
Course overview

Digital Image Synthesisg g y
Yung-Yu Chuang
9/17/20089/17/2008

with slides by Mario Costa Sousa, Pat Hanrahan and Revi Ramamoorthi

Logistics

• Meeting time: 2:20pm-5:20pm, Wednesday
Classroom: CSIE Room 111 • Classroom: CSIE Room 111

• Instructor: Yung-Yu Chuang (cyy@csie.ntu.edu.tw)

TA Mi F W • TA: Ming-Fang Weng
• Webpage:

http://www.csie.ntu.edu.tw/~cyy/rendering
id/password

• Forum:• Forum:
http://www.cmlab.csie.ntu.edu.tw/~cyy/forum/viewforum.php?f=14

• Mailing list: rendering@cmlab csie ntu edu tw• Mailing list: rendering@cmlab.csie.ntu.edu.tw
Please subscribe via
htt // l il i t d t / il /li ti f / d i /https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/rendering/

Prerequisites

• C++ programming experience is required.
B i k l d l i h d d • Basic knowledge on algorithm and data
structure is essential.

• Knowledge on linear algebra, probability and
numerical methods is a plus.

• Knowledge on compiler (bison/flex) might be
useful.

• Though not required, it is recommended that
you have background knowledge on computer you have background knowledge on computer
graphics.

Requirements (subject to change)

• 3 programming assignments (55%)
Cl i i i (5%)• Class participation (5%)

• Final project (40%)

Textbook

Physically Based Rendering from Theory to
Implementation by Matt Pharr and Greg HumphreysImplementation, by Matt Pharr and Greg Humphreys

•Authors have a lot of
experience on ray tracingexperience on ray tracing

•Complete (educational) code,
more concretemore concrete

•Plug-in architecture, easy for
experiments and extensionsexperiments and extensions

•Has been used in some courses
and papersand papers

•Downside: educational but not
for high performance (unofficial o g pe o a ce (u o c al
fork: luxrenderer)

Literate programming

• A programming paradigm proposed by Knuth
when he was developing Texwhen he was developing Tex.

• Programs should be written more for people’s
ti th f t ’ ticonsumption than for computers’ consumption.

• The whole book is a long literate program. That
is, when you read the book, you also read a
complete program.

Features

• Mix prose with source: description of the code
is as important as the code itselfis as important as the code itself

• Allow presenting the code to the reader in a
diff t d th t th ildifferent order than to the compiler

• Easy to make index
• Traditional text comments are usually not

enough, especially for graphicsg , p y g p
• This decomposition lets us present code a few

lines at a time making it easier to understandlines at a time, making it easier to understand.
• It looks more like pseudo code.

LP example
@\section{Selection Sort: An Example for LP}

We use {\it selection sort} to illustrate the concept of We use {\it selection sort} to illustrate the concept of
{it literate programming}.
Selection sort is one of the simplest sorting algorithms.
It first find the smallest element in the array and exchange
i i h h l i h fi i i h fi d h it with the element in the first position, then find the
second smallest element and exchange it the element in the
second position, and continue in this way until the entire
array is sorted.array is sorted.
The following code implement the procedure for selection sort
assuming an external array [[a]].

<<>>=
<<external variables>>
void selection_sort(int n) {

<<init local variables>>init local variables
for (int i=0; i<n-1; i++) {

<<find minimum after the ith element>>
<<swap current and minimum>>

}}
}

LP example
<<find minimum after the ith element>>=
min=i;
for (int j=i+1; j<n; j++) {for (int j i 1; j n; j) {

if (a[j]<a[min]) min=j;
}

i i l l i bl<<init local variables>>=
int min;

@ To swap two variables, we need a temporary variable [[t]] which is declared@ To swap two variables, we need a temporary variable [[t]] which is declared
at the beginning of the procedure.
<<init local variables>>=
int t;

@ Thus, we can use [[t]] to preserve the value of [[a[min]] so that the
swap operation works correctly.
<<swap current and minimum>>=swap current and minimum
t=a[min]; a[min]=a[i]; a[i]=t;

<<external variables>>=
i t *int *a;

LP example (tangle)
int *a;

id l i (i) {void selection_sort(int n) {
int min;

int t;

for (int i=0; i<n-1; i++) {(; ;) {
min=i;
for (int j=i+1; j<n; j++) {

if (a[j]<a[min]) min=j;if (a[j]<a[min]) min j;
}

t=a[min]; a[min]=a[i]; a[i]=t;t=a[min]; a[min]=a[i]; a[i]=t;

}
}}

LP example (weave) Reference books

References

• SIGGRAPH proceedings
P di f E hi S i • Proceedings of Eurographics Symposium on
Rendering

• Eurographics proceedings

Image synthesis (Rendering)

• Create a 2D picture of a 3D world

Applications

• Movies
I i i• Interactive entertainment

• Industrial design
• Architecture
• Culture heritage• Culture heritage

Animation production pipeline

t t t t t t t b dstory text treatment storyboard

voice storyreal look and feel

Animation production pipeline

l t animationd li / ti l ti layout animationmodeling/articulation

shading/lighting rendering final touch

Computer graphics

modeling rendering

animation

The goal of this course

• Realistic rendering
Fi 2/3 h i ll b d d i• First 2/3: physically based rendering

• Remaining 1/3: real-time high-quality rendering

Physically-based rendering

uses physics to simulate the interaction between
matter and light realism is the primary goalmatter and light, realism is the primary goal

Realism

• ShadowsShadows
• Reflections (Mirrors)

Transparency • Transparency
• Interreflections
• Detail (Textures…)
• Complex IlluminationComplex Illumination
• Realistic Materials

And many more• And many more

Other types of rendering

• Non-photorealistic rendering
I b d d i• Image-based rendering

• Point-based rendering
• Volume rendering
• Perceptual-based rendering• Perceptual based rendering
• Artistic rendering

Pinhole camera Introduction to ray tracing

Ray Casting (Appel, 1968) Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968) Ray Casting (Appel, 1968)

() ()()∑ ⋅+⋅+
nls

nVRkNLkIIk () ()()∑
=

++
i

isidiaa VRkNLkIIk
1

Ray Casting (Appel, 1968)

direct illuminationdirect illumination

Whitted ray tracing algorithm

Whitted ray tracing algorithm Shading

Ray treey Recursive ray tracing (Whitted, 1980)

Components of a ray tracer

• Cameras
Fil• Films

• Lights
• Ray-object intersection
• Visibility• Visibility
• Surface scattering

R i t i• Recursive ray tracing

Minimal ray tracer

• Minimal ray tracer contest on comp.graphics,
19871987

• Write the shortest Whitted-style ray tracer in C
ith th i i b f t k Th with the minimum number of tokens. The scene

is consisted of spheres. (specular reflection and
f ti h d)refraction, shadows)

• Winner: 916 tokens
• Cheater: 66 tokens (hide source in a string)
• Almost all entries have six modules: main trace • Almost all entries have six modules: main, trace,

intersect-sphere, vector-normalize, vector-add,
dot-productdot product.

Minimal ray tracer (Heckbert 1994) That’s it?

• In this course, we will study how state-of-art
ray tracers workray tracers work.

Issues

• Better Lighting + Forward Tracing
T M i• Texture Mapping

• Sampling
• Modeling
• Materials• Materials
• Motion Blur, Depth of Field, Blurry

Reflection/RefractionReflection/Refraction
– Distributed Ray-Tracing

I i I Q li• Improving Image Quality
• Acceleration Techniques (better structure,

faster convergence)

Complex lighting

Complex lighting Refraction/dispersion

Caustics Realistic materials

Translucent objects Texture and complex materials

Even more complex materials Homework #0

• Download and install pbrt 1.03 (Linux version is
recommended)recommended.)

• Run several examples
• Set it up in a debugger environment so that you

can trace the code
• Optionally, create your own scene
• Pbrt1 03 source code tracing• Pbrt1.03 source code tracing

Example scene
Location look at up vector

LookAt 0 10 100 0 -1 0 0 1 0
Camera "perspective" "float fov" [30]

Location look at up vector

PixelFilter "mitchell"
"float xwidth" [2] "float ywidth" [2]

Sampler "bestcandidate"
Film "image" "string filename" ["test.exr"]

"integer xresolution" [200]
"integer yresolution" [200] rendering optionsg y []

this is a meaningless comment
WorldBegin

rendering options

id “type” param-list
AttributeBegin
CoordSysTransform "camera"
LightSource "distant"

id type param list

“type name” [value]
LightSource "distant"

"point from" [0 0 0] "point to" [0 0 1]
"color L" [3 3 3]

ib dAttributeEnd

Example scene
AttributeBegin
Rotate 135 1 0 0
Texture "checks" "color" "checkerboard"

"float uscale" [8] "float vscale" [8]
"color tex1" [1 0 0] "color tex2" [0 0 1]

Material "matte"
"texture Kd" "checks"

Shape "sphere" "float radius" [20]
AttributeEndAttributeEnd
WorldEnd

