
Surface Integrators

Digital Image Synthesisg g y
Yung-Yu Chuang

with slides by Peter Shirley, Pat Hanrahan, Henrik Jensen, Mario Costa Sousa and Torsten Moller

Direct lighting via Monte Carlo integration

diff diffuse

Direct lighting via Monte Carlo integration

parameterization over hemisphere

parameterization over surface

have to add visibilityhave to add visibility

Direct lighting via Monte Carlo integration

take one sample according to a density function

let’s takelet s take

Direct lighting via Monte Carlo integration
1 sample/pixel

100 samples/pixel

Lights’ sizes matter
more than shapes.p
Noisy because
•x’ could be on the

b kback
•cos varies

Noise reduction

choose better density function

)1( 

It is equivalent to uniformly sampling over
the cone cap in the last lecture.

max11 cos)1(cos  

22 
maxcos

Direct lighting from many luminaries

• Given a pair , use it to select light and
generate new pair for sampling that lightgenerate new pair for sampling that light.

• α could be constant for proportional to power

Rendering

• Rendering is handled by Renderer class.
class Renderer {class Renderer {

…
virtual void Render(Scene *scene) = 0;

given a scene, render an image or a set of measurements

virtual Spectrum Li(Scene *scn, RayDifferential &r,
Sample *sample, RNG &rng,

computer radiance along a ray

for MC sampling p p , g,
MemoryArena &arena, Intersection *isect,
Spectrum *T) const = 0;

t t itt l

p g

transmittance

virtual Spectrum Transmittance(Scene *scene,
RayDifferential &ray, Sample *sample,

return transmittance along a ray

y y p p
RNG &rng, MemoryArena &arena) const = 0;

}; The later two are usually relayed to Integrator

SamplerRenderer

class SamplerRenderer : public Renderer {
…
private:
// SamplerRenderer Private Data// SamplerRenderer Private Data
Sampler *sampler; choose samples on image plane

and for integration

Camera *camera;
determine lens parameters (position,
orientation, focus, field of view)
with a film

SurfaceIntegrator *surfaceIntegrator;
V l I t t * l I t t

with a film

VolumeIntegrator *volumeIntegrator;
}; calculate the rendering equation

The main rendering loop

• After scene and Renderer are constructed,
Renderer:Render() is invokedRenderer:Render() is invoked.

Renderer:Render()

void SamplerRenderer::Render(const Scene *scene) {
… scene-dependent initialization such photon map
surfaceIntegrator->Preprocess(scene,camera,this);
volumeIntegrator->Preprocess(scene,camera,this);

scene dependent initialization such photon map

Sample *sample = new Sample(sampler,
surfaceIntegrator volumeIntegrator scene);

sample structure depends on types of integrators

surfaceIntegrator, volumeIntegrator, scene);

We want many tasks to fill in the core (see histogram next page).
If there are too few, some core will be idle. But, threads have

int nPixels = camera->film->xResolution

If there are too few, some core will be idle. But, threads have
overheads. So, we do not want too many either.

* camera->film->yResolution;
int nTasks = max(32 * NumSystemCores(),

nPixels / (16*16));

at least 32 tasks
for a core

a task is about 16x16nPixels / (16*16));
nTasks = RoundUpPow2(nTasks);

a task is about 16x16power2 easier to divide

Renderer:Render()

vector<Task *> renderTasks;
for (int i = 0; i < nTasks; ++i)(; ;)

renderTasks.push_back(new
SamplerRendererTask(scene,this,camera,reporter,

all information about renderer
must be passed in

sampler, sample, nTasks-1-i, nTasks));

EnqueueTasks(renderTasks);

total taskstask id

EnqueueTasks(renderTasks);
WaitForAllTasks();
for (int i = 0; i < renderTasks.size(); ++i)(())

delete renderTasks[i];

delete sample;
camera->film->WriteImage();

}}

SamplerRenderTask::Run

• When the task system decided to run a task on a
particular processor, SamplerRenderTask::Run()particular processor, SamplerRenderTask::Run()
will be called.

void SamplerRendererTask::Run() {
// decided which part it is responsible for
…
int sampleCount;
while ((sampleCount=sampler >while ((sampleCount=sampler ->

GetMoreSamples(samples, rng)) > 0) {
// Generate camera rays and compute radiance y p

SamplerRenderTask::Run

for (int i = 0; i < sampleCount; ++i) {

for vignetting
float rayWeight = camera->

GenerateRayDifferential(samples[i], &rays[i]);

for vignetting ray differential
for antialiasing

rays[i].ScaleDifferentials(
1.f / sqrtf(sampler->samplesPerPixel));

if (rayWeight > 0.f)
Ls[i] = rayWeight * renderer->Li(scene, rays[i], [] y g (, y [],

&samples[i], rng, arena, &isects[i], &Ts[i]);
else { Ls[i] = 0.f; Ts[i] = 1.f; }

for (int i = 0; i < sampleCount; ++i)
camera->film->AddSample(samples[i] Ls[i]);camera->film->AddSample(samples[i], Ls[i]);

}

SamplerRender::Li

Spectrum SamplerRender::Li(Scene *scene,
RayDifferential &ray, Sample *sample, y y, p p ,
…, Intersection *isect, Spectrum *T)

{ Spectrum Li = 0.f;
if (scene->Intersect(ray, isect))

Li = surfaceIntegrator->Li(scene,this,
ray *isect sample rng arena);ray, *isect, sample,rng, arena);

else { // ray that doesn't hit any geometry
for (i=0; i<scene->lights.size(); ++i)(g ())

Li += scene->lights[i]->Le(ray);
}
Spectrum Lvi = volumeIntegrator->Li(scene, this,

ray, sample, rng, T, arena);
return *T * Li + Lvi;return *T * Li + Lvi;

}

Surface integrator’s Li

)ωp,(ooL)ω,p(oeL


Lo

iω
2

d
s iiio θcos)ωp,()ω,ωp,(iLf

SamplerRender::Li

L i Li
Lvi

T

Integrators

• core/integrator.* integrator/*

Class Integrator {
i t l id P (S *virtual void Preprocess(Scene *scene,
Camera *camera, Renderer *renderer){}

(virtual void RequestSamples(Sampler
*sampler, Sample *sample, Scene *scene){}

};

Integrators
• void Preprocess(…)

Called after scene has been initialized; do sceneCalled after scene has been initialized; do scene-
dependent computation such as photon shooting for
photon mapping.p pp g

• void RequestSamples(…)
Sample is allocated once in Render(). There, sample’s p () p
constructor will call integrator’s RequestSamples to
allocate appropriate space.
Sample::Sample(Sampler *sampler, SurfaceIntegrator
*surf, VolumeIntegrator *vol, Scene *scene) {
if (surf) ()

surf>RequestSamples(sampler,this,scene);
if (vol)

vol->RequestSamples(sampler, this, scene);
…

Surface integrators

• Responsible for evaluating the integral equation
Whitted directlighting path irradiancecacheWhitted, directlighting, path, irradiancecache,
photonmap, igi, exphotonmap

class SurfaceIntegrator:public Integrator {
public: We could call Renderer’s

Li or Transmittance
virtual Spectrum Li(Scene *scene, Renderer
*renderer, RayDifferential &ray,

Li or Transmittance

Intersection &isect, Sample *sample,
RNG &rng, MemoryArena &arena) const = 0;

};

Direct lighting

dLfLL  ||)()()()(
Rendering equation

iiiiiooeoo dpLpfpLpL  |cos|),(),,(),(),(

If we only consider direct lighting, we can replace

iiidiooeoo dpLpfpLpL  |cos|),(),,(),(),(

y g g, p
Li by Ld.

iiidiooeoo 
• simplest form of equation
• somewhat easy to solve (but a gross approximation)
• major contribution to the final radiance
• not too bad since most energy comes from direct lights
• kind of what we do in Whitted ray tracing

Direct lighting

• Monte Carlo sampling to solve


• Sampling strategy A: sample only one light

iiidio dpLpf  |cos|),(),,(
• Sampling strategy A: sample only one light

– pick up one light as the representative for all lights
distribute N samples over that light– distribute N samples over that light

– Use multiple importance sampling for f and Ld

N Lf ||)()(



N

j j

jjdjo

p
pLpf

N 1)(
|cos|),(),,(1




– Scale the result by the number of lights NL

Randomly pick f or g and then sample,][fE

j

Randomly pick f or g and then sample,
multiply the result by 2][gfE 

Direct lighting

• Sampling strategy B: sample all lights
d A f h li ht– do A for each light

– sum the results
t ld b t l li ht di t – smarter way would be to sample lights according to

their power






LN

j
iiijdio dpLpf

1
)(|cos|),(),,(

j 1

sample f or g separately and then sum][fE sample f or g separately and then sum
them together][gfE 

DirectLighting

enum LightStrategy {
SAMPLE ALL UNIFORM, SAMPLE ONE UNIFORM_ _ , _ _

}; two possible strategies; if there are many image samples for a pixel
(e.g. due to depth of field), we prefer only sampling one light at a
i O h h h d if h f i l f

class DirectLighting : public SurfaceIntegrator {

time. On the other hand, if there are few image samples, we often
prefer sampling all lights at once.

class DirectLighting : public SurfaceIntegrator {
public:

DirectLighting(g g(
LightStrategy ls = SAMPLE_ALL_UNIFORM,
int md=5 maximal depth

);
...

}}

Data structure
•Different types of lights require different numbers of
samples, usually 2D samples.samples, usually 2D samples.

•Sampling BRDF requires 2D samples.
•Selection of BRDF components requires 1D samples.

3 1 2

D t D

n1D n2D 2 2 1 1 2 2 sample

allocate together to avoid cache miss

filled in by integrators

oneD twoD allocate together to avoid cache miss

mem

lightNumOffset
1 2 3

lightSampleOffset bsdfSampleOffset
1 3 5 2 4 6 PathIntegrator

lightNumOffset lightSampleOffset bsdfSampleOffset

DirectLighting::RequestSamples
void DirectLightingIntegrator::RequestSamples(

Sampler *sampler, Sample *sample, Scene *scene) {
if (t t SAMPLE ALL UNIFORM) {if (strategy == SAMPLE_ALL_UNIFORM) {

uint32_t nLights = scene->lights.size();
lightSampleOffsets=new LightSampleOffsets[nLights];
b dfS l Off t BSDFS l Off t [Li ht]bsdfSampleOffsets = new BSDFSampleOffsets[nLights];
for (uint32_t i = 0; i < nLights; ++i) {

const Light *light = scene->lights[i];
i S l li h S lint nSamples = light->nSamples;

if (sampler) nSamples=sampler->RoundSize(nSamples);
gives sampler a chance to adjust to an appropriate value

lightSampleOffsets[i]
= LightSampleOffsets(nSamples, sample);

bsdfSampleOffsets[i]
= BSDFSampleOffsets(nSamples, sample);

}
lightNumOffset = -1;

}

DirectLighting::RequestSamples
else {

lightSampleOffsets = new LightSampleOffsets[1];
li htS l Off t [0]lightSampleOffsets[0]

= LightSampleOffsets(1, sample);

li htN Off t l >Add1D(1)
which light to sample

lightNumOffset = sample->Add1D(1);
bsdfSampleOffsets = new BSDFSampleOffsets[1];
bsdfSampleOffsets[0] = BSDFSampleOffsets(1, sample);

}}
}

lightSampleOffsets records where the samples are in the sample structure.g p p p
With this information, we can drive the required random numbers for
generating light samples and store all random numbers required for one
sample in LightSample. Similar for bsdfSample.

DirectLighting::Li
Spectrum DirectLighting::Li(…)
{

Spectrum L(0.f);
BSDF *bsdf = isect.GetBSDF(ray, arena);
Vector wo = -ray.d;
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
L += isect.Le(wo);();

if (scene->lights.size() > 0) {
switch (strategy) {switch (strategy) {

case SAMPLE_ALL_UNIFORM:
L += UniformSampleAllLights(scene, renderer,

arena p n wo isect rayEpsilonarena, p, n, wo, isect.rayEpsilon,
ray.time, bsdf, sample, rng,
lightSampleOffsets, bsdfSampleOffsets);

b kbreak;

DirectLighting::Li
case SAMPLE_ONE_UNIFORM:

L += UniformSampleOneLight(scene, renderer,
arena, p, n, wo, isect.rayEpsilon,
ray.time, bsdf, sample, rng,
lightNumOffset, lightSampleOffsets,
bsdfSampleOffsets);

break;
}}

}
if (ray.depth + 1 < maxDepth) {

Vector wi;Vector wi;
L += SpecularReflect(…);
L += SpecularTransmit(…);

}}
return L;

} This part is essentially the same as Whitted integrator. The main difference
i th th l li ht Whitt d l L t t k l f is the way they sample lights. Whitted uses sample_L to take one sample for
each light. DirectLighting uses multiple Importance sampling to sample both
lights and BRDFs.

Whitted::Li
...
// Add contribution of each light source
for (int i = 0; i < scene->lights.size(); ++i) {

Vector wi;
float pdf;float pdf;
VisibilityTester visibility;
Spectrum Li = scene->lights[i]->Sample_L(…);
if (Li.IsBlack() || pdf == 0.f) continue;
Spectrum f = bsdf->f(wo, wi);
if (!f IsBlack() && visibility Unoccluded(scene))if (!f.IsBlack() && visibility.Unoccluded(scene))

L += f * Li * AbsDot(wi, n) *
visibility.Transmittance(…) / pdf;

}

UniformSampleAllLights
Spectrum UniformSampleAllLights(...)
{

Spectrum L(0.);
for (u_int i=0;i<scene->lights.size();++i) {

Light *light = scene->lights[i];
int nSamples = lightSampleOffsets ?

lightSampleOffsets[i].nSamples : 1;
Spectrum Ld(0.);p ();
for (int j = 0; j < nSamples; ++j) {
<Find light and BSDF sample values>

[[lightSample=LightSample(sample,lightSampleOffsets[i],j);]]

Ld += EstimateDirect(...); }
L += Ld / nSamples;

}
compute contribution for one
sample for one light

g p g p p g p j

}
return L;

}

sample for one light

)(
|cos|),(),,(

j

jjdjo

p
pLpf




)(jp
iiidiooeoo dpLpfpLpL  |cos|),(),,(),(),(

UniformSampleOneLight
Spectrum UniformSampleOneLight (...)
{

int nLights = int(scene->lights.size());
if (nLights == 0) return Spectrum(0.);
int lightNum;
if (lightNumOffset != -1)
lightNum =

Floor2Int(sample->oneD[lightNumOffset][0]*nLights);(p [g][] g);
else
lightNum = Floor2Int(RandomFloat() * nLights);

lightNum = min(lightNum nLights-1);lightNum = min(lightNum, nLights 1);
Light *light = scene->lights[lightNum];
<Find light and BSDF sample values>
return (float)nLights * EstimateDirect();return (float)nLights * EstimateDirect(...);

}

EstimateDirect
Spectrum EstimateDirect(Scene *scene, Renderer *renderer,
Light *light, Point &p, Normal &n, Vector &wo,
float rayEpsilon float time BSDF *bsdf RNG &rngfloat rayEpsilon, float time, BSDF *bsdf, RNG &rng,
LightSample &lightSample, BSDFSample &bsdfSample,
BxDFType flags)

{ |cos|),(),,(jjdj pLpf {
Spectrum Ld(0.);
Vector wi;
float lightPdf, bsdfPdf;

)(
|cos|),(),,(

j

jjdjo

p
pLpf




float lightPdf, bsdfPdf;
VisibilityTester visibility;

Here, we use multiple importance sampling to estimate the aboveHere, we use multiple importance sampling to estimate the above
term by taking one sample according to the light and the other
according to BSDF.

Multiple importance sampling

ff)()()()()()(




gf n

j jg

igjj

g

n

i if

ifii

f Yp
YwYgYf

nXp
XwXgXf

n 11)(
)()()(1

)(
)()()(1

j jggiff

 
 

 ss
s

xpnxw 



)(
)()(Here, nf=ng=1 i ii xpn )(f g

Sample light with MIS
Spectrum Li = light->Sample_L(p, rayEpsilon, lightSample,

time, &wi, &lightPdf, &visibility);
if (lightPdf > 0. && !Li.IsBlack()) {
Spectrum f = bsdf->f(wo, wi, flags);
if (!f IsBlack() && visibility Unoccluded(scene)) {if (!f.IsBlack() && visibility.Unoccluded(scene)) {
Li *= visibility.Transmittance(…);
if (light->IsDeltaLight())
Ld += f * Li * (AbsDot(wi, n) / lightPdf);

else {
bsdfPdf = bsdf->Pdf(wo, wi, flags);(, , g);
float weight =

PowerHeuristic(1, lightPdf, 1, bsdfPdf);
Ld + f * Li * (Ab D t(i) * i ht / li htPdf)Ld += f * Li * (AbsDot(wi, n) * weight / lightPdf);

}
}

)(|cos|),(),,(jLjjdjo wpLpf 
})(jp 

Sample BRDF with MIS
if (!light->IsDeltaLight()) {
BxDFType sampledType;

If it is delta light, no need
to sample BSDF

Spectrum f = bsdf->Sample_f(wo, &wi, bsdfSample,
&bsdfPdf, flags, &sampledType);

if (!f IsBlack() && bsdfPdf > 0) {if (!f.IsBlack() && bsdfPdf > 0.) {
float weight = 1.f;
if (!(sampledType & BSDF_SPECULAR)) {

weight=1 is for specular lights

lightPdf = light->Pdf(p, wi);
if (lightPdf == 0.) return Ld;
weight = PowerHeuristic(1, bsdfPdf, 1, lightPdf);g (, , , g);

}

I t ti li htI t
We need to test whether we can see the light along the sampled direction

Intersection lightIsect;
Spectrum Li(0.f);
RayDifferential ray(p, wi, rayEpsilon, INFINITY, time);

Sample BRDF with MIS
if (scene->Intersect(ray, &lightIsect)) {

If we can see it, record its Li

if (lightIsect.primitive->GetAreaLight() == light)
Li = lightIsect.Le(-wi);

} else No intersection but it could be an infinite } else
Li = light->Le(ray);

No intersection, but it could be an infinite
area light. For non-infinite-area lights,
Le return 0.

if (!Li.IsBlack()) {
Li *= renderer->Transmittance(…);
Ld += f * Li * AbsDot(wi, n) * weight / bsdfPdf;(,) g / ;

}
}
t Ldreturn Ld;

}

Direct lighting

The light transport equation

• The goal of integrator is to numerically solve
the light transport equation governing the the light transport equation, governing the
equilibrium distribution of radiance in a scene.

The light transport equation

Analytic solution to the LTE

• In general, it is impossible to find an analytic
solution to the LTE because of complex BRDF solution to the LTE because of complex BRDF,
arbitrary scene geometry and intricate visibility.
F t l i l i id • For an extremely simple scene, e.g. inside a
uniformly emitting Lambertian sphere, it is
h ibl Thi i f l f d b ihowever possible. This is useful for debugging.

• Radiance should be the same for all points• Radiance should be the same for all points

LcLL e 

Analytic solution to the LTE

LcLL e 

hhe

LLL
LLL







)(

ehhehhe

hhehhe

LLL
LLL







...((
)(

i
hh

ehhehhe

L 








((

hh
i

eL 
0

L

hh

eLL



1

1hh

Surface form of the LTE

Surface form of the LTE

These two forms are equivalent, but they represent two
different ways of approaching light transport.

Surface form of the LTE

Surface form of the LTE

Surface form of the LTE

Delta distribution

Partition the integrand

Partition the integrand

Partition the integrand

Rendering operators

Solving the rendering equation

Successive approximation

Successive approximation

Light transport notation (Hekbert 1990)

• Regular expression denoting sequence of events
along a light path alphabet: {L E S D G}along a light path alphabet: {L,E,S,D,G}
– L a light source (emitter)

E h – E the eye
– S specular reflection/transmission
– D diffuse reflection/transmission
– G glossy reflection/transmissionG glossy reflection/transmission

• operators:
(k) f k– (k)+ one or more of k

– (k)* zero or more of k (iteration)
– (k|k’) a k or a k’ event

Light transport notation: examples

• LSD
 th t ti t li ht h i l – a path starting at a light, having one specular

reflection and ending at a diffuse reflection

LD

S

Light transport notation: examples

• L(S|D)+DE
 th t ti t li ht h i diff – a path starting at a light, having one or more diffuse

or specular reflections, then a final diffuse
reflection toward the eyereflection toward the eye

E

D LD

S

Light transport notation: examples

• L(S|D)+DE
 th t ti t li ht h i diff – a path starting at a light, having one or more diffuse

or specular reflections, then a final diffuse
reflection toward the eyereflection toward the eye

E

L

E
D

S

S
D

Rendering algorithms

• Ray casting: E(D|G)L
Whi d E[S*](D|G)L• Whitted: E[S*](D|G)L

• Kajiya: E[(D|G|S)+(D|G)]L
• Goral: ED*L

The rendering equation

The rendering equation

The radiosity equation

Radiosity

• formulate the basic radiosity equation:
N

Bm  Em  m BnFmn
n1

N



• Bm = radiosity = total energy leaving surface m
(energy/unit area/unit time)

n 1

(energy/unit area/unit time)
• Em = energy emitted from surface m (energy/unit

area/unit time)area/unit time)
• m = reflectivity, fraction of incident light reflected

back into environment
• Fmn = form factor, fraction of energy leaving surface n

that lands on surface m
• (Am = area of surface m)

Radiosity

• Bring all the B’s on one side of the equation

Em  Bm  m BnFmn
m


• this leads to this equation system:
m

 EBFFF1 




























N

N

E
E

B
B

FFF
FFF

2

1

2

1

22222212

11121111

...1

...1



































  EBFFF


1    NNNNNNNNN EBFFF 21 1... 

EBS  EBS 

Path tracing

• Proposed by Kajiya in his classic SIGGRAPH 1986
paper rendering equation as the solution forpaper, rendering equation, as the solution for

• Incrementally generates path of scattering y g p g
events starting from the camera and ending at
light sources in the scene.g

• Two questions to answer
– How to do it in finite time?How to do it in finite time?
– How to generate one or more paths to compute

Infinite sum

• In general, the longer the path, the less the
impactimpact.

• Use Russian Roulette after a finite number of
bbounces
– Always compute the first few terms
– Stop after that with probability q

Infinite sum

• Take this idea further and instead randomly
consider terminating evaluation of the sum at consider terminating evaluation of the sum at
each term with probability qi

Path generation (first trial)

• First, pick up surface i in the scene randomly
and uniformly Aand uniformly




j j

i
i A

Ap

• Then, pick up a point on this surface randomly
and uniformly with probability

iA
1

• Overall probability of picking a random surface
point in the scene:

iA

p


 i

iA AAA
App 11)(

 j jij j
iA AAA

pp)(

Path generation (first trial)

• This is repeated for each point on the path.
L i h ld b l d li h • Last point should be sampled on light sources
only.

• If we know characteristics about the scene
(such as which objects are contributing most
indirect lighting to the scene), we can sample
more smartly.

• Problems:
– High variance: only few points are mutually visible, g y p y ,

i.e. many of the paths yield zero.
– Incorrect integral: for delta distributions, we rarely g y

find the right path direction

Incremental path generation

• For path
A h fi d di BSDF (i hi

ijji pppppp 110 
– At each pj, find pj+1 according to BSDF (in this

way, they are guaranteed to be mutually
i ibl) visible)

– At pi-1, find pi by multiple importance
sampling of BSDF and L

• This algorithm distributes samples according to g p g
solid angle instead of area. So, the distribution
pA needs to be adjusted pA j

|cos|
)(

2
1ii

iA

pp
ppp





|cos| i

Incremental path generation

• Monte Carlo estimator

• Implementation re-uses path for new path ip1ip
MIS sampled by BSDF

• Implementation re uses path for new path
This introduces correlation, but speed makes up
for it

ip1ip

for it.

Path tracing

Direct lighting

Path tracing

8 samples per pixel

Path tracing

1024 samples per pixel

Bidirectional path tracing

• Compose one path from two paths
t t d t th d

p
–p1p2…pi started at the camera p0 and
–qjqj-1…q1 started at the light source q0

• Modification for efficiency:

1121 ...,... qqqpppp jjii 

y
–Use all paths whose
lengths ranging from lengths ranging from
2 to i+j

H l f l f th it ti i hi h li ht diffi lt Helpful for the situations in which lights are difficult
to reach and caustics

Bidirectional path tracing

PathIntegrator
class PathIntegrator : public SurfaceIntegrator {
public:

Spectrum Li(…) const;
void RequestSamples(…);
PathIntegrator(int md) { maxDepth = md; }PathIntegrator(int md) { maxDepth = md; }

private:
int maxDepth;

Use samples from Sampler for the first SAMPLE_DEPTH vertices of the path.
After that, the advantage of well-distributed samples are greatly reduced,
And it switches to using uniform random numbers.

#define SAMPLE_DEPTH 3
LightSampleOffsets lightSampleOffsets[SAMPLE_DEPTH];

g f

int lightNumOffset[SAMPLE_DEPTH];
BSDFSampleOffsets bsdfSampleOffsets[SAMPLE_DEPTH];
BSDFSampleOffsets pathSampleOffsets[SAMPLE DEPTH];p p p [_];

};

RequestSamples

class PathIntegrator::RequestSamples(…)
{{

for (int i = 0; i < SAMPLE_DEPTH; ++i) {
Path is reused. Thus, for each vertex, we need to perform MIS as it
serves as the terminated point for some path. Therefore, we need

lightSampleOffsets[i]=LightSampleOffsets(1,sample);
lightNumOffset[i] = sample >Add1D(1);

serves as the terminated point for some path. Therefore, we need
both light and brdf samples

lightNumOffset[i] = sample->Add1D(1);
bsdfSampleOffsets[i] = BSDFSampleOffsets(1,sample);
pathSampleOffsets[i] = BSDFSampleOffsets(1,sample);p p [] p (, p)

}
}

Another bsdf sample is used for extending the path

PathIntegrator::Li

class PathIntegrator::Li(…) const
{{

Spectrum pathThroughput = 1., L = 0.;
RayDifferential ray(r);
bool specularBounce = false;
Intersection localIsect;
const Intersection *isectp = &isect;const Intersection *isectp = &isect;
for (int bounces = 0; ; ++bounces) {

<possibly add emitted light at vertex>p y g
<sample from lights to find path contributions>
<sample BSDF to get new path direction>
<possibly terminate the path>
<find next vertex of path>

}}
return L;

}

PathIntegrator::Li

<possibly add emitted light at vertex>
if (bounces == 0 || specularBounce)(|| p)

L += pathThroughput * isectp->Le(-ray.d);

PathIntegrator::Li

<sample from lights to find path contributions>
BSDF *bsdf = isectp->GetBSDF(ray, arena);
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
Vector wo = -ray.d;Vector wo ray.d;
if (bounces < SAMPLE_DEPTH)

L += pathThroughput *
UniformSampleOneLight(scene renderer arenaUniformSampleOneLight(scene, renderer, arena,

p, n, wo, isectp->rayEpsilon, ray.time,
bsdf, sample, rng, lightNumOffset[bounces],
&lightSampleOffsets[bounces],
&bsdfSampleOffsets[bounces]);

else
L += pathThroughput *

UniformSampleOneLight(scene, renderer, arena,
p n wo isectp->rayEpsilon ray timep, n, wo, isectp >rayEpsilon, ray.time,
bsdf, sample, rng);

PathIntegrator::Li

<sample BSDF to get new path direction>
BSDFSample outgoingBSDFSample;
if (bounces < SAMPLE_DEPTH)

outgoingBSDFSample = BSDFSample(sample,
pathSampleOffsets[bounces], 0);pathSampleOffsets[bounces], 0);

else
outgoingBSDFSample = BSDFSample(rng);

Vector wi;Vector wi;
float pdf;
BxDFType flags;
Spectrum f = bsdf->Sample_f(wo, &wi,

outgoingBSDFSample, &pdf, BSDF_ALL, &flags);
if (f.IsBlack() || pdf == 0.)(() || p)

break;
specularBounce = (flags & BSDF_SPECULAR) != 0;
pathThroughput *= f * AbsDot(wi n) / pdf;pathThroughput *= f * AbsDot(wi, n) / pdf;
ray = RayDifferential(p, wi, ray, isectp->rayEpsilon);

PathIntegrator::Li

<possibly terminate the path>
if (bounces > 3) {() {

float continueProbability =
min(.5f, pathThroughput.y());

if (rng.RandomFloat() > continueProbability)
break;

pathThroughput /= continueProbability;pathThroughput /= continueProbability;
}
if (bounces == maxDepth)(p)

break;

PathIntegrator::Li

<find next vertex of path>
if (!scene->Intersect(ray, &localIsect)) {((y,)) {

if (specularBounce)
for (int i = 0; i < scene->lights.size(); ++i)

L += pathThroughput*scene->lights[i]->Le(ray);
break;

}}
if (bounces > 1)

pathThroughput *= renderer->Transmittance(scene,p g p (,
ray, NULL, rng, arena);

isectp = &localIsect;

Noise reduction/removal

• Path tracing is unbiased and often taken as a
reference The problem is that it has high reference. The problem is that it has high
variances.

• More samples (slow convergence)
• Better sampling (stratified, importance etc.)
• Filtering• Filtering
• Caching and interpolation (reuse samples)

Biased approaches

• By introducing bias (making smoothness assumptions),
biased methods produce images without high-frequency biased methods produce images without high frequency
noise

• Unlike unbiased methods, errors may not be reduced by , y y
adding samples in biased methods

• On contrast, when there is little error in the result of
an unbiased method, we are confident that it is close
to the right answer

• Biased approaches
– Filtering
– Instant global illumination
– Irradiance caching
– Photon mapping

The world is more diffuse!

Filtering

• Noise is high frequency
M h d• Methods:
– Simple filters
– Anisotropic filters
– Energy preserving filters

• Problems with filtering: everything is filtered
(blurred)

Path tracing (10 paths/pixel)

3x3 lowpass filter

3x3 median filter

Instant global illumination

• Preprocess: follows some light-carrying paths
from the light sources to create virtual light from the light sources to create virtual light
sources.
R d i l th i t l li ht t • Rendering: use only the virtual lights to
compute the indirect contributions.

• Since only a set of virtual lights are used, there
will be systemic error due to correlation rather
than noise due to variance. Similar artifacts for
your project #3.

Instant global illumination

light sourcelight source

virtual
light direct virtual

light

indirect

virtual
light

Instant global illumination

light sourcelight source
2p

np

0p What should we store
in the virtual lights?

1p

3p

Instant global illumination

)()()()(01212123 pppfppGpppfpP n )()()()(01212123 pppfpppppfpn

 1211 |cos|)()(pppfppL 




 

2-n

1211

||)(

)(
|cos|)()(

nA

nnnnnne

f

pP
pppfppL
















 

 


2-n

3i 1

11

)(
|cos|)(

ii

iiii

ppP
pppf





It is independent to the camera and the first visible point p1.
It is what we should pre-compute and store at the virtual lights.
During rendering, for each shading point, we need to evaluate
the two remaining BRDFs and the geometric term.

Caching techniques

• Irradiance caching: compute irradiance at
selected points and interpolateselected points and interpolate

• Photon mapping: trace photons from the lights
d t th i h t th t b and store them in a photon map, that can be

used during rendering

Direct illumination

Global illumination

Indirect irradiance

Indirect illumination tends to be low frequency

Irradiance caching

• Introduced by Greg Ward 1988
I l d i R di d• Implemented in Radiance renderer

• Contributions from indirect lighting often vary
smoothly →cache and interpolate results

Irradiance caching

• Compute indirect lighting at sparse set of
samplessamples

• Interpolate neighboring values from this set of
lsamples

• Issues
– How is the indirect lighting represented
– How to come up with such a sparse set of samples?
– How to store these samples?
– When and how to interpolate?p

Set of samples

• Indirect lighting is computed on demand, store
irradiance in a spatial data structure If there is irradiance in a spatial data structure. If there is
no good nearby samples, then compute a new
irradiance sampleirradiance sample

• Irradiance (radiance is direction dependent,
i t t)expensive to store)

iH iii dpLpE  2
|cos|),()(

• If the surface is Lambertian,
H

|cos|)()()(dpLpfpL   
|cos|),(

|cos|),(),,(),(

2

2

dpL

dpLpfpL

iH iii

iH iiiiooo












)(pE
H



Set of samples

• For diffuse scenes, irradiance alone is enough
information for accurate computationinformation for accurate computation

• For nearly diffuse surfaces (such as Oren-Nayar
 l f ith id l or a glossy surface with a very wide specular

lobe), we can view irradiance caching makes
th f ll i i tithe following approximation

  |cos|),(),,(),(dpLdpfpL iiiiii     
 )()(

|cos|),(),,(),(

2
1

22

pE

dpLdpfpL

ohd

iH iiiiH iooo








directional reflectance

Set of samples

|cos||cos|)(),(),(
2 avgavgiiavgiii LdpLnpE    ||||)(),(),(
2 avgavgiH iavgiii pp 

EL
|cos| avg

avgL




|cos|
|cos|

)(),,(),(
2

dEpfpL iH iavgiiooo 


  
),(),,(

|cos|

npEpf avgo

avg







makes it directional

Set of samples

• Not a good approximation for specular surfaces
l Whi d i • specular → Whitted integrator

• Diffuse/glossy → irradiance caching
– Interpolate from known points
– Cosine-weighted
– Path tracing sample points

iiii dpLpE  |cos|),()(iH iii dpLpE  2
|cos|),()(

 jji pL
pE

)(
|cos|),(1)(




j jpN
p

)(
)(



 ji pL
N

pE),()(  cos)(p


j
jiN

Storing samples

• Samples are stored in an octree.
E h l h f ll i i f i• Each sample stores the following information

{E,p,n,wavg,dmax}

M i l di t i k t d i th t i f • Maximal distance is kept during path tracing for
computing the sample. di is the distance that
th ith hit i t tithe ith ray hit an intersection.

di

Storing samples

{E,p,n,d}

ddi

Interpolating from neighbors

• Weights depend on
A l b t l – Angle between normals

– Distance between points

h d h• Weight (ad hoc)





  '1 NNd















maxmax cos1
1,max1


NN

d
dwi

• Final irradiance estimate is simply the weighted
sum


 i ii Ew

E
i iw

IrradianceCacheIntegrator

class IrradianceCacheIntegrator : public
SurfaceIntegrator {
...
float minSamplePixelSpacing, maxSamplePixelSpacing;
fl i i h S l l ifffloat minWeight, cosMaxSampleAngleDifference;
int nSamples; how many rays for computing irradiance samples
int maxSpecularDepth, maxIndirectDepth;int maxSpecularDepth, maxIndirectDepth;

}

Preprocess() allocates the octree for storing irradiance samples

Li
L += isect.Le(wo);
L += UniformSampleAllLights(...);
if (ray.depth+1 < maxSpecularDepth) {

<Trace rays for specular reflection and refraction>
} Current implemetation uses Whitted style for specular; irradiance cache for

// Estimate indirect lighting with irradiance cache
Both diffuse and glossy. It could lead to errors for glossy.

the project area of a pixel ...
float pixelSpacing =

sqrtf(Cross(isect.dg.dpdx, isect.dg.dpdy).Length());
BxDFType flags =

the project area of a pixel
in the world space

BxDFType flags =
BxDFType(BSDF_REFLECTION|BSDF_DIFFUSE|BSDF_GLOSSY);

L += indirectLo(...);
lFlags =
BxDFType(BSDF_TRANSMISSION|BSDF_DIFFUSE|BSDF_GLOSSY);

L += indirectLo(...);

IndirectLo
if (!InterpolateE(scene, p, n, &E, &wi)) {
... // Compute irradiance at current point
for (int i = 0; i < nSamples; ++i) {

<Path tracing to compute radiances along ray
for irradiance sample>for irradiance sample>
LiSum += L;
wAvg += r.d * L.y();
i HitDi t i (i HitDi t t)minHitDistance = min(minHitDistance, r.maxt);

}
E = (M_PI / float(nSamples)) * LiSum;_
... // Add computed irradiance value to cache
IrradianceSample *sample =

new IrradianceSample(E p ng wAvg contribExtent);new IrradianceSample(E, p, ng, wAvg, contribExtent);
octree->Add(sample, sampleExtent);

}
return bsdf->f(wo, Normalize(wi), flags) * E;

Octree
void IrradianceCache::Preprocess(const Scene *scene)
{

BBox wb = scene->WorldBound();
Vector delta = .01f * (wb.pMax - wb.pMin);
wb pMin -= delta;wb.pMin -= delta;
wb.pMax += delta;
octree=new Octree<IrradianceSample *>(wb);
<prefill the irradiacne cache>

}
struct IrradianceSample {struct IrradianceSample {

Spectrum E;
Normal n;
Point p;
Vector wAvg;
float maxDist;;

};

InterpolateIrradiance
Bool InterpolateE(Scene *scene, Point &p, Normal &n,

Spectrum *E, Vector *wi)
{

if (!octree) return false;
IrradProcess proc(p, n, minWeight,

cosMaxSampleAngleDifference);
octree->Lookup(p, proc);
Traverse the octree; for each node where the query point is inside call

if (!proc Successful()) return false;

Traverse the octree; for each node where the query point is inside, call
a method of proc to process for each irradiacne sample.

if (!proc.Successful()) return false;
*E = proc.GetIrradiance();
*wi = proc.GetAverageDirection();
return true;return true;

}

IrradProcess
void IrradProcess::operator()(IrradianceSample &sample)
{ dfloat perr = Distance(p, sample->p)

/ sample->maxDist;
float nerr = sqrtf((1.f - Dot(n, sample->n))

maxd
d

/ (1.f - cosMaxSampleAngleDifference));
float err = max(perr, nerr);

'1  NN
if (err < 1.) {

++nFound;
float wt = 1 f - err;

maxcos1 
float wt = 1.f err;
E += wt * sample->E;
wAvg += wt * sample->wAvg;
sumWt += wt;sumWt += wt;

}
return true;

} 








 


cos1
'1,max1


NN

d
dwi

} 



  maxmax cos1 d

Comparison with same limited time

Irradiance caching Path tracing
h fBlotch artifacts High-frequency noises

Irradiance caching

Irradiance caching Irradiance sample
positions

Photon mapping

• It can handle both diffuse and glossy reflection;
specular reflection is handled by recursive ray specular reflection is handled by recursive ray
tracing
T t ti l t i l ith• Two-step particle tracing algorithm

• Photon tracing
– Simulate the transport of individual photons
– Photons emitted from source
– Photons deposited on surfaces
– Photons reflected from surfaces to surfaces

• Rendering
– Collect photons for renderingCollect photons for rendering

Photon tracing

• Preprocess: cast rays from light sources

Photon tracing

• Preprocess: cast rays from light sources
S h (i i li h • Store photons (position + light power +
incoming direction)

Photon map

• Efficiently store photons for fast access
U hi hi l i l (kd)• Use hierarchical spatial structure (kd-tree)

Rendering (final gathering)

• Cast primary rays; for the secondary rays,
reconstruct irradiance using the k closest stored reconstruct irradiance using the k closest stored
photon

Rendering (without final gather)

iiiiiooeoo dpLpfpLpL  |cos|),(),,(),(),(

Rendering (with final gather)

Photon mapping results

photon map rendering

Photon mapping - caustics

• Special photon map for specular reflection and
f tirefraction

Caustics

Path tracing:
Photon mapping1,000 paths/pixel Photon mapping

Photon mapping

100K h t 500K h t100K photons 500K photons

Photon map

Kd-tree is used to
store photons store photons,
decoupled from the
scene geometry

Photon shooting

• Implemented in Preprocess method
Th f h (i di i di)• Three types of photons (caustic, direct, indirect)

struct Photon {
Point p;
S t l hSpectrum alpha;
Vector wi;

};};

wi

p

α

Photon shooting

• Use Halton sequence since number of samples
is unknown beforehand starting from a sample is unknown beforehand, starting from a sample
light with energy . Store photons for non-
specular surfaces

),(
),(

00

00




pp
pLe

specular surfaces.
specular

Causticspecular

Direct specular/
non-specular

non-specular
emission

Indirectl

non specular

Indirectnon-specular

Rendering

50,000 direct photons shadow rays are traced
f d l h

50,000 direct photons
for direct lighting

Rendering

500,000 direct photons caustics500,000 direct photons caustics

Photon mapping

Direct illumination Photon mappingDirect illumination Photon mapping

Photon mapping + final gathering

Photon mapping Photon mapping
+final gathering

Photon mapping

Results

