Logistics

e Meeting time: 2:20pm-5:20pm, Wednesday
Classroom: CSIE Room 111

Instructor: Yung-Yu Chuang (cyy@csie.ntu.edu.tw)
TA: Ming-Fang Weng

Course overview

 Webpage:
http://www.csie.ntu.edu.tw/~cyy/rendering
o) id/password
Digital Image Synthesis e Forum:
Yung-Yn Chuang http://www.cmlab.csie.ntu.edu.tw/~cyy/forum/viewforum.php?f=14
9/17/2008 e Mailing list: rendering@cmlab.csie.ntu.edu.tw

Please subscribe via

https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/rendering/

with slides by Mario Costa Sousa, Pat Hanraban and Revi Ramanmoorthi

Prerequisites Requirements (subject to change)

e C++ programming experience is required. e 3 programming assignments (55%)
= Basic knowledge on algorithm and data e Class participation (5%)
structure is essential. - Final project (40%)

Knowledge on linear algebra, probability and
numerical methods is a plus.

Knowledge on compiler (bison/flex) might be
useful.

e Though not required, it is recommended that
you have background knowledge on computer
graphics.

Textbook

Physically Based Rendering from Theory to

Implementation, by Matt Pharr and Greg Humphreys
4w <=Authors have a lot of

| experience on ray tracing

eComplete (educational) code,
more concrete

*Plug-in architecture, easy for
experiments and extensions

eHas been used in some courses
and papers

eDownside: educational but not
for high performance (unofficial
fork: luxrenderer)

Literate programming

e A programming paradigm proposed by Knuth
when he was developing Tex.

= Programs should be written more for people’s
consumption than for computers’ consumption.

e The whole book is a long literate program. That
IS, when you read the book, you also read a
complete program.

wewe — TeX —| document

ohject

tangle —=| compiler —
i P code

Processing a WEB

Features

» Mix prose with source: description of the code
is as important as the code itself

Allow presenting the code to the reader in a
different order than to the compiler

Easy to make index

Traditional text comments are usually not
enough, especially for graphics

This decomposition lets us present code a few
lines at a time, making it easier to understand.
It looks more like pseudo code.

LP example

@\section{Selection Sort: An Example for LP}

We use {\it selection sort} to illustrate the concept of

{it literate programming}.

Selection sort is one of the simplest sorting algorithms.

It first find the smallest element in the array and exchange

it with the element in the first position, then find the

second smallest element and exchange it the element in the
second position, and continue in this way until the entire
array is sorted.

The following code implement the procedure for selection sort
assuming an external array [[a]].

<<F>S>=
<<external variables>>
void selection_sort(int n) {
<<init local variables>>
for (int i=0; i<n-1; i++) {
<<find minimum after the ith element>>
<<swap current and minimum>>

LP example LP example (tangle)
<<find minimum after the ith element>>= int *a;
min=i;

for (int j=i+1; j<n; j++) {

if (a[jl<a[min]) min=j; void selection_sort(int n) {

} int min;
<<init local variables>>= int t;
int min;
@ To swap two variables, we need a temporary variable [[t]] which is declared for (int i=0; i<n-1; i++) {
at the beginning of the procedure. min=i;
<<init local variables>>= for (int j=i+1; j<n; j++) {
intt; . . . L

if (a[j]l<a[min]) min=j;
@ Thus, we can use [[t]] to preserve the value of [[a[min]] so that the }
swap operation works correctly.
<<swap current and minimum>>= t=a[minl: a[minl=alil: alil=t:
t=a[min]; a[min]=a[i]; a[i]=t; [min]; a[min]=a[i]; a[i]=t;
<<external variables>>= }
int *a; }

LP example (weave) Reference books

1 Selection Sort: An Example for LP : W R — -
Advanced e RAY Realistic Image
We use selection sort to illustrate the concept of it literate programming. Se- Global TRACING Synthesis

lection sort is one of the simplest sorting algorithms. It first find the smallest Illumination ‘ Using Photon
element in the array and exchange it with the element in the first position, then] s s
find the second smallest element and exchange it the element in the second po-
sition, and continute in this way until the entire array is sorted. The following
code implement the procedure for seletion sort assuming an external array a.
la {*1a)=
{external variables 1f)
void selection_sort(int n) {
(init local variables 1c)
for (int i=0; i<n-1; i++) {

(find minimum after the ith element 1b) REﬂlisti{ Rﬂmifing

(swap current and minimum 1e) IR S o L«:[ﬂl:; i
}
}
1h {find minimum after the ith element 1b)= (1a)
min=i;
for (int j=i+1; j<n; j++) {

if (al[jl<almin]) min=j; FETER SHINLET B REITH NORCEY " =it Editad by Rands

¥

References

» SIGGRAPH proceedings

» Proceedings of Eurographics Symposium on
Rendering

= Eurographics proceedings

Image synthesis (Rendering)

» Create a 2D picture of a 3D world

Applications

Movies
Interactive entertainment
Industrial design
Architecture

Culture heritage

__‘

“Bfsuep PIXAR

FAONSTERS, INC.

TREATMENT

story text treatment

— ©a

+- ¥ | B 1—_= - .2

Nl
Bt

o

voice storyreal look and feel

Computer graphics

modeling rendering

rend

e

ering final touch

shading/lighting

The goal of this course

Physically-based rendering

e Realistic rendering
e First 2/3: physically based rendering
* Remaining 1/3: real-time high-quality rendering

uses physics to simulate the interaction between
matter and light, realism is the primary goal

Realism

e Shadows

= Transparency

e Interreflections

e Detail (Textures...)

e Complex lllumination
» Realistic Materials

« And many more

Other types of rendering

Non-photorealistic rendering
Image-based rendering
Point-based rendering
Volume rendering
Perceptual-based rendering
= Artistic rendering

Pinhole camera

Introduction to ray tracing

1\

Ray Casting (Appel, 1968)

vA¢
<@>

N

Ray Casting (Appel, 1968)

vA¢
QPQQD

Ray Casting (Appel, 1968)

vA¢
3

Ray Casting (Appel, 1968)

nls

koo + 21 ko (L N)+k (R -V))

Ray Casting (Appel, 1968)

direct illumination

Whitted ray tracing algorithm

¢ Combines eye ray tracing + rays to light
* Recursively traces rays

Whitted ray tracing algorithm

1. For each pixel, trace a primary ray in direction V to the
first visible surface.
2. For each intersection, trace secondary rays:

+ Shadow rays in directions L; to light sources

+ Reflected ray in direction R.
+ Refracted ray or transmitted ray in direction T.

Shading

IT'I(P,, u) 1s the intensity seen from point P along direction u

I(ID(] ” u) = Idirem‘ + Ireﬂecren’ + Irmnsmifted

where
1. = Shade(N, L, u, R) (e.g. Phong shading model)

Ireﬂec‘.fed = krI(P’ R)
I =k 1(P.T) He

transmitted

Typically, we set k.= k, and k,

DY Ray tree

Recursive ray tracing (Whitted, 1980)

Components of a ray tracer

Cameras

Films

Lights

Ray-object intersection
Visibility

= Surface scattering

= Recursive ray tracing

Minimal ray tracer

« Minimal ray tracer contest on comp.graphics,
1987

= Write the shortest Whitted-style ray tracer in C
with the minimum number of tokens. The scene
is consisted of spheres. (specular reflection and
refraction, shadows)

* Winner: 916 tokens
» Cheater: 66 tokens (hide source in a string)

= Almost all entries have six modules: main, trace,
intersect-sphere, vector-normalize, vector-add,
dot-product.

Minimal ray tracer (Heckbert 1994)

typedef struct{double x,y,z}vec;vec U black,amb={.02,.02,.02};struct sphere{ vec cen,color;

8,1.,1.,5.0.,0.,0.,.5,1.5, }:yx:double u,b,tmin,sqrt(),tan();double vdot(A,Bjvec A ,B;{return A.x

‘Bx+A.y'B.y+A.z'B.z;)vec vcomb(a,A,B)double a;vec A,B;{B.x+=a" Ax;B.y+=a’Ay;B.z+=a"AZ;

return B;}vec vunit(A)vec A;{return vcomb(1./sgrt(vdot(A,A})),A,black);}struct sphere*intersect
(P.Djvec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D, U=vcomb(-1.,P,s->cen}),
u=b"b-vdot(U,U)+s->rad"s ->rad,u=u>07sqrt(u):1e31,u=b-u>1e-77b-u:b+u tmin=u>=1e-7 &&
u<tmin?best=s,u: tmin:return best;}vec trace(level,P,Djvec P,D;{double d.efa,e;vec N,color;
struct sphere’s,’l;if(!level--Jreturn black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ird= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;|=sph+5; while(l-->sphyif((e=I ->kI"vdot(N, U=vunit{vcomb(-1.,P,I->cen})))>08&&
intersect(P,U)==l)color=vcomb(e ,I->color.color),U=s->color;color.x*=U.x;color.y*=U.y:color .z
*=U.z;e=1-eta” eta’(1-d"d);retumn vcomb(s->kt,e>07trace(level, P,vcomb(eta,D,vcomb(eta‘d-
sqrt (e),N black))):black, vcomb(s->ks,trace(level P,vcomb(2*d,N,D}),vcomb(s->kd, color,vcomb
(s->kl,U,black))));Jmain(){printf(*%d %d\n",32,32);while(yx<32"32) U.x=yx%32-32/2,U.2=32/2-
yX++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black vunit(U}} black),printf
("%.0f %.0f %.0f\n",U);}/*minray!"/

That’s it?

= In this course, we will study how state-of-art
ray tracers work.

Issues

e Better Lighting + Forward Tracing
Texture Mapping

Sampling

Modeling

Materials

Motion Blur, Depth of Field, Blurry
Reflection/Refraction

- Distributed Ray-Tracing

Improving Image Quality

Acceleration Techniques (better structure,
faster convergence)

Complex lighting

Complex lighting

Refraction/dispersion

Caustics

Realistic materials

Translucent objects Texture and complex materials

Even more complex materials Homework #0

e Download and install pbrt 1.03 (Linux version is
recommended.)

* Run several examples

e Set it up in a debugger environment so that you
can trace the code

= Optionally, create your own scene
e Pbrt1.03 source code tracing

Example scene

Location look at un vector

Example scene

LookAt 0 10 100 0 -1 001 O
Camera "'perspective’ "float fov'" [30]
PixelFilter "mitchell™
"float xwidth" [2] "float ywidth" [2]
Sampler "bestcandidate™
Film "image" "string filename" ["test.exr']
"integer xresolution™ [200]

"integer yresolution" [200] rendering options
this is a meaningless comment
WorldBegin
id “type” param-list
AttributeBegin A~
CoordSysTransform "‘camera “type name” [value]

LightSource "distant™
"point from™ [0 O O] "point to” [0 O 1]
"color L" [3 3 3]
AttributeEnd

AttributeBegin
Rotate 135 1 0 O

Texture '‘checks™ "color™ "checkerboard"
"float uscale™ [8] ""float vscale" [8]
"color tex1" [1 O O] "color tex2" [0 O 1]

Material "matte™
"texture Kd" "checks"

Shape "sphere"™ "float radius'" [20]

AttributeEnd
WorldEnd

