Geometry and Transformations

Digital Image Synthesis
Yung-Yu Chuang

with slides by Pat Hanrahan

Geometric classes

e Representation and operations for the basic
mathematical constructs like points, vectors
and rays.

e Actual scene geometry such as triangles and
spheres are defined in the “Shapes” chapter.

e core/geometry.* and core/transform.*

e Purposes of learning this chapter

- Get used to the style of learning by tracing source
code

- Get familiar to the basic geometry utilities because
you will use them intensively later on

Coordinate system

e Points, vectors and normals are represented
with three floating-point coordinate values: X,
y, z defined under a coordinate system.

e A coordinate system is defined by an origin p,
and a frame (linearly independent vectors v;).

e A vector v=s,v, +..+s v, represents a direction,
while a point p= p,+s,v, +...+S Vv, represents a
position. They are not freely interchangeable.

* pbrt uses left-handed coordinate system.

y Z
(0,0,1)

(0,1,0)
(1,0,0) world space
(0!050) X

Vectors

class Vector {
public:

<Vector Public Methods>

float x, vy, zZ;

} no need to use selector (getX) and mutator (setX)
because the design gains nothing and adds bulk to its usage

Provided operations: Vector u, v,; float a;
v+u, Vv-uU, Vv+=uU, VvV-=U

-V

(v==u)

a*v, v*=a, v/a, v/=a

a=v[1], v[i]=a

Dot and cross product

Dot(v, u)
AbsDot(v, u)

-u=[Vulcos

Cross(v, u)
v>xu] = |v|]ujsine

Vectors v, U, vxu
form a frame

(vxu), =v,u, —v,u,
(qu)y =V, U, —V,u,

(vxu), =v,u, —v,u,

L/

Normalization

a=LengthSquared(v)
a=Length(v)
u=Normal1ze(Vv) return a vector, does not normalize in place

Coordinate system from a vector

Construct a local coordinate system from a vector.

inline void CoordinateSystem(const Vector &vil,

{

}

Vector *v2, Vector *v3)

iIT (fabst(vli.x) > fabst(vl.y)) {
float invLen = 1_f/sqrtf(vli.x*vl.x + vl.z*vl1l.z);
*v2 = Vector(-vl.z * invLen, O0.Ff, vli.x * i1nvLen);

}
else {
float invLen = 1.f/sqrtf(vli.y*vl.y + vl.z*vl1l.z);
*v2 = Vector(O.f, vl.z * invLen, -vl.y * invLen);
}

*v3 = Cross(vl, *v2);

Points

Points are different from vectors; given a
coordinate system (p,,Vv,,V,,V3), @ point p and a
vector v with the same (Xx,y,z) essentially means
p:(X,y,Z,l)[Vl V2 V3 pO]T
V:(X,y,Z,O)[Vl V2 V3 pO]T

explicit Vector(const Point &p);

You have to convert a point to a vector explicitly
(i.e. you know what you are doing).

X| Vector v=p;
vl Vector v=Vector(p);

Operations for points

Vector v; Point p, q, r; float a;

/’q

g=p+V; ,
q=p-V; s
V=0-p; v

/7

/7
r=p+q; ¢
a*p; p/a; P

(This is only for the operation xp+fq.)

Distance(p,q);
DistanceSquared(p,q);

Normals

e A surface normal (or just normal) is a vector
that is perpendicular to a surface at a
particular position.

Normals

e Different than vectors in some situations,
particularly when applying transformations.

e Implementation similar to Vector, but a

normal cannot be added to a point and one
cannot take the cross product of two normals.

e Normal is not necessarily normalized.

e Only explicit conversion between Vector and
Normal.

Rays

class Ray {

public:
Point o; (They may be changed even if Ray Is const.
This ensures that o and d are not modified,
Vector d; but mint and maxt can be.)

mutable|float mint, maxt;

float [Timel:(for motion blur) Inltl_allzed _as RAY_EPSILON to
avold self intersection.

INt depth; (how many times the ray has bounced)

LE Ray r(o, d):
Point p=r(t);

maxt

r(t)=o0+td 0<t<w

Rays

Ray(): mint(RAY_EPSILON), maxt(INFINITY),
time(0.1) {}

The reason why we need epsilon. Unfortunately, there
IS not a universal epsilon that works for all scenes.

Ray differentials

e Subclass of Ray with two auxiliary rays. Used to
estimate the projected area for a small part of
a scene and for antialiasing in Texture.

class RayDifferential : public Ray {
public:
<RayDifferential Methods>
bool hasDifferentials;
Ray rx, ry,;
};

\
"W
v A\
vV
vy
vy

Bounding boxes

e To avoid intersection test inside a volume If the
ray doesn’t hit the bounding volume.

e Benefits depends on the expense of testing
volume v.s. objects inside and the tightness of
the bounding volume.

e Popular bounding volume, sphere, axis-aligned
bounding box (AABB), oriented bounding box
(OBB) and slab.

Bounding volume (slab)

Bounding boxes

class BBox {
public: two options

<BBox Public Methods> of storing
Point pMin, pMax;

}

Point p,q; BBox b; float delta; bool s;

b = BBox(p,q) // no order for p, ¢

b = Unton(b,p); b = Uniton(b,b2); b = b.Expand(delta)
s = b.Overlaps(b2); s = b.Inside(p)

Volume(b)

Vector v=0ffset(Point &p) relative position of p inside the
box (pMax=(1,1,1) and pMin=(0,0,0))

p=Lerp(tx, ty, tz) the point with relative position (tx, ty, tz)

b.MaximumExtent() which axis is the longest; for building kd-tree

b.BoundingSphere(c, r) for generating samples

Transformations

* p’=T(p); V'=T(V)
e Only supports transforms with the following
properties:
- Linear: T(av+bu)=aT(v)+bT(u)
- Continuous: T maps the neighbors of p to ones of p’
- Ont-to-one and invertible: T maps p to single p’ and
T-1 exists

e Represented with a 4x4 matrix; homogeneous
coordinates are used implicitly

e Can be applied to points, vectors and normals

e Simplify implementations (e.g. cameras and
shapes)

Transformations

e More convenient, instancing

scene

prim

=

ve

scene graph

Transformations

class Transform {
private:
Reference<Matrix4x4> m, minv;

} save space, but can’t be modified after construction
Usually not a problem because transforms are pre-specified
In the scene file and won’t be changed during rendering.

Transform() {m = mlnv = new Matrix4x4; }
Transform(float mat[4][4]);

Transform(const Reference<Matrix4x4> &mat);
Transform(const Reference<Matrix4x4> &mat,

Abetter way - oqnst Reference<Matrix4x4> &minv);
to initialize

Transformations

e Translate(Vector(dx,dy,dz))
e Scale(sx,sy,Sz)
e RotateX(a)

(1 0 0 dx) (1 0 0 0)
0O 1 0 d 0 cosd -sin@ O
T (dx,dy,dz) = y R, (6) = _
0 0 1 dz 0O sind cos@ O
0 0 0 1) 0 0 0 1)
/SX 0 0 O\ R (9)—1 ~R ((9)T
S(sx,sy,sz) = 0 sy 00 because R Is orthogonal
0O 0 sz O

0 0 0 1,

Example for creating common transforris

Transform Translate(const Vector &delta) {
Matrix4x4 *m, *minv;

m = new Matrix4x4(l, 0, O, delta.x,
O, 1, 0, delta.y,
O, 0, 1, delta.z,

0, 0, O, 1);
minv = new Matrix4x4(l, 0, 0, -delta.x,
O, 1, 0, -delta.y,
0, 0, 1, -delta.z,
0, 0, O, 1);
return Transform(m, minv);

}

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

p=a(v-a)

Vi=V-=p

V, =axV, ‘VZ‘ - ‘Vl‘

V'=p+Vv,c0s860+V,sIind

Rotation around an arbitrary axis

e Rotate(theta, axis) axis is normalized

p=a(v-a)
V,=V-p

V, =axV, ‘VZ‘ - ‘Vl‘

= V=p+Vv,Cc0860+V,sind

Rotation around an arbitrary axis

m[O][O]=a.x*a.x + (1.f-a.x*a.x)*c;
m[1][O]=a.x*a.y*(1.f-c) + a.z*s;
m[2][0]=a.x*a.z*(1.f-c) - a.y*s;

p=a(v-a)
M V
/ \(1\ Vi=V—-D
V, =axV, ‘VZ‘:‘Vl‘
0
0] = V'=p+v,c0860+V,sIind
\)\O)

Look-at

e LookAt(Point &pos, Point look, Vector &up)

up is not necessarily perpendicular to dir
_@ look
7~

~
~
~
~
7~

Vector dir=Normalize(look-pos);
Vector left=Cross(Normalize(up),dir);
POS Vector newUp=Cross(dir, left);

pos
[III
\

up

g

Applying transformations

e PoInt: g=T(p), T(p,.&q) \F;g::rlg r(rzvlc)))

use homogeneous coordinates implicitly
e Vector: u=T(v), T(u, &v)
e Normal: treated differently than vectors
because of anisotropic transformations

I \ n-t=n't=0
[—— (n")'t'=0

| (Sn)' Mt =0
n'STMt =0

e Transformshould keep its inverse gTpg = |
e For orthonormal matrix, S=M S=M"

Applying transformations

e BBox: transforms its eight corners and expand

to include all eight points.

BBox Transform: :operator() (const
const Transform &M = *this;

BBox ret(M(Point(b.
ret = Unton(ret,M(Point(b.
ret = Unton(ret,M(Point(b.
ret = Unton(ret,M(Point(b.
ret = Unton(ret,M(Point(b.
ret = Union(ret,M(Point(b
ret = Unton(ret,M(Point(b.
ret = Unton(ret,M(Point(b.

return ret;

pMiIn.
pMax .
pMiIn.
pMiIn.
pMiIn.
-pMax . x
pMax .
pMax .

BBoXx

X X X X X X X X
OCOOTCUTUOUTUTUT

&b) const {

-.pMin.y, b.pMin.
-pMiIn.y, b.pMin.
.pMax.y, b.pMin.
.pMiIn.y, b.pMax.
.pMax.y, b.pMax.
-pMax.y, b.pMin
-.pMin.y, b.pMax.
.pMax.y, b.pMax.

Z)));
Z)));
Z)));
z)));
z)));

-\ \

N\ =
<)) >

Z)));
Z)));

Differential geometry

e DifferentialGeometry: a self-contained
representation for a particular point on a
surface so that all the other operations in pbrt
can be executed without referring to the
original shape. It contains

e Position

e Parameterization (u,V)

e Parametric derivatives
(dp/du, dp/dv)

e Surface normal (derived from
(dp/du)x(dp/dv))

e Derivatives of normals

e Pointer to shape

