LTE 1n terms of geometry -
within the scene b/ |
L(p",(:r)o) = L(p" — p) -) |
;o _ " ' w 0 / a.
f(p ’('UU’(U{) = f(zj — p'r — p) O'/. :
p."

* Replacing the integrand (dw,)with an area
integrator over the whole scene geometry
0s0
and remembering: do, = W : H s dA(p")
p =P

e V(p<p') - visibility term (either one or zero)

Surface form of the LTE

e Geometry coupling term .
G(p” < p’) = V(p" <> p') COS,G C‘isf) /ﬁ mej
p'-p .
" » CU(,J /':U_)
e New (geometric) formulation Vi

of the Light Transport Equation (LTE) P
L(p" — p) = L(,(p" — p) + J'A]",.(p” —p' — p)L(p" — p")G(p" < p")dA(p")
e Randomly pick points in the scene and create a
path vs. (previously)

e randomly pick directions over a sphere

These two forms are equivalent, but they represent two
different ways of approaching light transport.

Surface form of the LTE

L(p = po) = L(p = po)
+J, L(p, = p)f (P, = pr = po)G(py < p1)dA(p,)

ff1 A, P% P> f(i)y Py PJG(FH }77)
f(i?g — P> D,) (p < p,)dA(p)dA(p)

+... f(‘,')} — ‘,')2 —_ 1”1)

&D_/ Mx“ha {
. | N

B

G(ps < ."3’2)\

(11(102 —> Jr;ul)

P f(p,=p— ."30)

Surface form of the LTE

e compact formulation:
L(pl — po) = EP(E)
i=1

* Forapath p,=pyp..p,

* Where p, 1s the
camera and p; 18
a light source

.f‘(ﬁ’a — Py F‘L)

f G(p; e}?f;)*g
\ ./"/G (P, < p))
e

pl f(Pg e L F’o)

Surface form of the LTE

e with: P p ff fL p — Dy p)dA(pz)...dA(p!.)

A, As

e Where 7(p,)= Hf(p,ﬂﬁp = p)G(p,a=p,)
e Is called the Ihmzzghpur

e Special case:

P(1_31) = Le(ﬂ — 15’0)

.f‘(pa — P, ;'3'1)

) G (;33 = ;}J“Q

| /G(p, < p
\/ (P2 = 7)

e
pl .f(Pg — P F’o)

Delta distribution

e Again - handle with care (e.g. point light):
P(p,)= [L.(p, = p)f(p. = b, = po)G(py < p)dA(ps)

ol p,...— P> L.(P,
_ ([Jf:ghr P_) e.([); — pl) f(p2 — p, — pO)G(p2 <> pl)
[)(pﬁghr)

e E.o. Whitted ray es
tracing only uses Po
: ? -(;(fjh}s:m < fjl)
specular BSDF’s \J/

Partition the integrand

* Many different algorithms proposed to deal
with EP

 Most energy 1n the first few bounces:
L(p, = p,)=P(p,)+ P(p.) + EP(T?
=3

* P(p,)emitted radiance at p,

e P(p,)one bounce to light (direct lighting)

Partition the integrand

e Simplity according to small and large light
sources: L,=L, +L,

P(P)= [[-f Lp = p)T(P)aA(p:) ()
N ff”'fl‘e,s(pf — P;_l)T([_Jf)dA(pz)...dA(pE.)

+[[S Lo(p. = p)T(P)dA(p,)--dA(p,)

e Can be handledl separately (ditferent
number of samples)

Partition the integrand

e Similarly, we can split BXDF into delta and
non-delta distributions:
J=/at /3
i-1

T(]_)f) = H(fa. + fE)G(ij == p‘;)

J=1

Rendering operators

Scattering operator

L(x.a)= | f(x.0,—>®,)L(x.a)cosf do
HE

= So Lj
Transport operator
L(x,0,)= LO(X* (x,@,),—®,)
=1oL,

Solving the rendering equation

Rendering Equation

K=SoT
L=L,+KoL
(I-K)oL=1,
Solution
L=(I-K) oL

(I-K) =——=I1+K+K*+...

sSuccessive approximation

Successive approximations

L'=L

e

P=L +Kol
I'=L +KoL"

Converged

r=r" oI

=L +Kol

sSuccessive approximation

Light transport notation (Hekbert 1990 £

e Regular expression denoting sequence of events
along a light path alphabet: {L,E,S,D,G}

- L a light source (emitter)

- E the eye

- S specular reflection/transmission
- D diffuse reflection/transmission

- G ol SV rnflnrhnn /fr::ncm1cc1nn
y [] IJdJDINIL]

. operators.
- (k)* one or more of k
- (k)" zero or more of k (iteration)
- (k]k’) ak or ak’ event

Light transport notation: examples

e LSD

- a path starting at a light, having one specular
reflection and ending at a diffuse reflection

D . &

7

SN

)

A

Light transport notation: examples

e L(S|D)*DE

- a path starting at a light, having one or more diffuse
or specular reflections, then a final diffuse
reflection toward the eye

E @
it 4
/ S

%

Light transport notation: examples

e L(S|D)*DE

- a path starting at a light, having one or more diffuse
or specular reflections, then a final diffuse
reflection toward the eye

)
I\ o
. w / ’
E &
D 4
L
D
‘
NS l

Rendering algorithms

e Ray casting: E(D|G)L

« Whitted: E[S*](D|G)L

e Kajiva: E[(D|G]|S)*(D|G)]L
e Goral: ED*L

The rendering eguation

Directional form
L(x,0)=L,(x,0)+
I f(x,0' > ©) L(x (x,0"),-0")cos 0’ do’

A {3
ﬁ Transport operator

Integrate over I.e. ray tracing

hemisphere of
directions

The rendering eguation

Surface form

L(x,x)=L,(x",x)+
j [.(x" X x) L(x", x") G(x", x") dA" (x")

M Geometry term ﬁ

rr 4
Integrate over e COSQ COS 90 -
all surfaces G(x',x")= =TV (x",x)

i

r f

X —X

Visibility term ﬁ

V(x",x") =+

| visible

0 not wvisible

L

The radiosity equation

Assume diffuse reflection
1. J(x,0, -5 w)=f(x)= p(x)=7f(x)

2. L(x,0)=B(x)/nx

B(x)=B_(x)+ p(x)E(x)
B(x) = B.(x) + p(x) j F(x,x"\B(x")dA'(x")

VN

G(x,x)
T

F(x,x") =

Radiosity

o formulate the basic radiosity equation:

N
Bm = Em +IOmZBnan

n=1
« B =radiosity = total energy leaving surface m

(energy/unit area/unit time)

« E_ = energy emitted from surface m (energy/unit
area/unit time)

e p., = reflectivity, fraction of incident light reflected
back into environment

« F_.=form factor, fraction of energy leaving surface n
that lands on surface m

e (A, = area of surface m)

Radiosity

e Bring all the B’s on one side of the equation
Em — Bm _meBnan
m

 this leads to this equation system:

1/)1F11 -pF, . —p Ry B, E,
-p,F 1=-p,F, o = pFy B, _ E,
__IONFNI -PovFne o 1=y FNN__BN_ _EN_

Path tracing

e Proposed by Kajiya in his classic SIGGRAPH 1986
paper, rendering equation, as the solution for

Pl — f)o EP P,

e Incrementally generates path of scattering
events starting from the camera and ending at

light sources in the scene.

e Two questions to answer
- How to do it in finite time?
- How to generate one or more paths to compute P(ﬁ{.)

Infinite sum

e In general, the longer the path, the less the
impact.
o Use Russian Roulette after a finite number of
bounces
- Always compute the first few terms
- Stop after that with probability g

_ _ _ 1 _
L(p, = po) = P(p) + P(P,) + P(P3) + 1 qu(pf)
=4

Infinite sum

o Take this idea further and instead randomly
consider terminating evaluation of the sum at
each term with probability g

L(Pl — Po) =~

Path generation (first trial)

e First, pick up surface i in the scene randomly
and uniformly A

Pi= Zj Aj
e Then, pick up a point on this surface randomly
and uniformly with probability /A_

e Overall probability of picking a random surface
point in the scene:

N A .1: 1
pA(pI) ZjAj AI ZjAj

Path generation (first trial)

e This is repeated for each point on the path.

e Last point should be sampled on light sources
only.

e |f we know characteristics about the scene
(such as which objects are contributing most

indirect lighting to the scene), we can sample
more smartly.

e Problems:

- High variance: only few points are mutually visible,
i.e. many of the paths yield zero.

- Incorrect integral: for delta distributions, we rarely
find the right path direction

Incremental path generation

« For path p; = p, Pi---PiPji-- P
- At each p;, find p;,; according to BSDF (in this
way, they are guaranteed to be mutually
visible)
- At p; 4, find p; by multiple importance
sampling of BSDF and L
e This algorithm distributes samples according to

solid angle instead of area. So, the distribution
p, needs to be adjusted

H Pi — Pin

| cos O, |

2

pA(pi) — pa)

Incremental path generation

e Monte Carlo estimator

i—2

Le(p; = pi—1)f (P; = Pi—1 = Pi_2)lcos 6;_| I S (Pj+1 = Pj = Pj—1)lcos 6}
pa(pi) =1 Po(Pj+1— Pj)
MIS sampled by BSDF
 Implementation re-uses path Pi_ for new path P,
This introduces correlation, but speed makes up

for it.

Path tracing

Step 1. Choose a camera ray r given the
(x,y,u,v,t) sample

weight = 1;
Step 2. Find ray-surface intersection
Step 3.
if light
return weight * Le();
else
welght *= reflectance(r)
Choose new ray r’ ~ BRDF pdf(r)
Go to Step 2.

Direct lighting

Path tracing

8 samples per pixel

Path tracing

1024 samples per pixel

Bidirectional path tracing

« Compose one path pfrom two paths
—p,p,...p; started at the camera p, and
—(0;.1---0; started at the light source g,

P = P P,---05,4;4;----G

e Modification for efficiency:
-Use all paths whose Py---Pi-q ;-4 Pr---Piq ;-4
lengths ranging from p..p..q,..q p-.p.q. -4

2 to i+j Pr---Piiasq -4y Pr---Pisq j—2--4)

P-4 ;-4 Pi---P>4,
Helpful for the situations in which lights are difficult
to reach and caustics

Bidirectional path tracing

Bidirectional path tracing Path tracing

PathlIntegrator

class Pathlntegrator : public Surfacelntegrator {
public:

Spectrum Li(.) const;

void RequestSamples(.);

PathIntegrator(int md) { maxDepth = md; }
private:

int maxDepth;

Use samples from Sampler for the first SAMPLE _DEPTH vertices of the path.
After that, the advantage of well-distributed samples are greatly reduced,
And it switches to using uniform random numbers.

#define SAMPLE DEPTH 3

LightSampleOffsets lightSampleOffsets[SAMPLE DEPTH];
int lLightNumOffset[SAMPLE DEPTH];

BSDFSampleOffsets bsdfSampleOffsets[SAMPLE DEPTH];
BSDFSampleOffsets pathSampleOffsets|[SAMPLE DEPTH];

¥;

RequestSamples

class Pathlntegrator: :RequestSamples(.)

{
for (int 1 = 0; 1 < SAMPLE _DEPTH; ++1) {

Path is reused. Thus, for each vertex, we need to perform MIS as it
serves as the terminated point for some path. Therefore, we need
both light and brdf samples
IightSampleOffsets|[i1]=LightSampleOffsets(l,sample);
L1ghtNumOffset[1] = sample->AddiD(1);
bsdfSampleOffsets[1] = BSDFSampleOffsets(l,sample);

pathSampleOffsets[1] = BSDFSampleOffsets(l,sample);
¥} Another bsdf sample is used for extending the path

Pathlntegrator:: L1

class Pathlntegrator::Li1(.) const

1

Spectrum pathThroughput = 1., L = 0.;

RayDifferential ray(r);

bool specularBounce = false;

Intersection locallsect;

const Intersection *i1sectp = &isect;

for (int bounces = 0; ; ++bounces) {
<possibly add emitted light at vertex>
<sample from lights to find path contributions>
<sample BSDF to get new path direction>
<possibly terminate the path>
<find next vertex of path>

}

return L;

Pathlntegrator:: L1

<possibly add emitted light at vertex>
iIT (bounces == 0 || specularBounce)
L += pathThroughput * i1sectp->Le(-ray.d);

Pathlntegrator:: L1

<sample from lights to find path contributions>
BSDF *bsdf = i1sectp->GetBSDF(ray, arena);
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
Vector wo = -ray.d;
1T (bounces < SAMPLE_DEPTH)
L += pathThroughput *
UniformSampleOneLight(scene, renderer, arena,
p, n, wo, Isectp->rayEpsilon, ray.time,
bsdf, sample, rng, lightNumOffset[bounces],
&lightSampleOffsets[bounces],
&bsdfSampleOffsets|bounces]);
else
L += pathThroughput *
UniformSampleOneLight(scene, renderer, arena,
p, n, wo, Isectp->rayEpsilon, ray.time,
bsdf, sample, rng);

Pathlntegrator:: L1

<sample BSDF to get new path direction>
BSDFSample outgoingBSDFSample;
1T (bounces < SAMPLE_DEPTH)
outgoingBSDFSample = BSDFSample(sample,
pathSampleOffsets[bounces], 0);
else
outgoingBSDFSample = BSDFSample(rng);
Vector wi;
float pdf;
BxDFType flags;
Spectrum f = bsdf->Sample f(wo, &wi,
outgoingBSDFSample, &pdf, BSDF ALL, &flags);
iIT (f.IsBlack(Q) || pdf == 0.)
break;
specularBounce = (flags & BSDF SPECULAR) != O;
pathThroughput *= ¥ * AbsDot(wi, n) / pdf;
ray = RayDifferential(p, wi, ray, isectp->rayEpsilon);

Pathlntegrator:: L1

<possibly terminate the path>
iIT (bounces > 3) {
float continueProbability =
min(.5F, pathThroughput.y());
iIT (rng.RandomFloat() > continueProbability)
break;
pathThroughput /= continueProbability;
}
IT (bounces == maxDepth)
break;

Pathlntegrator:: L1

<find next vertex of path>
IT (Iscene->Intersect(ray, &locallsect)) {
IT (specularBounce)
for (int 1 = 0; 1 < scene->lights.si1ze(); ++1)
L += pathThroughput*scene->lights[i]->Le(ray);
break;
}
iIT (bounces > 1)
pathThroughput *= renderer->Transmittance(scene,
ray, NULL, rng, arena);
iIsectp = &locallsect;

Noise reduction/removal

Path tracing is unbiased and often taken as a
reference. The problem is that it has high
variances.

More samples (slow convergence)

Better sampling (stratified, importance etc.)
Filtering

Caching and interpolation (reuse samples)

Bilased approaches

e By introducing bias (making smoothness assumptions),
biased methods produce images without high-frequency
noise

e Unlike unbiased methods, errors may not be reduced by
adding samples in biased methods

o On contrast, when there is little error in the result of
an unbiased method, we are confident that it is close
to the right answer

e Biased approaches
- Filtering
- Instant global illumination
- Irradiance caching
- Photon mapping

The world 1s more diffuse!

Filtering

e Noise is high frequency

e Methods:
- Simple filters
- Anisotropic filters
- Energy preserving filters

e Problems with filtering: everything is filtered
(blurred)

3x3 lowpass filter

3x3 median filter

Instant global illumination

e Preprocess: follows some light-carrying paths
from the light sources to create virtual light
sources.

e Rendering: use only the virtual lights to
compute the indirect contributions.

e Since only a set of virtual lights are used, there
will be systemic error due to correlation rather
than noise due to variance. Similar artifacts for
your project #3.

Instant global illumination

light source

A virtual 7~
) 7
/ light ~ direct ol Vvirtual
7 g
light

virtual
light

Instant global illumination

light source

i p n

/
Po /

What should we store
in the virtual lights? 2

fa‘g“.

Instant global illumination

P(p,)=af (p; = p, = p,)G(p, = p) (P, = p, = Py)

— Le(pn — pn—l)f(pn — pn—l — pn—z) | COsgn—l |

04
PA(pn)
[T 1P = P> P | costy Ij
i=3 P, (P = P)

It is independent to the camera and the first visible point p;.

It is what we should pre-compute and store at the virtual lights.
During rendering, for each shading point, we need to evaluate
the two remaining BRDFs and the geometric term.

Caching techniques

e Irradiance caching: compute irradiance at
selected points and interpolate

e Photon mapping: trace photons from the lights
and store them in a photon map, that can be
used during rendering

Direct 1llumination

Global iHlumination

Indirect irradiance

Irradiance caching

e Introduced by Greg Ward 1988
« Implemented in Radiance renderer

e Contributions from indirect lighting often vary
smoothly —cache and interpolate results

Irradiance caching

« Compute indirect lighting at sparse set of
samples

e Interpolate neighboring values from this set of
samples

e |ssues

How is the indirect lighting represented

How to come up with such a sparse set of samples?
How to store these samples?

When and how to interpolate?

Set of samples

e Indirect lighting is computed on demand, store
iIrradiance in a spatial data structure. If there is
no good nearby samples, then compute a new
irradiance sample

 Irradiance (radiance is direction dependent,
expensive to store)

E(p) =] ,Li(p. @) |cos8, |do,
o |f the surface is Lambertian,
Lo(paa)o): .Hz f(p,a)o,a)i)Li(p,a)i)|cosﬁi |dC()|

= |..PL(p. @) cosb, | de
= PE(p)

Set of samples

e For diffuse scenes, irradiance alone is enough
information for accurate computation

e For nearly diffuse surfaces (such as Oren-Nayar
or a glossy surface with a very wide specular
lobe), we can view irradiance caching makes
the following approximation

L(p.@)|cosd, | day,)

f(p.w -a).\da).x_[
2 AN il 0 I 1/ I

H

L,(p,,) ~ [

H

~ (% Phd (a)o))E(P)

|

directional reflectance

Set of samples

E(p,n) :sz Li(paa)i)5((()| _a)avg) | COSQi |d(()| = I—avg |Coseavg |
B E
" |cosb,, |
E
L (P.@,) = |, (P, 0,,0)5(0, — 0,,5) |cos 6, | do,
0 0] H2 0 | | avg !CQS eavg !
= f(p,w,,®,,4)E(P,N)

makes it directional

Set of samples

e Not a good approximation for specular surfaces
e specular — Whitted integrator

e Diffuse/glossy — irradiance caching
- Interpolate from known points
- Cosine-weighted
- Path tracing sample points

E(p)= [, Li(p,,)|cos 6, |do

1 L (p,®;)|cosd, |
E(p) = N; (@)

- p(w)=cosO/x
E(p) =2 T L(p.o)

Storing samples

o Samples are stored in an octree.
e Each sample stores the following mformatlon

7o)
{E P,N, Wavg’dmax} '__/' \‘w.
. o '
x\\ _ _//\
S\

e Maximal distance is kept during path tracing for
computing the sample. d; is the distance that
the ith ray hit an intersection. <

ﬂ NS

—

Storing

samples

e Octree data structure
— Each node stores samples that influence this
node (each point has a radius of influence!)
* Radius of influence i@%/;\
monic mean 3, Ly |7
— d. is the distance that the ithray |~/ |~
(usec"‘. for estimqting the ;irradianc@ {E,p,n,d}
traveled before intersecting an object
— Computed during path tracing %

ﬂ NS

Interpolating from neighbors

« Weights depend on N
- Angle between normals
- Distance between points /7p

e Weight (ad hoc)

d I-N-N'
W, =1—-max| —,
d _\1-cosé_.

e Final irradiance estimate is simply the weighted

sum
ZWE

D ow,

IrradianceCachelntegrator

class IrradianceCachelntegrator : public
Surfacelntegrator {

float minSamplePixelSpacing, maxSamplePixelSpacing;
float minWeight, cosMaxSampleAngleDifference;

Int nSamples; how many rays for computing irradiance samples
Int maxSpecularDepth, maxIndirectDepth;

}

Preprocess() allocates the octree for storing irradiance samples

L1

L += 1sect.Le(wo);
L += UniformSampleAllLights(...);
iIT (ray.depth+1l < maxSpecularDepth) {
<Trace rays for specular reflection and refraction>

¥} Current implemetation uses Whitted style for specular; irradiance cache for
Both diffuse and glossy. It could lead to errors for glossy.

// Estimate indirect lighting with irradiance cache

S the project area of a pixel

float pixelSpacing = in the world space
sqrtf(Cross(isect.dg.dpdx, 1sect.dg.dpdy).Length());

BxDFType flags =
BXDFType(BSDF_REFLECTION|BSDF_DIFFUSE|BSDF_GLOSSY) ;

L += indirectLo(...);

Flags =
BXDFType(BSDF_TRANSMISSION|BSDF DIFFUSE |BSDF_GLOSSY);

L += indirectLo(...);

IndirectLo

iIT (1InterpolateE(scene, p, n, &, &wi)) {
... // Compute irradiance at current point
for (int 1 = 0; 1 < nSamples; ++1) {
<Path tracing to compute radiances along ray
for 1rradiance sample>

LiSum += L;

wAvg += r.d * L.y(Q);

minHItDistance = min(minHiItDistance, r.maxt);
}

E = (M PI /7 float(nSamples)) * LiSum;

- .- // Add computed irradiance value to cache
IrradianceSample *sample =

new IrradianceSample(E, p, ng, wAvg, contribExtent);
octree->Add(sample, sampleExtent);

}

return bsdf->f(wo, Normalize(wi), flags) * E;

Octree

void IrradianceCache: :Preprocess(const Scene *scene)
{
BBox wb = scene->WorldBound();
Vector delta = .01f * (wb.pMax - wb.pMiIn);
wb.pMin -= delta;
wb.pMax += delta;
octree=new Octree<lrradianceSample *>(wb);
<prefill the i1rradiacne cache>
}
struct IrradianceSample {
Spectrum E;
Normal n;
Point p;
Vector wAvg;
float maxDist;

Interpolatelrradiance

Bool InterpolateE(Scene *scene, Point &p, Normal &n,
Spectrum *E, Vector *wi)

{
iIT (loctree) return false;
IrradProcess proc(p, n, minWeight,

cosMaxSampleAngleDifference);
octree->Lookup(p, proc);

Traverse the octree; for each node where the query point is inside, call
a method of proc to process for each irradiacnhe sample.

f 1

roc.SuccessTi

Ll
- o .

o} 1()) return false;
proc.Getlrradiance();

*w| = proc.GetAverageDirection();
return true;

[/'\
\o/

)(- T

}

lrradProcess

voild IrradProcess: operator()(IrradianceSample &sample)

{
Tloat perr = Distance(p, sample->p) _fi_
/ sample—>maxDist;de
sqrtf((1.f - Dot(n, sample->n))
/ (1.f - cosMaxSampleAngleDifference));
float err = max(perr, nerr);

float nerr

I-N-N'
i1IT (err < 1.) { 1—cosd
++nFound; max
float wt = 1_F - err;
E += wt * sample->E;
wAvg += wt * sample->wAvg;
sumWt += wt;
¥ d 1-N-N'

return true; W, =1—max ,
} d \1-cos@

Irradiance caching Path tracing
Blotch artifacts High-frequency noises

Irradiance caching

Irradiance caching Irradiance sample
positions

Photon mapping

It can handle both diffuse and glossy reflection;
specular reflection is handled by recursive ray
tracing

Two-step particle tracing algorithm

Photon tracing

- Simulate the transport of individual photons
- Photons emitted from source

- Photons deposited on surfaces

- Photons reflected from surfaces to surfaces

e Rendering

- Collect photons for rendering

Photon tracing

e Preprocess: cast rays from light sources

Photon tracing

e Preprocess: cast rays from light sources

e Store photons (position + light power +
incoming direction)

Photon map

o Efficiently store photons for fast access
e Use hierarchical spatial structure (kd-tree)

Rendering (final gathering)

o Cast primary rays; for the secondary rays,
reconstruct irradiance using the k closest stored
photon

Rendering (without final gather)

L, (P,@,) =L, (P, @)+ |_f(p,0,,0)L(p,®,)|cosb, | de

N

o

/T

Rendering (with final gather)

Photon mapping results

photon map rendering

Photon mapping - caustics

e Special photon map for specular reflection and
refraction

Caustics

Path tracing:
1,000 paths/pixel

Photon mapping

Photon mapping

100K photons 500K photons

Photon map

Kd-tree is used to
store photons,
decoupled from the
scene geometry

Photon shooting

e Implemented in Preprocess method
e Three types of photons (caustic, direct, indirect)

struct Photon {
Point p; .
Spectrum alpha;
Vector wi;

}; I

I \ ;
/ - L] . - .8 - L]
. For 100 photons emitted from 100W source,
each photon nitially carnies 1W.

Photon shooting

e Use Halton sequence since number of samples
is unknown beforehand, starting from a sample
light with energy =) | Store photons for non-
specular surfaces. P

specular

specular

emission
specular/

non-specular
non-specular

non-specular

Rendering

shadow rays are traced

50,000 direct photons for direct lighting

Rendering

500,000 direct photons caustics

Photon mapping

Direct illumination Photon mapping

Photon mapping + final gathering

Photon mapping
+final gathering

Photon mapping

Results

KREMDERED USIMG DALI - HEMRKIK HWAHH JEHSEH

