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Direct lighting via Monte Carlo integration

diff  diffuse 



Direct lighting via Monte Carlo integration

parameterization over hemisphere 

parameterization over surface

have to add visibilityhave to add visibility



Direct lighting via Monte Carlo integration

take one sample according to a density function

let’s takelet s take



Direct lighting via Monte Carlo integration
1 sample/pixel

100 samples/pixel

Lights’ sizes matter 
more than shapes.p
Noisy because
•x’ could be on the 

b kback
•cos varies



Noise reduction

choose better density function

)1(  

It is equivalent to uniformly sampling over
the cone cap in the last lecture.
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Direct lighting from many luminaries

• Given a pair          , use it to select light and 
generate new pair           for sampling that lightgenerate new pair           for sampling that light.

• α could be constant for proportional to power



Rendering

• Rendering is handled by Renderer class.
class Renderer {class Renderer {

…  
virtual void Render(Scene *scene) = 0;

given a scene, render an image or a set of measurements

virtual Spectrum Li(Scene *scn, RayDifferential &r,
Sample *sample, RNG &rng, 

computer radiance along a ray

for MC sampling p p , g,
MemoryArena &arena, Intersection *isect,  
Spectrum *T) const = 0;

t  t itt  l   

p g

transmittance

virtual Spectrum Transmittance(Scene *scene,
RayDifferential &ray, Sample *sample,

return transmittance along a ray

y y p p
RNG &rng, MemoryArena &arena) const = 0;

}; The later two are usually relayed to Integrator



SamplerRenderer

class SamplerRenderer : public Renderer {
…
private:
// SamplerRenderer Private Data// SamplerRenderer Private Data
Sampler *sampler; choose samples on image plane 

and for integration

Camera *camera;
determine lens parameters (position,
orientation, focus, field of view)
with a film

SurfaceIntegrator *surfaceIntegrator;
V l I t t * l I t t

with a film

VolumeIntegrator *volumeIntegrator;
}; calculate the rendering equation



The main rendering loop

• After scene and Renderer are constructed, 
Renderer:Render() is invokedRenderer:Render() is invoked.



Renderer:Render()

void SamplerRenderer::Render(const Scene *scene) {
… scene-dependent initialization such photon map
surfaceIntegrator->Preprocess(scene,camera,this);
volumeIntegrator->Preprocess(scene,camera,this);

scene dependent initialization such photon map

Sample *sample = new Sample(sampler,  
surfaceIntegrator volumeIntegrator scene);

sample structure depends on types of integrators

surfaceIntegrator, volumeIntegrator, scene);

We want many tasks to fill in the core (see histogram next page).
If there are too few, some core will be idle. But, threads have 

int nPixels = camera->film->xResolution 

If there are too few, some core will be idle. But, threads have 
overheads. So, we do not want too many either.

* camera->film->yResolution;
int nTasks = max(32 * NumSystemCores(), 

nPixels / (16*16));

at least 32 tasks 
for a core

a task is about 16x16nPixels / (16*16));
nTasks = RoundUpPow2(nTasks);

a task is about 16x16power2 easier to divide



Renderer:Render()

vector<Task *> renderTasks;
for (int i = 0; i < nTasks; ++i)( ; ; )

renderTasks.push_back(new 
SamplerRendererTask(scene,this,camera,reporter,      

all  information about renderer 
must be passed in

sampler, sample, nTasks-1-i, nTasks));

EnqueueTasks(renderTasks);

total taskstask id

EnqueueTasks(renderTasks);
WaitForAllTasks();
for (int i = 0; i < renderTasks.size(); ++i)( () )

delete renderTasks[i];

delete sample;
camera->film->WriteImage();

}}



SamplerRenderTask::Run

• When the task system decided to run a task on a 
particular processor, SamplerRenderTask::Run()particular processor, SamplerRenderTask::Run() 
will be called. 

void SamplerRendererTask::Run() {
// decided which part it is responsible for 
…
int sampleCount;
while ((sampleCount=sampler >while ((sampleCount=sampler ->   

GetMoreSamples(samples, rng)) > 0) {
// Generate camera rays and compute radiance y p



SamplerRenderTask::Run

for (int i = 0; i < sampleCount; ++i) {

for vignetting
float rayWeight = camera->     

GenerateRayDifferential(samples[i], &rays[i]); 

for vignetting ray differential 
for antialiasing

rays[i].ScaleDifferentials(
1.f / sqrtf(sampler->samplesPerPixel));

if (rayWeight > 0.f)
Ls[i] = rayWeight * renderer->Li(scene, rays[i], [ ] y g ( , y [ ],

&samples[i], rng, arena, &isects[i], &Ts[i]);      
else { Ls[i] = 0.f; Ts[i] = 1.f; } 

for (int i = 0; i < sampleCount; ++i)
camera->film->AddSample(samples[i] Ls[i]);camera->film->AddSample(samples[i], Ls[i]);

}



SamplerRender::Li

Spectrum SamplerRender::Li(Scene *scene,
RayDifferential &ray, Sample *sample, y y, p p ,
…, Intersection *isect, Spectrum *T)

{ Spectrum Li = 0.f;
if (scene->Intersect(ray, isect))

Li = surfaceIntegrator->Li(scene,this, 
ray *isect sample rng arena);ray, *isect, sample,rng, arena);

else { // ray that doesn't hit any geometry
for (i=0; i<scene->lights.size(); ++i)( g () )

Li += scene->lights[i]->Le(ray);
}
Spectrum Lvi = volumeIntegrator->Li(scene, this,

ray, sample, rng, T, arena);
return *T * Li + Lvi;return *T * Li + Lvi;

}



Surface integrator’s Li
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SamplerRender::Li

L i Li
Lvi

T



Integrators

• core/integrator.* integrator/*

Class Integrator {
i t l id P (S *virtual void Preprocess(Scene *scene, 
Camera *camera, Renderer *renderer){}

(virtual void RequestSamples(Sampler  
*sampler, Sample *sample, Scene *scene){}

};



Integrators
• void Preprocess(…)

Called after scene has been initialized; do sceneCalled after scene has been initialized; do scene-
dependent computation such as photon shooting for 
photon mapping.p pp g

• void RequestSamples(…)
Sample is allocated once in Render(). There, sample’s p () p
constructor will call integrator’s RequestSamples to 
allocate appropriate space.
Sample::Sample(Sampler *sampler, SurfaceIntegrator
*surf, VolumeIntegrator *vol, Scene *scene) {
if (surf) ( )

surf>RequestSamples(sampler,this,scene);
if (vol) 

vol->RequestSamples(sampler, this, scene);
…



Surface integrators

• Responsible for evaluating the integral equation
Whitted directlighting  path  irradiancecacheWhitted, directlighting, path, irradiancecache,
photonmap, igi, exphotonmap

class SurfaceIntegrator:public Integrator {
public: We could call Renderer’s 

Li or Transmittance 
virtual Spectrum Li(Scene *scene, Renderer 
*renderer, RayDifferential &ray, 

Li or Transmittance 

Intersection &isect, Sample *sample, 
RNG &rng, MemoryArena &arena) const = 0;

};



Direct lighting

dLfLL  ||)()()()( 
Rendering equation

iiiiiooeoo dpLpfpLpL  |cos|),(),,(),(),( 

If we only consider direct lighting, we can replace 

iiidiooeoo dpLpfpLpL  |cos|),(),,(),(),( 

y g g, p
Li by Ld.

iiidiooeoo 
• simplest form of equation
• somewhat easy to solve (but a gross approximation)
• major contribution to the final radiance
• not too bad since most energy comes from direct lights
• kind of what we do in Whitted ray tracing



Direct lighting

• Monte Carlo sampling to solve


• Sampling strategy A: sample only one light

iiidio dpLpf  |cos|),(),,(
• Sampling strategy A: sample only one light

– pick up one light as the representative for all lights
distribute N samples over that light– distribute N samples over that light

– Use multiple importance sampling for f and Ld
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– Scale the result by the number of lights NL

Randomly pick f or g and then sample, ][ fE

j

Randomly pick f or g and then sample, 
multiply the result by 2][ gfE 



Direct lighting

• Sampling strategy B: sample all lights
d  A f  h li ht– do A for each light

– sum the results
t   ld b  t  l  li ht  di  t  – smarter way would be to sample lights according to 

their power
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sample f or g separately and then sum ][ fE sample f or g separately and then sum 
them together][ gfE 



DirectLighting

enum LightStrategy { 
SAMPLE ALL UNIFORM, SAMPLE ONE UNIFORM_ _ , _ _

}; two possible strategies; if there are many image samples for a pixel
(e.g. due to depth of field), we prefer only sampling one light at a
i  O  h  h  h d  if h   f  i  l   f  

class DirectLighting : public SurfaceIntegrator {

time. On the other hand, if there are few image samples, we often 
prefer sampling all lights at once.

class DirectLighting : public SurfaceIntegrator {
public:

DirectLighting(g g(
LightStrategy ls = SAMPLE_ALL_UNIFORM, 
int md=5 maximal depth

);
...

}}



Data structure 
•Different types of lights require different numbers of 
samples, usually 2D samples.samples, usually 2D samples.

•Sampling BRDF requires 2D samples.
•Selection of BRDF components requires 1D samples.

3 1 2

D t D

n1D n2D 2 2 1 1 2 2 sample

allocate together to avoid cache miss

filled in by integrators

oneD twoD allocate together to avoid cache miss

mem

lightNumOffset
1 2 3

lightSampleOffset bsdfSampleOffset
1 3 5 2 4 6 PathIntegrator

lightNumOffset lightSampleOffset bsdfSampleOffset



DirectLighting::RequestSamples
void DirectLightingIntegrator::RequestSamples(

Sampler *sampler, Sample *sample, Scene *scene) {
if ( t t SAMPLE ALL UNIFORM) {if (strategy == SAMPLE_ALL_UNIFORM) {

uint32_t nLights = scene->lights.size();
lightSampleOffsets=new LightSampleOffsets[nLights];
b dfS l Off t BSDFS l Off t [ Li ht ]bsdfSampleOffsets = new BSDFSampleOffsets[nLights];
for (uint32_t i = 0; i < nLights; ++i) {

const Light *light = scene->lights[i];
i S l li h S lint nSamples = light->nSamples;

if (sampler) nSamples=sampler->RoundSize(nSamples);
gives sampler a chance to adjust to an appropriate value

lightSampleOffsets[i]
= LightSampleOffsets(nSamples, sample);

bsdfSampleOffsets[i] 
= BSDFSampleOffsets(nSamples, sample);

}
lightNumOffset = -1;

}



DirectLighting::RequestSamples
else {

lightSampleOffsets = new LightSampleOffsets[1];
li htS l Off t [0]lightSampleOffsets[0] 

= LightSampleOffsets(1, sample);

li htN Off t l >Add1D(1)
which light to sample

lightNumOffset = sample->Add1D(1);
bsdfSampleOffsets = new BSDFSampleOffsets[1];
bsdfSampleOffsets[0] = BSDFSampleOffsets(1, sample);

}}
}

lightSampleOffsets records where the samples are in the sample structure.g p p p
With this information, we can drive the required random numbers for 
generating light samples and store all random numbers required for one
sample in LightSample. Similar for bsdfSample.



DirectLighting::Li
Spectrum DirectLighting::Li(…)
{

Spectrum L(0.f);
BSDF *bsdf = isect.GetBSDF(ray, arena);
Vector wo = -ray.d;
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
L += isect.Le(wo);( );

if (scene->lights.size() > 0) {
switch (strategy) {switch (strategy) {

case SAMPLE_ALL_UNIFORM:
L += UniformSampleAllLights(scene, renderer, 

arena p n wo isect rayEpsilonarena, p, n, wo, isect.rayEpsilon, 
ray.time, bsdf, sample, rng,
lightSampleOffsets, bsdfSampleOffsets);

b kbreak;



DirectLighting::Li
case SAMPLE_ONE_UNIFORM:

L += UniformSampleOneLight(scene, renderer, 
arena, p, n, wo, isect.rayEpsilon, 
ray.time, bsdf, sample, rng, 
lightNumOffset, lightSampleOffsets, 
bsdfSampleOffsets);

break;
}}

}
if (ray.depth + 1 < maxDepth) {

Vector wi;Vector wi;
L += SpecularReflect(…);
L += SpecularTransmit(…);

}}
return L;

} This part is essentially the same as Whitted integrator.  The main difference 
i  th   th  l  li ht  Whitt d  l L t  t k   l  f  is the way they sample lights. Whitted uses sample_L to take one sample for 
each light. DirectLighting uses multiple Importance sampling to sample both 
lights  and BRDFs.



Whitted::Li
...
// Add contribution of each light source
for (int i = 0; i < scene->lights.size(); ++i) {

Vector wi;
float pdf;float pdf;
VisibilityTester visibility;
Spectrum Li = scene->lights[i]->Sample_L(…);
if (Li.IsBlack() || pdf == 0.f) continue;
Spectrum f = bsdf->f(wo, wi);
if (!f IsBlack() && visibility Unoccluded(scene))if (!f.IsBlack() && visibility.Unoccluded(scene))

L += f * Li * AbsDot(wi, n) *
visibility.Transmittance(…) / pdf;

}



UniformSampleAllLights
Spectrum UniformSampleAllLights(...) 
{

Spectrum L(0.);
for (u_int i=0;i<scene->lights.size();++i) {

Light *light = scene->lights[i];
int nSamples = lightSampleOffsets ?

lightSampleOffsets[i].nSamples : 1;
Spectrum Ld(0.);p ( );
for (int j = 0; j < nSamples; ++j) {
<Find light and BSDF sample values>

[[lightSample=LightSample(sample,lightSampleOffsets[i],j);]]

Ld += EstimateDirect(...); }
L += Ld / nSamples;

}
compute contribution for one 
sample for one light

g p g p p g p j

}
return L;

}

sample for one light
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UniformSampleOneLight
Spectrum UniformSampleOneLight (...) 
{

int nLights = int(scene->lights.size());
if (nLights == 0) return Spectrum(0.);
int lightNum;
if (lightNumOffset != -1)
lightNum = 

Floor2Int(sample->oneD[lightNumOffset][0]*nLights);( p [ g ][ ] g );
else
lightNum = Floor2Int(RandomFloat() * nLights);

lightNum = min(lightNum nLights-1);lightNum = min(lightNum, nLights 1);
Light *light = scene->lights[lightNum];
<Find light and BSDF sample values>
return (float)nLights * EstimateDirect( );return (float)nLights * EstimateDirect(...);

}



EstimateDirect
Spectrum EstimateDirect(Scene *scene, Renderer *renderer, 
Light *light, Point &p, Normal &n, Vector &wo, 
float rayEpsilon float time BSDF *bsdf RNG &rngfloat rayEpsilon, float time, BSDF *bsdf, RNG &rng, 
LightSample &lightSample, BSDFSample &bsdfSample, 
BxDFType flags) 

{ |cos|),(),,( jjdj pLpf {
Spectrum Ld(0.);
Vector wi;
float lightPdf, bsdfPdf;
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float lightPdf, bsdfPdf;
VisibilityTester visibility;

Here, we use multiple importance sampling to estimate the aboveHere, we use multiple importance sampling to estimate the above
term by taking one sample according to the light and the other 
according to BSDF.



Multiple importance sampling
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Sample light with MIS
Spectrum Li = light->Sample_L(p, rayEpsilon, lightSample, 

time, &wi, &lightPdf, &visibility);
if (lightPdf > 0. && !Li.IsBlack()) {
Spectrum f = bsdf->f(wo, wi, flags);
if (!f IsBlack() && visibility Unoccluded(scene)) {if (!f.IsBlack() && visibility.Unoccluded(scene)) {
Li *= visibility.Transmittance(…);
if (light->IsDeltaLight())
Ld += f * Li * (AbsDot(wi, n) / lightPdf);

else {
bsdfPdf = bsdf->Pdf(wo, wi, flags);( , , g );
float weight =  

PowerHeuristic(1, lightPdf, 1, bsdfPdf);
Ld + f * Li * (Ab D t( i ) * i ht / li htPdf)Ld += f * Li * (AbsDot(wi, n) * weight / lightPdf);

}
}

)(|cos|),(),,( jLjjdjo wpLpf 
} )( jp 



Sample BRDF with MIS
if (!light->IsDeltaLight()) {
BxDFType sampledType;

If it is delta light, no need 
to sample BSDF

Spectrum f = bsdf->Sample_f(wo, &wi, bsdfSample, 
&bsdfPdf, flags, &sampledType);

if (!f IsBlack() && bsdfPdf > 0 ) {if (!f.IsBlack() && bsdfPdf > 0.) {
float weight = 1.f;
if (!(sampledType & BSDF_SPECULAR)) {

weight=1 is for specular lights

lightPdf = light->Pdf(p, wi);
if (lightPdf == 0.) return Ld;
weight = PowerHeuristic(1, bsdfPdf, 1, lightPdf);g ( , , , g );

}

I t ti li htI t
We need to test whether we can see the light along the sampled direction 

Intersection lightIsect;
Spectrum Li(0.f);
RayDifferential ray(p, wi, rayEpsilon, INFINITY, time);



Sample BRDF with MIS
if (scene->Intersect(ray, &lightIsect)) {

If we can see it, record its Li

if (lightIsect.primitive->GetAreaLight() == light)
Li = lightIsect.Le(-wi);

} else No intersection  but it could be an infinite } else
Li = light->Le(ray);

No intersection, but it could be an infinite 
area light. For non-infinite-area lights,
Le return 0.

if (!Li.IsBlack()) {
Li *= renderer->Transmittance(…);
Ld += f * Li * AbsDot(wi, n) * weight / bsdfPdf;( , ) g / ;

}
}
t Ldreturn Ld;

}



Direct lighting



The light transport equation

• The goal of integrator is to numerically solve 
the light transport equation  governing the the light transport equation, governing the 
equilibrium distribution of radiance in a scene.



The light transport equation



Analytic solution to the LTE

• In general, it is impossible to find an analytic 
solution to the LTE because of complex BRDF  solution to the LTE because of complex BRDF, 
arbitrary scene geometry and intricate visibility.
F   t l  i l    i id   • For an extremely simple scene, e.g. inside a 
uniformly emitting Lambertian sphere, it is 
h  ibl  Thi  i  f l f  d b ihowever possible. This is useful for debugging.

• Radiance should be the same for all points• Radiance should be the same for all points

LcLL e 



Analytic solution to the LTE
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Surface form of the LTE



Surface form of the LTE

These two forms are equivalent, but they represent two 
different ways of approaching light transport.



Surface form of the LTE



Surface form of the LTE



Surface form of the LTE



Delta distribution



Partition the integrand



Partition the integrand



Partition the integrand



Rendering operators



Solving the rendering equation



Successive approximation



Successive approximation



Light transport notation (Hekbert 1990)

• Regular expression denoting sequence of events 
along a light path alphabet: {L E S D G}along a light path alphabet: {L,E,S,D,G}
– L a light source (emitter)

E h  – E the eye
– S specular reflection/transmission
– D diffuse reflection/transmission
– G glossy reflection/transmissionG glossy reflection/transmission

• operators:
(k)    f k– (k)+ one or more of k

– (k)* zero or more of k (iteration)
– (k|k’) a k or a k’ event



Light transport notation: examples

• LSD
 th t ti  t  li ht  h i   l  – a path starting at a light, having one specular 

reflection and ending at a diffuse reflection

LD

S



Light transport notation: examples

• L(S|D)+DE 
 th t ti  t  li ht  h i     diff  – a path starting at a light, having one or more diffuse 

or specular reflections, then a final diffuse 
reflection toward the eyereflection toward the eye

E

D LD

S



Light transport notation: examples

• L(S|D)+DE 
 th t ti  t  li ht  h i     diff  – a path starting at a light, having one or more diffuse 

or specular reflections, then a final diffuse 
reflection toward the eyereflection toward the eye

E

L

E
D

S

S
D







Rendering algorithms

• Ray casting: E(D|G)L
Whi d  E[S*](D|G)L• Whitted: E[S*](D|G)L

• Kajiya: E[(D|G|S)+(D|G)]L
• Goral: ED*L



The rendering equation



The rendering equation



The radiosity equation



Radiosity

• formulate the basic radiosity equation:
N

Bm  Em  m BnFmn
n1

N



• Bm = radiosity = total energy leaving surface m 
(energy/unit area/unit time)

n 1

(energy/unit area/unit time)
• Em = energy emitted from surface m (energy/unit 

area/unit time)area/unit time)
• m = reflectivity, fraction of incident light reflected 

back into environment
• Fmn = form factor, fraction of energy leaving surface n 

that lands on surface m
• (Am = area of surface m)



Radiosity

• Bring all the B’s on one side of the equation

Em  Bm  m BnFmn
m


• this leads to this equation system:
m
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Path tracing

• Proposed by Kajiya in his classic SIGGRAPH 1986 
paper  rendering equation  as the solution forpaper, rendering equation, as the solution for

• Incrementally generates path of scattering y g p g
events starting from the camera and ending at 
light sources in the scene.g

• Two questions to answer
– How to do it in finite time?How to do it in finite time?
– How to generate one or more paths to compute 



Infinite sum

• In general, the longer the path, the less the 
impactimpact.

• Use Russian Roulette after a finite number of 
bbounces
– Always compute the first few terms
– Stop after that with probability q



Infinite sum

• Take this idea further and instead randomly 
consider terminating evaluation of the sum at consider terminating evaluation of the sum at 
each term with probability qi



Path generation (first trial)

• First, pick up surface i in the scene randomly 
and uniformly Aand uniformly




j j

i
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• Then, pick up a point on this surface randomly 
and uniformly with probability 

iA
1

• Overall probability of picking a random surface 
point in the scene:

iA

p


 i

iA AAA
App 11)(

 j jij j
iA AAA

pp )(



Path generation (first trial)

• This is repeated for each point on the path.
L  i  h ld b  l d  li h   • Last point should be sampled on light sources 
only.

• If we know characteristics about the scene 
(such as which objects are contributing most 
indirect lighting to the scene), we can sample 
more smartly.

• Problems:
– High variance: only few points are mutually visible, g y p y ,

i.e. many of the paths yield zero.
– Incorrect integral: for delta distributions, we rarely g y

find the right path direction



Incremental path generation

• For path
A  h  fi d di   BSDF (i  hi  

ijji pppppp ...... 110 
– At each pj, find pj+1 according to BSDF (in this 

way, they are guaranteed to be mutually 
i ibl ) visible) 

– At pi-1, find pi by multiple importance 
sampling of BSDF and L 

• This algorithm distributes samples according to g p g
solid angle instead of area. So, the distribution 
pA needs to be adjusted pA j

|cos|
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2
1ii

iA

pp
ppp


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
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Incremental path generation

• Monte Carlo estimator

• Implementation re-uses path      for new path       ip1ip
MIS sampled by BSDF 

• Implementation re uses path      for new path       
This introduces correlation, but speed makes up 
for it

ip1ip

for it.



Path tracing



Direct lighting



Path tracing

8 samples per pixel



Path tracing

1024 samples per pixel



Bidirectional path tracing

• Compose one path    from two paths
t t d t th   d 

p
–p1p2…pi started at the camera p0 and 
–qjqj-1…q1 started at the light source q0

• Modification for efficiency:

1121 ...,... qqqpppp jjii 

y
–Use all paths whose 
lengths ranging from lengths ranging from 
2 to i+j

H l f l f  th  it ti  i  hi h li ht   diffi lt Helpful for the situations in which lights are difficult 
to reach and caustics



Bidirectional path tracing



PathIntegrator
class PathIntegrator : public SurfaceIntegrator {
public:

Spectrum Li(…) const;
void RequestSamples(…);
PathIntegrator(int md) { maxDepth = md; }PathIntegrator(int md) { maxDepth = md; }

private:
int maxDepth;

Use samples from Sampler for the first SAMPLE_DEPTH vertices of the path.
After that, the advantage of well-distributed samples are greatly reduced,
And it switches to using uniform random numbers. 

#define SAMPLE_DEPTH 3
LightSampleOffsets lightSampleOffsets[SAMPLE_DEPTH];

g f

int lightNumOffset[SAMPLE_DEPTH];
BSDFSampleOffsets bsdfSampleOffsets[SAMPLE_DEPTH];
BSDFSampleOffsets pathSampleOffsets[SAMPLE DEPTH];p p p [ _ ];

};



RequestSamples

class PathIntegrator::RequestSamples(…) 
{{

for (int i = 0; i < SAMPLE_DEPTH; ++i) {
Path is reused. Thus, for each vertex, we need to perform MIS as it 
serves as the terminated point for some path. Therefore, we need 

lightSampleOffsets[i]=LightSampleOffsets(1,sample);
lightNumOffset[i] = sample >Add1D(1);

serves as the terminated point for some path. Therefore, we need 
both light and brdf samples

lightNumOffset[i] = sample->Add1D(1);
bsdfSampleOffsets[i] = BSDFSampleOffsets(1,sample);
pathSampleOffsets[i] = BSDFSampleOffsets(1,sample);p p [ ] p ( , p )

}
}

Another bsdf sample is used for extending the path



PathIntegrator::Li

class PathIntegrator::Li(…) const 
{{

Spectrum pathThroughput = 1., L = 0.;
RayDifferential ray(r);
bool specularBounce = false;
Intersection localIsect;
const Intersection *isectp = &isect;const Intersection *isectp = &isect;
for (int bounces = 0; ; ++bounces) {

<possibly add emitted light at vertex>p y g
<sample from lights to find path contributions>
<sample BSDF to get new path direction>
<possibly terminate the path>
<find next vertex of path>

}}
return L;

}



PathIntegrator::Li

<possibly add emitted light at vertex>
if (bounces == 0 || specularBounce)( || p )

L += pathThroughput * isectp->Le(-ray.d);



PathIntegrator::Li

<sample from lights to find path contributions>
BSDF *bsdf = isectp->GetBSDF(ray, arena);
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
Vector wo = -ray.d;Vector wo  ray.d;
if (bounces < SAMPLE_DEPTH)

L += pathThroughput *
UniformSampleOneLight(scene renderer arenaUniformSampleOneLight(scene, renderer, arena, 

p, n, wo, isectp->rayEpsilon, ray.time, 
bsdf, sample, rng, lightNumOffset[bounces], 
&lightSampleOffsets[bounces], 
&bsdfSampleOffsets[bounces]);

else
L += pathThroughput *

UniformSampleOneLight(scene, renderer, arena, 
p n wo isectp->rayEpsilon ray timep, n, wo, isectp >rayEpsilon, ray.time,  
bsdf, sample, rng);



PathIntegrator::Li

<sample BSDF to get new path direction>
BSDFSample outgoingBSDFSample;
if (bounces < SAMPLE_DEPTH)

outgoingBSDFSample = BSDFSample(sample,
pathSampleOffsets[bounces], 0);pathSampleOffsets[bounces], 0);

else
outgoingBSDFSample = BSDFSample(rng);

Vector wi;Vector wi;
float pdf;
BxDFType flags;
Spectrum f = bsdf->Sample_f(wo, &wi,

outgoingBSDFSample, &pdf, BSDF_ALL, &flags);
if (f.IsBlack() || pdf == 0.)( () || p )

break;
specularBounce = (flags & BSDF_SPECULAR) != 0;
pathThroughput *= f * AbsDot(wi n) / pdf;pathThroughput *= f * AbsDot(wi, n) / pdf;
ray = RayDifferential(p, wi, ray, isectp->rayEpsilon);



PathIntegrator::Li

<possibly terminate the path> 
if (bounces > 3) {( ) {

float continueProbability = 
min(.5f, pathThroughput.y());

if (rng.RandomFloat() > continueProbability)
break;

pathThroughput /= continueProbability;pathThroughput /= continueProbability;
}
if (bounces == maxDepth)( p )

break;



PathIntegrator::Li

<find next vertex of path> 
if (!scene->Intersect(ray, &localIsect)) {( ( y, )) {

if (specularBounce)
for (int i = 0; i < scene->lights.size(); ++i)

L += pathThroughput*scene->lights[i]->Le(ray);
break;

}}
if (bounces > 1)

pathThroughput *= renderer->Transmittance(scene,p g p ( ,
ray, NULL, rng, arena);

isectp = &localIsect;



Noise reduction/removal

• Path tracing is unbiased and often taken as a 
reference  The problem is that it has high reference. The problem is that it has high 
variances.

• More samples (slow convergence)
• Better sampling (stratified, importance etc.)
• Filtering• Filtering
• Caching and interpolation (reuse samples)



Biased approaches

• By introducing bias (making smoothness assumptions), 
biased methods produce images without high-frequency biased methods produce images without high frequency 
noise

• Unlike unbiased methods, errors may not be reduced by , y y
adding samples in biased methods

• On contrast, when there is little error in the result of 
an unbiased method, we are confident that it is close 
to the right answer

• Biased approaches
– Filtering
– Instant global illumination
– Irradiance caching
– Photon mapping



The world is more diffuse!



Filtering

• Noise is high frequency
M h d• Methods:
– Simple filters
– Anisotropic filters
– Energy preserving filters

• Problems with filtering: everything is filtered 
(blurred)



Path tracing (10 paths/pixel)



3x3 lowpass filter



3x3 median filter



Instant global illumination

• Preprocess: follows some light-carrying paths 
from the light sources to create virtual light from the light sources to create virtual light 
sources.
R d i   l  th  i t l li ht  t  • Rendering: use only the virtual lights to 
compute the indirect contributions. 

• Since only a set of virtual lights are used, there 
will be systemic error due to correlation rather 
than noise due to variance. Similar artifacts for 
your project #3. 



Instant global illumination

light sourcelight source

virtual
light direct virtual

light 

indirect

virtual
light 



Instant global illumination

light sourcelight source
2p

np

0p What should we store 
in the virtual lights?

1p

3p



Instant global illumination

)()()()( 01212123 pppfppGpppfpP n  )()()()( 01212123 pppfpppppfpn

 1211 |cos|)()( pppfppL 




 

2-n

1211

||)(

)(
|cos|)()(

nA

nnnnnne

f

pP
pppfppL
















 

 


2-n

3i 1

11

)(
|cos|)(      

ii

iiii

ppP
pppf





It is independent to the camera and the first visible point p1.
It is what we should pre-compute and store at the virtual lights.
During rendering, for each shading point, we need to evaluate 
the two remaining BRDFs and the geometric term.



Caching techniques

• Irradiance caching: compute irradiance at 
selected points and interpolateselected points and interpolate

• Photon mapping: trace photons from the lights 
d t  th  i   h t   th t  b  and store them in a photon map, that can be 

used during rendering



Direct illumination



Global illumination



Indirect irradiance

Indirect illumination tends to be low frequency



Irradiance caching

• Introduced by Greg Ward 1988
I l d i  R di  d• Implemented in Radiance renderer

• Contributions from indirect lighting often vary 
smoothly →cache and interpolate results



Irradiance caching

• Compute indirect lighting at sparse set of 
samplessamples

• Interpolate neighboring values from this set of 
lsamples

• Issues
– How is the indirect lighting represented
– How to come up with such a sparse set of samples?
– How to store these samples?
– When and how to interpolate?p



Set of samples

• Indirect lighting is computed on demand, store 
irradiance in a spatial data structure  If there is irradiance in a spatial data structure. If there is 
no good nearby samples, then compute a new 
irradiance sampleirradiance sample

• Irradiance (radiance is direction dependent, 
i  t  t )expensive to store)
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Set of samples

• For diffuse scenes, irradiance alone is enough 
information for accurate computationinformation for accurate computation

• For nearly diffuse surfaces (such as Oren-Nayar 
  l  f  ith   id  l  or a glossy surface with a very wide specular 

lobe), we can view irradiance caching makes 
th  f ll i  i tithe following approximation
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Set of samples
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Set of samples

• Not a good approximation for specular surfaces 
l  Whi d i  • specular → Whitted integrator 

• Diffuse/glossy → irradiance caching
– Interpolate from known points
– Cosine-weighted 
– Path tracing sample points
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Storing samples

• Samples are stored in an octree. 
E h l   h  f ll i  i f i• Each sample stores the following information

{E,p,n,wavg,dmax}

M i l di t  i  k t d i  th t i  f  • Maximal distance is kept during path tracing for 
computing the sample. di is the distance that 
th  ith  hit  i t tithe ith ray hit an intersection.

di



Storing samples

{E,p,n,d}

ddi



Interpolating from neighbors

• Weights depend on
A l  b t  l  – Angle between normals 

– Distance between points

h d h• Weight (ad hoc)
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IrradianceCacheIntegrator

class IrradianceCacheIntegrator : public 
SurfaceIntegrator {
...
float minSamplePixelSpacing, maxSamplePixelSpacing; 
fl i i h S l l ifffloat minWeight, cosMaxSampleAngleDifference;
int nSamples; how many rays for computing irradiance samples
int maxSpecularDepth, maxIndirectDepth;int maxSpecularDepth, maxIndirectDepth;

}

Preprocess() allocates the octree for storing irradiance samples



Li
L += isect.Le(wo);
L += UniformSampleAllLights(...);
if (ray.depth+1 < maxSpecularDepth) {

<Trace rays for specular reflection and refraction>
} Current implemetation uses Whitted style for specular; irradiance cache for

// Estimate indirect lighting with irradiance cache
Both diffuse and glossy. It could lead to errors for glossy.

the project area of a pixel ...
float pixelSpacing = 

sqrtf(Cross(isect.dg.dpdx, isect.dg.dpdy).Length());
BxDFType flags =

the project area of a pixel 
in the world space

BxDFType flags = 
BxDFType(BSDF_REFLECTION|BSDF_DIFFUSE|BSDF_GLOSSY);

L += indirectLo(...);
lFlags = 
BxDFType(BSDF_TRANSMISSION|BSDF_DIFFUSE|BSDF_GLOSSY);

L += indirectLo(...);



IndirectLo
if (!InterpolateE(scene, p, n, &E, &wi)) {
... // Compute irradiance at current point
for (int i = 0; i < nSamples; ++i) {

<Path tracing to compute radiances along ray 
for irradiance sample>for irradiance sample>
LiSum += L;
wAvg += r.d * L.y();
i HitDi t i ( i HitDi t t)minHitDistance = min(minHitDistance, r.maxt);  

}
E = (M_PI / float(nSamples)) * LiSum;_
... // Add computed irradiance value to cache
IrradianceSample *sample = 

new IrradianceSample(E p ng wAvg contribExtent);new IrradianceSample(E, p, ng, wAvg, contribExtent);
octree->Add(sample, sampleExtent);

}
return bsdf->f(wo, Normalize(wi), flags) * E;



Octree
void IrradianceCache::Preprocess(const Scene *scene)
{

BBox wb = scene->WorldBound();
Vector delta = .01f * (wb.pMax - wb.pMin);
wb pMin -= delta;wb.pMin -= delta;
wb.pMax += delta;
octree=new Octree<IrradianceSample *>(wb);
<prefill the irradiacne cache>

}
struct IrradianceSample {struct IrradianceSample {

Spectrum E;
Normal n;
Point p;
Vector wAvg;
float maxDist;;

};



InterpolateIrradiance
Bool InterpolateE(Scene *scene, Point &p, Normal &n, 

Spectrum *E, Vector *wi) 
{

if (!octree) return false;
IrradProcess proc(p, n, minWeight, 

cosMaxSampleAngleDifference);
octree->Lookup(p, proc); 
Traverse the octree; for each node where the query point is inside  call

if (!proc Successful()) return false;

Traverse the octree; for each node where the query point is inside, call
a method of proc to process for each irradiacne sample.

if (!proc.Successful()) return false;
*E = proc.GetIrradiance();
*wi = proc.GetAverageDirection();
return true;return true;

}



IrradProcess
void IrradProcess::operator()(IrradianceSample &sample) 
{ dfloat perr = Distance(p, sample->p) 

/ sample->maxDist;
float nerr = sqrtf((1.f - Dot(n, sample->n)) 

maxd
d

/ (1.f - cosMaxSampleAngleDifference));
float err = max(perr, nerr);

'1  NN
if (err < 1.) {

++nFound;
float wt = 1 f - err;

maxcos1 
float wt = 1.f err;
E += wt * sample->E;
wAvg += wt * sample->wAvg;
sumWt += wt;sumWt += wt;

}
return true;
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Comparison with same limited time

Irradiance caching Path tracing
h fBlotch artifacts High-frequency noises



Irradiance caching

Irradiance caching Irradiance sample
positions



Photon mapping

• It can handle both diffuse and glossy reflection; 
specular reflection is handled by recursive ray specular reflection is handled by recursive ray 
tracing
T t  ti l  t i  l ith• Two-step particle tracing algorithm

• Photon tracing
– Simulate the transport of individual photons
– Photons emitted from source
– Photons deposited on surfaces
– Photons reflected from surfaces to surfaces

• Rendering
– Collect photons for renderingCollect photons for rendering



Photon tracing

• Preprocess: cast rays from light sources



Photon tracing

• Preprocess: cast rays from light sources
S  h  ( i i   li h    • Store photons (position + light power + 
incoming direction)



Photon map

• Efficiently store photons for fast access
U  hi hi l i l  (kd )• Use hierarchical spatial structure (kd-tree)



Rendering (final gathering)

• Cast primary rays; for the secondary rays, 
reconstruct irradiance using the k closest stored reconstruct irradiance using the k closest stored 
photon



Rendering (without final gather)
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Rendering (with final gather)



Photon mapping results

photon map rendering



Photon mapping - caustics

• Special photon map for specular reflection and 
f tirefraction



Caustics

Path tracing: 
Photon mapping1,000 paths/pixel Photon mapping



Photon mapping

100K h t 500K h t100K photons 500K photons



Photon map

Kd-tree is used to 
store photons  store photons, 
decoupled from the 
scene geometry



Photon shooting

• Implemented in Preprocess method
Th   f h  ( i  di  i di )• Three types of photons (caustic, direct, indirect)

struct Photon {
Point p;
S t l hSpectrum alpha;
Vector wi;

};};

wi

p

α



Photon shooting

• Use Halton sequence since number of samples 
is unknown beforehand  starting from a sample is unknown beforehand, starting from a sample 
light with energy           . Store photons for non-
specular surfaces
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specular surfaces.
specular

Causticspecular

Direct specular/
non-specular

non-specular
emission

Indirectl

non specular

Indirectnon-specular



Rendering

50,000 direct photons shadow rays are traced 
f d l h

50,000 direct photons
for direct lighting



Rendering

500,000 direct photons caustics500,000 direct photons caustics



Photon mapping

Direct illumination Photon mappingDirect illumination Photon mapping



Photon mapping + final gathering

Photon mapping Photon mapping
+final gathering

Photon mapping



Results


