Surface Integrators

Digital Image Synthesis
Yung-Yn Chuang
12/24/2008

with slides by Peter Shirley, Pat Hanrahan, Henrik Jensen, Mario Costa Sousa and Torsten Moller

Main rendering loop

void Scene::Render() {
Sample *sample = new Sample(surfacelntegrator,
volumelntegrator,
this);

while (sampler->GetNextSample(sample)) {
RayDifferential ray;
float rW = camera->GenerateRay(*sample, &ray);
<Generate ray differentials for camera ray>
float alpha;
Spectrum Ls = 0.F;
if (rWw>0.9)

Ls = rW * Li(ray, sample, &alpha);

ééﬁera—>fiIm—>AddSampIe(*sample,ray,Ls,aIpha);

}

camera->film->Writelmage();

}

Scene: :Li

Spectrum Scene::Li(RayDifferential &ray,
Sample *sample, float *alpha)
{
Spectrum Lo=surfacelntegrator->Li(..);
Spectrum T=volumelntegrator->Transmittance(..);
Spectrum Lv=volumelntegrator->Li(..);
return T * Lo + Lv;

}

<§E“’ Lv /A\

POV

T

Surface integrators

» Responsible for evaluating the integral equation
e core/transport.* integrator/*
Whitted, directlighting, path, bidirectional,
irradiancecache, photonmap
igi, exphotonmap
class COREDLL Integrator {
Spectrum Li(Scene *scene, RayDifferential
&ray, Sample *sample, float *alpha);
void Proprocess(Scene *scene)
void RequestSamples(Sample*, Scene*)
};

class Surfacelntegrator : public Integrator

Surface integrators

= void Preprocess(const Scene *scene)

Called after scene has been initialized; do scene-
dependent computation such as photon shooting for
photon mapping.
e void RequestSamples(Sample *sample, const
Scene *scene)
Sample is allocated once in Render(). There, sample’s
constructor will call integrator’s RequestSamples to
allocate appropriate space.
Sample::Sample(Surfacelntegrator *surf,
Volumelntegrator *vol, const Scene *scene) {
// calculate required number of samples
// according to integration strategy
surf->RequestSamples(this, scene);

Direct lighting

Rendering equation

Lo(p.@,) = L(p,@,) + | T(P,@y @)Ly (p,@)|c0s6, | doy
If we only consider direct lighting, we can replace
L; by L.

Lo(p,@,) = L(p.@,) + | T (P, @)Ly (P, @) |cos6, |dey

» simplest form of equation

= somewhat easy to solve (but a gross approximation)
 kind of what we do in Whitted ray tracing

< Not too bad since most energy comes from direct lights

Direct lighting

» Monte Carlo sampling to solve
IQ f(p, @, @)Ly (p,@)[cosé [dw,

e Sampling strategy A: sample only one light
- pick up one light as the representative for all lights
- distribute N samples over that light
- Use multiple importance sampling for f and L,

1 & f(pw,, o)L (p,o;)|cosd, |

N 9= p(aﬁ)
- Scale the result by the number of lights N,

Randomly pick f or g and then sample,
E[f T g] multiply the result by 2

Direct lighting

e Sampling strategy B: sample all lights
- do A for each light
- sum the results

- smarter way would be to sample lights according to
their power

ZIQ f(p, @, @)Ly (P, @) |cosd, |dw,

sample f or g separately and then sum
E[f T g] them together

DirectLighting

enum LightStrategy {
SAMPLE_ALL_UNIFORM, SAMPLE_ONE_UNIFORM,
SAMPLE_ONE_WEIGHTED

}; two possible strategies; if there are many image samples for a pixel
(e.g. due to depth of field), we prefer only sampling one light at a
time. On the other hand, if there are few image samples, we prefer
sampling all lights at once.

class DirectLighting : public Surfacelntegrator {
public: maximal depth
DirectLighting(LightStrategy Is, inta mrgg; P

RequestSamples

eDifferent types of lights require different number of
samples, usually 2D samples.

Sampling BRDF requires 2D samples.

«Selection of BRDF components requires 1D samples.

I n1D n2D| 2 J filled in by integrators ~Sample i

|

|

|

|

i oneD allocate together to avoid cache missi

| |

I I

| |
|

omem | T TTT(TITTIIIITTITITTT

,I_—__________ oy gy .~y ———— — _____________________________________I

| integrator!
|

ibsdfComponent lightSample bsdfSample i

! I

DirectLighting: :RequestSamples

void RequestSamples(Sample *sample, const Scene *scene) {
if (strategy == SAMPLE_ALL_UNIFORM) {
u_int nLights = scene->lights.size();
lightSampleOffset = new int[nLights];
bsdfSampleOffset = new int[nLights];
bsdfComponentOffset = new int[nLights];
for (u_int i = 0; i < nLights; ++i) {
const Light *light = scene->lights[i];
int Iightsa@ﬁé??&ﬂpmrachancetoadlmttoanapmnpnatevaMe
= scene->sampler->RoundSize(Fight->nSamples);
lightSampleOffset[i] = sample->Add2D(lightSamples);
bsdfSampleOffset[i] = sample->Add2D(lightSamples);
bsdfComponentOffset[i] = sample->Add1D(lightSamples);

}
lightNumOffset = -1;

DirectLighting: :RequestSamples

else {
lightSampleOffset = new int[1];
bsdfSampleOffset = new int[1];
bsdfComponentOffset = new int[1];

lightSampleOffset[0] = sample->Add2D(1);
bsdfSampleOffset[0] = sample->Add2D(1);
bsdfComponentOffset[0] = sample->Add1D(1);

lightNumOffset = sample->Add1D(1);
} which light to sample

DirectLighting::Li

Spectrum DirectLighting::Li(Scene *scene,
RayDifferential &ray, Sample *sample, float *alpha)

{

Intersection isect;

Spectrum L(0.);

if (scene->Intersect(ray, &isect)) {
// Evaluate BSDF at hit point
BSDF *bsdf = isect.GetBSDF(ray);
Vector wo = -ray.d;
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
<Compute emitted light; see next slide>

}

else {
// handle ray with no intersection

}

return L;

DirectLighting::Li

Lo(p,@,) = L.(p,,)+ [f (P, @)Ly (P,) | cOSE, | doy

L += isect.Le(wo);
if (scene->lights.size() > 0) {
switch (strategy) {
case SAMPLE_ALL_UNIFORM:

L += UniformSampleAllLights(scene, p, n, wo, bsdf,
sample, lightSampleOffset, bsdfSampleOffset,
bsdfComponentOffset);
break;

case SAMPLE_ONE_UNIFORM:

L += UniformSampleOneLight(scene, p, n, wo, bsdf,
sample, lightSampleOffset[0], lightNumOffset,
bsdfSampleOffset[0], bsdfComponentOffset[0]);
break;

DirectLighting::Li

case SAMPLE_ONE_WEIGHTED: sample according to power
L += WeightedSampleOneLight(scene, p, n, wo, bsdf,
sample, lightSampleOffset[0], lightNumOffset,
bsdfSampleOffset[0], bsdfComponentOffset[0], avgy,
avgYsample, cdf, overallAvgY);
break;
}
T
if (rayDepth++ < maxDepth) {
// add specular reflected and transmitted contributions
}This part is essentially the same as Whitted integrator.

The main difference between Whitted and DirectLighting is the way they
sample lights. Whitted uses sample_L to take one sample for each light.
DirectLighting uses multiple Importance sampling to sample both lights
and BRDFs.

Whitted: L1

// Add contribution of each light source
Vector wi;
for (i = 0; 1 < scene->lights.size(); ++i)
{
VisibilityTester visibility;
Spectrum Li = scene->lights[i]->
Sample_L(p, &wi, &visibility);
if (Li.Black()) continue;
Spectrum f = bsdf->f(wo, wi);
if (If.Black() &&
visibility.Unoccluded(scene))
L += £ * Li * AbsDot(wi, n) *
visibility.Transmittance(scene);

UniformSampleAllLights

Spectrum UniformSampleAllLights(...)
{
Spectrum L(0.);
for (u_int i=0;i<scene->lights.size();++i) {
Light *light = scene->lights[i];
int nSamples =
(sample && lightSampleOffset) ?
sample->n2D[lightSampleOffset[i]] : 1;
Spectrum Ld(0.);
for (int j = 0; j < nSamples; ++j)
Ld += EstimateDirect(...);
L += Ld /7 nSamples; compute contribution for one

¥ sample for one light
return L;

3} f(pla)wa)j)l-d(p’a)j)lcosgj|

UniformSampleOneLight

p(aﬁ)

Spectrum UniformSampleOneLight (...)
{
int nLights = int(scene->lights.size());
int lightNum;
it (IightNumOffset 1= -1)
lightNum =
Floor2Int(sample->oneD[1ightNumOffset][0]*nLights);
else
lightNum = Floor2Int(RandomFloat() * nLights);
lightNum = min(lightNum, nLights-1);
Light *light = scene->lights[lightNum];
return (float)nLights * EstimateDirect(...);

Multiple importance sampling

~_ light
/ f‘>

PN / N\

o | I|
N,

Weight according to L

Weight acéc;;éing tof
1 & FO)a)w (X)) 1 F(Y)alY;)w,(Y;)

= P, (X)) +E§ p, (Y,)
(n,p, (X))’
Zi (ni Pi (X))ﬂ

w,(X) =

EstimateDirect

Spectrum EstimateDirect(Scene *scene, Light *light, Point
&p, Normal &n, Vector &wo, BSDF *bsdf, Sample *sample,
int lightSamp, int bsdfSamp, int bsdfComponent,

u_int sampleNum) f(p,a%’aﬁ)Ld(p,ah)|cosHj|

Spectrum Ld(0.); p(ah)

float Isl, Is2, bsl, bs2, bcs;

if (lightSamp !'= -1 && bsdfSamp != -1 &&
sampleNum < sample->n2D[lightSamp] &&
sampleNum < sample->n2D[bsdfSamp]) {

Isl = sample->twoD[lightSamp][2*sampleNum];
1s2 = sample->twoD[lightSamp][2*sampleNum+1];
bsl = sample->twoD[bsdfSamp][2*sampleNum];
bs2 = sample->twoD[bsdfSamp][2*sampleNum+1];
bcs = sample->oneD[bsdfComponent][sampleNum];
} else {
Isl = RandomFloat();
I1s2 = RandomFloat();

Sample light with MIS

Spectrum Li = light->Sample L(p, n, Is1, Is2, &wi,
&lightPdf, &visibility);
if (lightPdf > 0. && !Li.BlackQ)) {
Spectrum f = bsdf->f(wo, wi);
if (If.Black() && visibility.Unoccluded(scene)) {
Li *= visibility.Transmittance(scene);
it (light->IsDeltaLight())
Ld += ¥ * Li * AbsDot(wi, n) / lightPdf;
else {
bsdfPdf = bsdf->Pdf(wo, wi);
float weight = PowerHeuristic(l, lightPdf,1,bsdfPdf);
Ld += ¥ * Li * AbsDot(wi, n) * weight / lightPdf;
}
¥ f(p’a)o’a)j)l-d(p!wjncosej|WL(a)j)

Sample BRDF with MIS

’ p(@,)

if (1light->1sDeltaLight()) { Only for non-delta light and BSDF
BxDFType flags = BxDFType(BSDF_ALL & ~BSDF_SPECULAR);
Spectrum f = bsdf->Sample_f(wo, &wi, bsl, bs2, bcs,
&bsdfPdf, flags);
if (If.Black() && bsdfPdf > 0.) {
lightPdf = light->Pdf(p, n, wi);
if (lightPdf > 0.) {
// Add light contribution from BSDF sampling
float weight = PowerHeuristic(l,bsdfPdf,1, lightPdf);
Spectrum Li(0.F);
RayDifferential ray(p, wi);
ifT (scene->Intersect(ray, &lightlsect)) {
if (lightlsect.primitive->GetAreaLight() == light)
Li = lightlsect.Le(-wi);
} else Li = light->Le(ray); for infinite area light
it ('Li.BlackQ)) {
Li *= scene->Transmittance(ray);
Ld += ¥ * Li * AbsDot(wi, n) * weight / bsdfPdf;
}
}
}

Direct lighting

The light transport equation

e The goal of integrator is to numerically solve
the light transport equation, governing the
equilibrium distribution of radiance in a scene.

L(x,w)=L (x,0)+L (x,0)

=L (x,0,)+ J‘j;_(x,a), - o)L, (x,0,)cos8, do,
7

The light transport equation

Analytic solution to the LTE

L(pw,)=L,(p.o, f f(p.o,.o,)L(pw,)lcosb|dw,
* [f no participating media - express incoming In
terms of outgoing radiance:

L;‘(P~f'-’) = Lr,(f(p,(o),—(u) L[,([) ,—OJ)

/

L!.(p, w)
* Need lo «.olvc for L (only onc unknown)

L(p.w,)=L,(p.ow,)+ f (p.w,.m) (]J,(r)i.),—ﬂ)r.)ICOSQ:.\(.’(UJ

e In general, it is impossible to find an analytic
solution to the LTE because of complex BRDF,
arbitrary scene geometry and intricate visibility.

e For an extremely simple scene, e.g. inside a
uniformly emitting Lambertian sphere, it is
however possible. This is useful for debugging.

Lpw,)=L,+ Cfuﬁ L(r(p,w;.).—w,)lcos b |dw,

« Radiance should be the same for all points
L=L, +caL

Analytic solution to the LTE

Surface form of the LTE

L=L, +caL
L=L,+p,L
=L, + o, (L + o)
= Lo + o (Lo + oy (L +-.

= Z Leprim

* Expressing LTE in terms of ermelly

within the scene /p./ (M?J
L(p ,m“) = L(p — p) ‘
g o 5 p WX /(r)
./(,-'J,(r)“,(ur.) = ./(;) = gl p) : '\;/” i
P

* Replacing the integrand (dm;)with an area

mtegrator over the whole scenc geometry
. cOs)
and remembering: do, - T dA(p")
P’ = p
e V(p<p') - visibility term (either one or zero)

Surface form of the LTE

* Geometry coupling term

" ' " ' :‘05 0" I‘OS O' ."f ,-"lr; | 25
G(p"=p)=V(p Hi?)% Ly [!
lp"= #

3 : OX | /o
* New (geometric) formulation N/
of the Light Transport Equation (LLTE) p

L(p'—=p)=L.(p' = p)+ L f(p"=p' = p)L(p"— p)G(p" < p')dA(p")
» Randomly pick points in the scene and create a
path vs. (previously)
» randomly pick directions over a sphere
These two forms are equivalent, but they represent two
different ways of approaching light transport.

Surface form of the LTE

L(p, = po)=L.(p, = po)
+f L (p = p) (P = P, = Po)G(p <> py)dA(ps)

+ff Vf(ps = P = p)G(ps = ps)
-f(r"": = Py 1o)G(p, <= py)dA(p,)dA(p;)
+... o _f'\Ep; =)
_En_f Py L

((p -r—n-p ST ! .
'\\ ((p, == f}l) T

W
.I] _!(;I_\—rp]—rpn)

Surface form of the LTE

e compact formulation:
L(Pl g po) = ZP(]_J
i=1
« Forapath B, = pp,.-p,
* Where p, is the
camera and p; 18
a light source

AU Sl M)

)b_ ‘m/‘: - -
Gles H'nj ,Uj

/f' (P=n)

pl \f{P_. i’ -”u}

Surface form of the LTE
e with: P(p)=[/- fL = p,)T(P.)dA(p,)..dA(p,)

Ay Ay

e Where 7(p,)= H)‘(!J',+1—’P = p,a)G(pu=p,)
* Is called the rhroug/zpur
* Special case:

P(ﬁl) = LP(Pl - Pn)

f(ps=p.—=n)
;G p,
x| /6(e:= p)

.Ul _,f'{‘m —p > .“r:-)

Delta distribution

Partition the integrand

. Agam handle with care (e.g. point light):
fL (P, =) f (P = Py = Po)G(p2 = p)dA(p,)

o\ py — P2)L s
- (p“f»"'” [J_) ‘(p‘ _ [)1) f(P: —=p = PO)G(Pz = }"1)
p(py‘r'gh!)

= Lg(pﬁghr - 1)1).](.([)1.-@ - P PO)G(Pﬁgm N Pl)

e E.g. Whitted ray | P
tracing only uses Po _/
specular BSDF’s SolPin <=)

Py (Pugs = P = Po)

* Many different algorithms proposed to deal
with EP

* Most energy in the first few bounces:
L(p1 — po) = P(]_jl) + P(]_jz) + EP(]_jx)
i=3
 P(p,)emitted radiance at p,
p

 P(P,)one bounce to light (direct lighting)

Partition the integrand

Partition the integrand

e Simplify according to small and large light
sources: L, =L, +L,

= £ 0B)
_ff fL p. = po)T(p,)dA(p,)..dA(p,)

+ff ff p)d/‘\(p) dA{pi)

e Can be hand]ed separately (different
number of samples)

e Similarly, we can split BXDF into delta and
non-delta distributions:

f=fi+fs
T(p;) = n(mm (pm=p))

j=1

Rendering operators

Scattering operator

L(x.0)= | £(x.0 —>a,)L(x.0)c0sdo
HE

= LSTOL

i

Transport transport
L(x,0)=L,(x (x,0,),-,)
=1oL,

Solving the rendering equation

Rendering Equation

K=SoT

L=L +KoL

(I-K)oL=L,
Solution

L=(I-K) oL,

(I—K)_I=ﬁ=]+K+K2+...

Successive approximation

Successive approximations

L'=L

e

=L +KoL
I'=L +KoL"

Converged

['=r" . I['=L +Kol

Successive approximation

Light Transport Notation (Hekbert 1990)

» Regular expression denoting sequence of events
along a light path alphabet: {L,E,S,D,G}

- L a light source (emitter)
- E the eye
- S specular reflection/transmission
- D diffuse reflection/transmission
- G glossy reflection/transmission
e operators:
- (k)* one or more of k
- (k)" zero or more of k (iteration)
- (k]k’) ak or ak’ event

Light Transport Notation: Examples

 LSD

- a path starting at a light, having one specular
reflection and ending at a diffuse reflection

Light Transport Notation: Examples

- L(S|D)'DE

- a path starting at a light, having one or more diffuse
or specular reflections, then a final diffuse
reflection toward the eye

E &

Light Transport Notation: Examples

- L(S|D)*DE
- a path starting at a light, having one or more diffuse

or specular reflections, then a final diffuse

reflection toward the eye
WMWMWW////MWMWM/I/I//M

<] ﬁ l‘" vr..- ¥ : . ._f
o

CEh,

oy e
A
&L -
o 2yt
200
ot

Rendering algorithms

The rendering equation

» Ray casting: E(D|G)L

e Whitted: E[S*](D]G)L

» Kajiya: E[(D]G]S)*(D]G)]L
e Goral: ED*L

Directional form
L(x,w)=L,(x,w)+
_[/. (x,0"—) L(x (x,@"),-®")cos 0 do’

A iy
G Transport operator

Integrate over i.e. ray tracing
hemisphere of
directions

The rendering equation

The radiosity equation

Surface form
L(x',x)=L_(x",x)+

I ‘](;d (xﬂ" xl" x) L(xﬂ'.’ xl’) (;(xﬂ.’ xl’) dAH(xﬂ')

M Geometry term ﬁ

Integrate over cos Q"cos g;

all surfaces G(x",x")=———2V(x",x')
|x —X
Visibility term ﬁ
. fl visible
Vi(x" x")="

10 not visible

Assume diffuse reflection
1. f(x.o >)= f(x)= p(x)=7f(x)

2. L(x.0)=B(x)/7

B(x) =B (x)+ p(x)E(x)
B(x) = B.(x)+ p(x) j F(x,x")B(x")dA4'(x")

M G

Pt < G

Radiosity

Radiosity

formulate the basic radiosity equation:

N
Bm = Em +meBnan

n=1
= B, = radiosity = total energy leaving surface m

(energy/unit area/unit time)

= E,, = energy emitted from surface m (energy/unit
area/unit time)

* p,, = reflectivity, fraction of incident light reflected
back into environment

* F,, = form factor, fraction of energy leaving surface n
that lands on surface m

e (A, = area of surface m)

= Bring all the B’s on one side of the equation
Em = Bm _meBnan
m

« this leads to this equation system:

1- ok ok, o Ry B, E,
- Fy 1-p,Fy o =Ry B, _ E,
__pNFNl —onFae 1_pNFNN__BN_ _EN_

SoB=E

Path tracing

» Proposed by Kajiya in his classic SIGGRAPH 1986
paper, rendering equation, as the solution for

f)l - Po EP 7

e Incrementally generates path of scattering
events starting from the camera and ending at
light sources in the scene.

e Two questions to answer
- How to do it in finite time?
- How to generate one or more paths to compute P(,T),.)

Infinite sum

< In general, the longer the path, the less the
impact.

e Use Russian Roulette after a finite number of
bounces
- Always compute the first few terms
- Stop after that with probability q

L(Pl _’Po)“P(ﬁl)JfP(52)+P(53)+1L2P(ﬁ:)

Infinite sum

e Take this idea further and instead randomly
consider terminating evaluation of the sum at
each term with probability g;

L(p — po) =

l-¢,

Path generation (first trial)

e First, pick up surface i in the scene randomly
and uniformly A
TTA
e Then, pick up a point on this surface randomly
and uniformly with probability %\
e Overall probability of picking a random surface
point in the scene:

ZLL
PA(P) SAASA

Path generation (first trial)

e This is repeated for each point on the path.

e Last point should be sampled on light sources
only.

« |f we know characteristics about the scene
(such as which objects are contributing most
indirect lighting to the scene), we can sample
more smartly.

e Problems:

- High variance: only few points are mutually visible,
i.e. many of the paths yield zero.

- Incorrect integral: for delta distributions, we rarely
find the right path direction

Incremental path generation

= For path p; = Py Py PjPjs--- P
- At each p;, find p;,, according to BSDF
- At p,4, find p; by multiple importance
sampling of BSDF and L
e This algorithm distributes samples according to

solid angle instead of area. So, the distribution
p, needs to be adjusted

H P — pi+1H2

Incremental path generation

e Monte Carlo estimator

Le(pi _>p1'—1) ! f(pj+l _>pj %pj,l)‘cosgi
P4 (Pi) -1 Pm(Pj+1 — Pj)

= Implementation re-uses path P;_; for new path p;
This introduces correlation, but speed makes up
for it.

Path tracing

Step 1. Choose a camera ray r given the
(x,yv,u,v,t) sample

weight = 1;
Step 2. Find ray-surface intersection
Step 3.
if light

return weight * Le();
else
weight *= reflectance(r)
Choose new ray r’ ~ BRDF pdf(r)
Go to Step 2.

Direct lighting

Path tracing

8 samples per pixel

Path tracing

1024 samples per pixel

Bidirectional path tracing

e Compose one path pfrom two paths
—p,p,...p; started at the camera p, and
—0;q;.1---0, Started at the light source g,

P = PPz Pi 4040y
= Modification for efficiency:
-Use all paths whose Pr---Pipd -4 Pr-Pid -4
lengths ranging from p,.p. .q,..q. ppnq ;-4
210 i+ Pi-o-Piadj-qy PrPpd; 24

P-4 ;-4 Pr---Pisth
Helpful for the situations in which lights are difficult
to reach and caustics

Bidirectional path tracing Noise reduction/removal

More samples (slow convergence)

Better sampling (stratified, importance etc.)
Filtering

Caching and interpolation

Bidirectional path tracing Path tracing

Biased approaches The world is more diffuse!

By introducing bias (making smoothness
assumptions), biased methods produce images
without high-frequency noise

Unlike unbiased methods, errors may not be
reduced by adding samples in biased methods

On contrast, when there is little error in the
result of an unbiased method, we are confident
that it is close to the right answer

Three biased approaches
- Filtering

- Irradiance caching

- Photon mapping

Filtering

Path tracing (10 paths/pixel)

= Noise is high frequency

e Methods:
- Simple filters
- Anisotropic filters
- Energy preserving filters
= Problems with filtering: everything is filtered
(blurred)

3x3 median filter

3x3 lowpass filter

Direct illumination

Caching techniques

» [rradiance caching: compute irradiance at
selected points and interpolate

= Photon mapping: trace photons from the lights
and store them in a photon map, that can be
used during rendering

Indirect irradiance

Global illumination

Irradiance caching

Irradiance caching

e Introduced by Greg Ward 1988
e Implemented in Radiance renderer

e Contributions from indirect lighting often vary
smoothly —cache and interpolate results

e Compute indirect lighting at sparse set of
samples

e Interpolate neighboring values from this set of
samples

» Issues
- How is the indirect lighting represented
- How to come up with such a sparse set of samples?
- How to store these samples?
- When and how to interpolate?

Set of samples

Set of samples

e Indirect lighting is computed on demand, store
irradiance in a spatial data structure. If there is
no good nearby samples, then compute a new
irradiance sample

« Irradiance (radiance is direction dependent,
expensive to store)

E(p) =|.Li(p.) | cos, | day
« |f the surface is Lambertian,
Lo(P.@,) = |, (P, @)Li(p, @) o6, | doy
=[..AL(p.@)cosd, | doy
= pE(p)

e For diffuse scenes, irradiance alone is enough
information for accurate computation

e For nearly diffuse surfaces (such as Oren-Nayar
or a glossy surface with a very wide specular
lobe), we can view irradiance caching makes
the following approximation

L(p.@)=([,. f(p.o.@)da), L(p.o)lcost | do))
~ (3 Pra (@,) E(P)

!

directional reflectance

Set of samples

» Not a good approximation for specular surfaces
e specular — Whitted integrator
= Diffuse — irradiance caching

- Interpolate from known points

- Cosine-weighted

- Path tracing sample points

E(m=Jzu(n@)mma|mq

L (p, ;)| coso; |
E(p) =
am=WZum@o

p(w) =cosb/x

Storing samples

e Octree data structure

— Each node stores samples that influence this
node (each point has a radius of mﬂuence’)

e Radius of influence (:‘ R N
— determined by N—l L)
. ‘L_)
harmonic mean Ei %j RS
— d. is the distance that the ithray ~ *2/ |~

(used for estimating the wrradiance) {E,p,n,d}
traveled before intersecting an object

— Computed during path tracing

Interpolating from neighbors

e Skip samples
- Normals are too different ‘w
- Too far away

- In front
» Weight (ad hoc)

| iL

« Final irradiance estimate is simply the weighted
sum Z W.E,

ZW

max

IrradianceCache

class IrradianceCache : public Surfacelntegrator {

float maxError; how frequently irradiance samples are
computed or interpolated

int nSamples; how many rays for irradiance samples

int maxSpecularDepth, maxIndirectDepth;

mutable int specularDepth; current depth for specular

IrradianceCache::Li

L += isect.Le(wo);
L += UniformSampleAllLights(scene, p, n, wo,...);
if (specularDepth++ < maxSpecularDepth) {

<Trace rays for specular reflection and
refraction>

}

--specularDepth;

// Estimate indirect lighting with irradiance cache

BxDFType flags = BxDFType(BSDF_REFLECTION |
BSDF_DIFFUSE | BSDF_GLOSSY);
L+=IndirectLo(p, ng, wo, bsdf, flags, sample, scene);

flags = BxDFType(BSDF_TRANSMISSION |
BSDF_DIFFUSE | BSDF_GLOSSY);
L+=IndirectLo(p, -ng, wo, bsdf, flags, sample,scene);

IrradianceCache::IndirectLo

if (MInterpolatelrradiance(scene, p, n, &E)) {

}

- .. // Compute irradiance at current point
for (int i = 0; i < nSamples; ++i) {
<Path tracing to compute radiances along ray
for irradiance sample>
E += L;
float dist = r.maxt * r.d.Length(); // max distance
sumlnvDists += 1.f / dist;
}
E *= M_PI / float(nSamples);
... // Add computed irradiance value to cache
octree->Add(IrradianceSample(E,p,n,nSamples/suminvDists),
sampleExtent);

return .5F * bsdf->rho(wo, flags) * E;

Octree

e Constructed at Preprocess()
void IrradianceCache: :Preprocess(const Scene *scene)
{

BBox wb = scene->WorldBound();

Vector delta = .01f * (wb.pMax - wb.pMin);

wb.pMin -= delta;

wb.pMax += delta;

octree=new Octree<lrradianceSample, IrradProcess>(wb);

}

struct IrradianceSample {
Spectrum E;
Normal n;
Point p;
float maxDist;

};

Interpolatelrradiance

Bool Interpolatelrradiance(const Scene *scene,

{

const Point &p, const Normal &n, Spectrum *E)

if (loctree) return false;

IrradProcess proc(n, maxError);

octree->Lookup(p, proc);

Traverse the octree; for each node where the query point is inside, call
a method of proc to process for each irradiacne sample.

if (Iproc.Successful()) return false;
*E = proc.Getlrradiance();
return true;

IrradProcess

void IrradProcess::operator()(const Point &p,
const IrradianceSample &sample)
{
// Skip if surface normals are too different
if (Dot(n, sample.n) < 0.01F) return;
// Skip if it"s too far from the sample point
float d2 = DistanceSquared(p, sample.p);
if (d2 > sample.maxDist * sample.maxDist) return;
// Skip if it"s in front of point being shaded
Normal navg = sample.n + n;
if (Dot(p - sample.p, navg) < -.01F) return;
// Compute estimate error and possibly use sample
float err=sqrtf(d2)/(sample_maxDist*Dot(n,sample.n));
if (err <1.) {
float wt = (1.F - err) * (1.Ff - err);
E += wt * sample.E; sumWt += wt; d 1 2
) w-(|

}

Irradiance caching Path tracing
Blotch artifacts High-frequency noises

Irradiance caching

Irradiance sample
positions

Irradiance caching

Photon mapping

« It can handle both diffuse and glossy reflection;
specular reflection is handled by recursive ray
tracing

» Two-step particle tracing algorithm

» Photon tracing
- Simulate the transport of individual photons
- Photons emitted from source
- Photons deposited on surfaces
- Photons reflected from surfaces to surfaces

* Rendering
- Collect photons for rendering

Photon tracing Photon tracing

* Preprocess: cast rays from light sources e Preprocess: cast rays from light sources

» Store photons (position + light power +
incoming direction)

Sy /
T—3
Zs
/"""_“‘ P
B A B

Photon map Rendering (final gathering)
= Efficiently store photons for fast access e Cast primary rays; for the secondary rays,
« Use hierarchical spatial structure (kd-tree) reconstruct irradiance using the k closest stored

photon

B i L3 SELN

Rendering (without final gather)

Lo(p,@,) = L(p,@,)+ [T(p, @, @)L (p,) | cos 6, | dey

—

N
SETETEFHN

Rendering (with final gather)

Photon mapping results

photon map rendering

Photon mapping - caustics

» Special photon map for specular reflection and
refraction

Caustics

Path tracing:
1,000 paths/pixel

Photon mapping

PhotonlIntegrator

class PhotonlIntegrator : public Surfacelntegrator {
int nCausticPhotons,nIndirectPhotons,nDirectPhotons;
int nLookup; number of photons for interpolation (50~100)
int specularDepth, maxSpecularDepth;
float maxDistSquared; search distance; too large, waste
time; too small, not enough samples
bool directWithPhotons, finalGather;
int gatherSamples;

ks
Left:
100K photons
50 photons in
radiance estimate

Right:

500K photons
500 photons in
radiance estimate

Photon map

Kd-tree is used to
store photons,
decoupled from the
scene geometry

Photon shooting

e Implemented in Preprocess method
e Three types of photons (caustic, direct, indirect)

struct Photon {
Point p; ¥
Spectrum alpha;
Vector wi;

/ S V¥ i . N

* For 100 photons emitted from 100W source,
P each photon initially carries 1|W.

Photon shooting

Photon shooting

» Use Halton sequence since number of samples
is unknown beforehand, starting from a sample
light with energy - (po wo)> Store photons for non-

o1 Wo

specular surfaces.’
O Specular

Specular .\/ Caustic\‘ Nonspecular
/ S~ 7 h\
Emission .

—_— Direct>
A

- N
(Caustic)
— N =/
Specular/ T
TN
Nonspecular :/Ind|rect) Specular/

\\,_7_// Nonspecular

void PhotonlIntegrator: :Preprocess(const Scene *scene)
{

vector<Photon> causticPhotons;

vector<Photon> directPhotons;

vector<Photon> indirectPhotons;

while (YcausticDone || !directDone|] !indirectDone)
{
++nshot;
<trace a photon path and store contribution>
vAg
, } IQX

Photon shooting

Rendering

Spectrum alpha = light->Sample_L(scene, u[0], u[1],
u[2], u[3]., &photonRay, &pdf);
alpha /= pdf * lightPdf;
While (scene->Intersect(photonRay, &photonlsect)) {
alpha *= scene->Transmittance(photonRay);
<record photon depending on type>
<sample next direction>
Spectrum fr = photonBSDF->Sample_f(wo, &wi, ul, u2,
u3, &pdf, BSDF_ALL, &flags);

alpha*=fr*AbsDot(wi, photonBSDF->dgShading.nn)/ pdf;

photonRay = RayDifferential(photonlsect.dg.p, wi);
if (nIntersections > 3) {
if (RandomFloat() > .5fF) break;
alpha /7= _5f;
}
}

e Partition the integrand
[.. T(p.@y, @)L (p.@)| cos6, | dey
= [fa(p.wy @)L (p @) | c0s6, | do,

[Fa (P2 0) (Lo (@) + L, (p. @)+ Lo (p.@)) 086, | day

Rendering

Final gather

L += isect.Le(wo);

// Compute direct lighting for photon map integrator
if (directWithPhotons) L += LPhoton(directMap,...);
else L += UniformSampleAllLights(...);

// Compute indirect lighting for photon map integrator
L += LPhoton(causticMap, -..);

it (finalGather) {

<Do one-bounce final gather for photon map>
} else

L += LPhoton(indirectMap, ...);
// Compute specular reflection and refraction

for (int i = 0; i < gatherSamples; ++i) {
<compute radiance for a random BSDF-sampled
direction for final gather ray>

}
L += Li/float(gatherSamples);

Rendering

Final gather
BSDF *gatherBSDF = gatherlsect.GetBSDF(bounceRay);
Vector bounceWo = -bounceRay.d;

Spectrum Lindir =
LPhoton(directMap, nDirectPaths, nLookup,
gatherBSDF, gatherlsect, bounceWo, maxDistSquared)
+ LPhoton(indirectMap, nilndirectPaths, nLookup,
gatherBSDF, gatherlsect, bounceWo, maxDistSquared)
+ LPhoton(causticMap, nCausticPaths, nLookup,
gatherBSDF, gatherlsect, bounceWo,maxDistSquared);
Lindir *= scene->Transmittance(bounceRay);
Li += fr * Lindir * AbsDot(wi, n) / pdf;

shadow rays are traced
for direct lighting

50,000 direct photons

Rendering

500,000 direct photons

caustics

Photon mapping

Direct illumination Photon mapping

Photon mapping + final gathering

Photon mapping
+final gathering

Photon mapping

Photon interpolation

e LPhoton() finds the nLookup closest photons
and uses them to compute the radiance at the
point.

e A kd-tree is used to store photons. To maintain
the nLookup closest photons efficiently during
search, a heap is used.

= For interpolation, a statistical technique,
density estimation, is used. Density estimation
constructs a PDF from a set of given samples,
for example, histogram.

Kernel method

p(x) —iik X_X‘j where ro k(x)dx =1
Nh i=1 h e
- f gty 100 wide—too smooth
window width ;44 narrow—too bumpy

(0 = {0.75(1—2t2)/£ t<+5

0 otherwise

h=0.1

Generalized nth nearest-neighbor estimate

. 1 N[X=X
Pe)= Ndn(X)ék(dn(X)J
t t

distance to nth nearest neighbor

1 X|<1
2D constant kernel k(x) =<~ | l?
0 otherwise

float scale=1.f/(float(nPaths)*maxDistSquared* M_Pl);

LPhoton

ifT (bsdf->NumComponents(BxDFType(BSDF_REFLECTION |
BSDF_TRANSMISSION | BSDF_GLOSSY)) > 0) {
// exitant radiance from photons for glossy surface
for (int i = 0; i < nFound; ++i) {
BxDFType flag=Dot(Nf, photons[i].photon->wi)> O.Ff ?
BSDF_ALL_REFLECTION : BSDF_ALL_TRANSMISSION;
L += bsdf->f(wo, photons[i].photon->wi, flag) *
(scale * photons[i].photon->alpha);

3} else {

// exitant radiance from photons for diffuse surface
Spectrum Lr(0.), Lt(0.);
for (int 1 = 0; 1 < nFound; ++i)

it (Dot(NFf, photons[i].photon->wi) > 0.F)

Lr += photons[i]-photon->alpha;

else Lt += photons[i].photon->alpha;

L+=(scale*INV_P1)*(Lr*bsdf->rho(wo,BSDF_ALL_REFLECTION)
+Lt*bsdf->rho(wo, BSDF_ALL_ TRANSMISSION));

}

