Monte Carlo Integration II

Digital Image Synthesis
Yung-Yu Cbuang
12/17/2008

without variance reduction
with variance reduction

Variance reduction

- Efficiency measure for an estimator

$$
\text { Efficiency } \propto \frac{1}{\text { Variance } \bullet \text { Cost }}
$$

- Although we call them variance reduction techniques, they are actually techniques to increase efficiency
- Stratified sampling
- Importance sampling

Russian roulette

- Assume that we want to estimate the following direct lighting integral

$$
L_{o}\left(p, \omega_{o}\right)=\int_{\Omega} f_{r}\left(p, \omega_{o}, \omega_{i}\right) L_{d}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}
$$

- The Monte Carlo estimator is

$$
\frac{1}{N} \sum_{i=1}^{N} \frac{f_{r}\left(p, \omega_{o}, \omega_{i}\right) L_{d}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right|}{p\left(\omega_{i}\right)}
$$

- Since tracing the shadow ray is very costly, if we somewhat know that the contribution is small anyway, we would like to skip tracing.
- For example, we could skip tracing rays if $\left|\cos \theta_{i}\right|$ or $f_{r}\left(p, \omega_{o}, \omega_{i}\right)$ is small enough.

Russian roulette

- However, we can't just ignore them since the estimate will be consistently under-estimated otherwise.
- Russian roulette makes it possible to skip tracing rays when the integrand's value is low while still computing the correct value on average.

Russian roulette

- Select some termination probability q,

$$
\begin{gathered}
F^{\prime}= \begin{cases}\frac{F-q c}{1-q} & \xi>q \\
c & \text { otherwise }\end{cases} \\
E\left[F^{\prime}\right]=(1-q)\left(\frac{E[F]-q c}{1-q}\right)+q c=E[F]
\end{gathered}
$$

- Russian roulette will actually increase variance, but improve efficiency if q is chosen so that samples that are likely to make a small contribution are skipped. (if same number of samples are taken, RR could be worse. However, since RR could be faster, we could increase number of samples)

Careful sample placement

- Carefully place samples to less likely to miss important features of the integrand
- Stratified sampling: the domain [0,1]s is split into strata $S_{1} . . S_{k}$ which are disjoint and completely cover the domain.

$$
\begin{aligned}
& S_{i} \cap S_{j}=\phi \quad i \neq j \quad \bigcup_{i=1}^{k} S_{i}=[0,1]^{s} \\
& \left|S_{i}\right|=v_{i} \quad \sum v_{i}=1 \\
& p_{i}(x)= \begin{cases}1 / v_{i} & \text { if } x \in S_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Stratified sampling

$$
\begin{aligned}
& V\left[\hat{I}_{s}\right]=\frac{1}{N} \sum_{i=1}^{k} v_{i} \sigma_{i}^{2} \\
& V\left[\hat{I}_{n s}\right]=\frac{1}{N}\left[\sum_{i=1}^{k} v_{i} \sigma_{i}^{2}+\sum_{i=1}^{k} v_{i}\left(\mu_{i}-I\right)^{2}\right]
\end{aligned}
$$

Thus, the variance can only be reduced by using stratified sampling.

without stratified sampling

with stratified sampling

Bias

- Another approach to reduce variance is to introduce bias into the computation.

$$
\beta=E[F]-\int f(x) d x
$$

- Example: estimate the mean of a set of random numbers X_{i} over [0..1].
unbiased estimator $\frac{1}{N} \sum_{i=1}^{N} X_{i}$ variance $\left(\mathrm{N}^{-1}\right)$
biased estimator $\frac{1}{2} \max \left(X_{1}, X_{2}, \ldots, X_{N}\right)$ variance $\left(\mathrm{N}^{-2}\right)$

Pixel reconstruction

$I=\int w(x) f(x) d x$

- $\begin{array}{r}\text { Biased estimator } \hat{I}_{b}=\frac{\sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)}{\sum_{i=1}^{N} w\left(X_{i}\right)} \text { (but less variance) }\end{array}$
- Unbiased estimator $\hat{I}_{u}=\frac{\sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)}{N p_{c}}$ where p_{c} is the uniform PDF of choosing $X i$

$$
\begin{aligned}
& E\left[\hat{I}_{u}\right]=\frac{1}{N p_{c}} \sum_{i=1}^{N} E\left[w\left(X_{i}\right) f\left(X_{i}\right)\right] \\
& =\frac{1}{N p_{c}} \sum_{i=1}^{N} \int w(x) f(x) p_{c} d x=\int w(x) f(x) d x
\end{aligned}
$$

Importance sampling

- The Monte Carlo estimator

$$
F_{N}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}
$$

converges more quickly if the distribution $p(x)$ is similar to $f(x)$. The basic idea is to concentrate on where the integrand value is high to compute an accurate estimate more efficiently.

- So long as the random variables are sampled from a distribution that is similar in shape to the integrand, variance is reduced.

Informal argument

- Since we can choose $p(x)$ arbitrarily, let's choose it so that $p(x) \sim f(x)$. That is, $p(x)=c f(x)$. To make $p(x)$ a pdf, we have to choose c so that

$$
c=\frac{1}{\int f(x) d x}
$$

- Thus, for each sample X_{i}, we have

$$
\frac{f\left(X_{i}\right)}{p\left(X_{i}\right)}=\frac{1}{c}=\int f(x) d x
$$

Since c is a constant, the variance is zero!

- This is an ideal case. If we can evaluate c, we won't use Monte Carlo. However, if we know $p(x)$ has a similar shape to $f(x)$, variance decreases.
- Bad distribution could hurt variance.
$I=\int_{0}^{4} x d x=8$

method	Sampling function	variance	Samples needed for standard error of 0.008
importance	$(6-x) / 16$	$56.8 / \mathrm{N}$	887,500
importance	$1 / 4$	$21.3 / \mathrm{N}$	332,812
importance	$(x+2) / 16$	$6.4 / \mathrm{N}$	98,432
importance	$\mathrm{x} / 8$	0	1
stratified	$1 / 4$	$21.3 / \mathrm{N}^{3}$	70

Importance sampling

- Fortunately, it is not too hard to find good sampling distributions for importance sampling for many integration problems in graphics.
- For example, in many cases, the integrand is the product of more than one function. It is often difficult construct a pdf similar to the product, but sampling along one multiplicand is often helpful.

$$
\int_{s^{2}} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{i}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
$$

Multiple importance sampling

$$
L_{o}\left(p, \omega_{o}\right)=\int_{\Omega} f_{r}\left(p, \omega_{o}, \omega_{i}\right) L_{d}\left(p, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}
$$

- If we sample based on either L or f, it often performs poorly.
- Consider a near-mirror BRDF illuminated by an area light where L 's distribution is used to draw samples. (It is better to sample by f.)
- Consider a diffuse BRDF and a small light source. If we sample according to f, it will lead to a larger variance than sampling by L.
- It does not work by averaging two together since variance is additive.

Multiple importance sampling

- To estimate $\int f(x) g(x) d x$, MIS draws n_{f} samples according to p_{f} and n_{g} samples to p_{g}, The Monte Carlo estimator given by MIS is

$$
\frac{1}{n_{f}} \sum_{i=1}^{n_{f}} \frac{f\left(X_{i}\right) g\left(X_{i}\right) w_{f}\left(X_{i}\right)}{p_{f}\left(X_{i}\right)}+\frac{1}{n_{g}} \sum_{j=1}^{n_{i}} \frac{f\left(Y_{j}\right) g\left(Y_{j}\right) w_{g}\left(Y_{i}\right)}{p_{g}\left(Y_{j}\right)}
$$

- Balance heuristic v.s. power heuristic
$w_{s}(x)=\frac{n_{s} p_{s}(x)}{\sum_{i} n_{i} p_{i}(x)} \quad w_{s}(x)=\frac{\left(n_{s} p_{s}(x)\right)^{\beta}}{\sum_{i}\left(n_{i} p_{i}(x)\right)^{\beta}}$
- Assume a sample X is drawn from p_{f} where $p_{f}(X)$ is small, thus $f(X)$ is small if p_{f} matches f. If, unfortunately, $g(X)$ is large, then standard importance sampling gives a large value $\frac{f(X) g(X)}{p_{f}(X)}$
- However, with the balance heuristic, the contribution of X will be

$$
\begin{aligned}
& \frac{f(X) g(X) w_{f}(X)}{p_{f}(X)}=\frac{f(X) g(X)}{p_{f}(X)} \frac{n_{f} p_{f}(X)}{n_{f} p_{f}(X)+n_{g} p_{g}(X)} \\
& =\frac{f(X) g(X) n_{f}}{n_{f} p_{f}(X)+n_{g} p_{g}(X)}
\end{aligned}
$$

Importance sampling
Sample Light
Sample BRDF

Multiple importance sampling
Result: better than either of the two strategies alone

Monte Carlo for rendering equation

$$
\begin{aligned}
L_{o}\left(\mathrm{p}, \omega_{\mathrm{o}}\right)= & L_{e}\left(\mathrm{p}, \omega_{\mathrm{o}}\right) \\
& +\int_{\Omega} f\left(\mathrm{p}, \omega_{\mathrm{o}}, \omega_{\mathrm{i}}\right) L_{i}\left(\mathrm{p}, \omega_{\mathrm{i}}\right)\left|\cos \theta_{\mathrm{i}}\right| d \omega_{\mathrm{i}}
\end{aligned}
$$

- Importance sampling: sample ω_{i} according to BxDF f and L (especially for light sources)
- If don't know anything about f and L, then use cosine-weighted sampling of hemisphere to find a sampled ω_{i}

Sampling reflection functions

```
Spectrum BxDF::Sample_f(const Vector &wo,
Vector *wi, float u1, float u2, float *pdf){
    *wi = CosineSampleHemisphere(u1, u2);
    if (wo.z < 0.) wi->z *= -1.f;
    *pdf = Pdf(wo, *wi);
    return f(wo, *wi);
}
For those who modified Sample_f, Pdf must be changed
accordingly
float BxDF::Pdf(Vector &wo, Vector &wi) {
    return SameHemisphere(wo, wi) ?
        fabsf(wi.z) * INV_PI : 0.f;
```

\} Pdf() is useful for multiple importance sampling.

Sampling microfacet model

Too complicated to sample according to f, sample D instead. It is often effective since D accounts for most variation for f.

Sampling microfacet model

```
Spectrum Microfacet::Sample_f(const Vector &wo,
    Vector *wi, float u1, float u2, float *pdf) {
    distribution->Sample_f(wo, wi, u1, u2, pdf);
    if (!SameHemisphere(wo, *wi))
    return Spectrum(0.f);
    return f(wo, *wi);
}
float Microfacet::Pdf(const Vector &wo,
        const Vector &wi) const {
    if (!SameHemisphere(wo, wi)) return 0.f;
    return distribution->Pdf(wo, wi);
}
```


Sampling Blinn microfacet model

- Blinn distribution: $D\left(\cos \theta_{h}\right)=\frac{e+2}{2 \pi}\left(\cos \theta_{h}\right)^{e}$
- Generate ω_{h} according to the above function

$$
\begin{aligned}
\cos \theta_{h} & =\sqrt[e+1]{\xi_{1}} \\
\phi_{h} & =2 \pi \xi_{2}
\end{aligned}
$$

- Convert ω_{h} to ω_{i}
$\omega_{i}=-\omega_{o}+2\left(\omega_{o} \cdot \omega_{h}\right) \omega_{h}$

Sampling Blinn microfacet model

- Convert half-angle PDF to incoming-angle PDF, that is, change from a density in term of ω_{h} to one in terms of ω_{i}

$$
\begin{aligned}
& \theta_{i}=2 \theta_{\mathrm{h}} \text { and } \phi_{i}=\phi_{\mathrm{h}} \\
& d \omega_{i}=\sin \theta_{i} d \theta_{i} d \phi_{i} \\
& d \omega_{h}=\sin \theta_{h} d \theta_{h} d \phi_{h}
\end{aligned}
$$

$$
\begin{aligned}
& \text { transformation } \\
& \text { method }
\end{aligned}
$$

$$
\frac{d \omega_{h}}{d \omega_{i}}=\frac{\sin \theta_{h} d \theta_{h} d \phi_{h}}{\sin \theta_{i} d \theta_{i} d \phi_{i}}=\frac{\sin \theta_{h} d \theta_{h} d \phi_{h}}{\sin 2 \theta_{h} 2 d \theta_{h} d \phi_{h}}=\frac{\sin \theta_{h}}{4 \cos \theta_{h} \sin \theta_{h}}
$$

$$
=\frac{1}{4 \cos \theta_{h}} \rightarrow p(\theta)=\frac{p_{h}(\theta)}{4\left(\omega_{o} \cdot \omega_{h}\right)}
$$

Estimate reflectance

Spectrum BxDF::rho(Vector \&w, int nS, float *S)
\{
if (!s) \{ $\quad \rho_{h d}\left(\omega_{o}\right)=\int_{\Omega} f_{r}\left(\omega_{o}, \omega_{i}\right)\left|\cos \theta_{i}\right| d \omega_{i}$ $\mathrm{S}=(\mathrm{float} *)$ alloca(2*nS*sizeof(float)); ${ }_{\text {\} }}^{\text {Spectrum } r=0 . ;} \quad$ LatinHypercube(S, ns, 2); $\quad \frac{1}{N} \sum_{i=1}^{N} \frac{f_{r}\left(\omega_{0}, \omega_{i}\right)\left|\cos \theta_{i}\right|}{p\left(\omega_{i}\right)}$
for (int i = 0; i < nS; ++i) \{
Vector wi;
float pdf = 0.f;
Spectrum f=Sample_f(w,\&wi,S[2*i],S[2*i+1],\&pdf);
if (pdf > 0.) r += f * fabsf(wi.z) / pdf;
\}
return r / nS;
\}

Estimate reflectance

```
Spectrum BxDF::rho(int nS, float *S) const
\{
    if (!S) \(\left\{\quad \rho_{h h}=\frac{1}{\pi} \iint f_{r}\left(\omega_{o}, \omega_{i}\right)\left|\cos \theta_{i} \cos \theta_{o}\right| d \omega_{i} d \omega_{o}\right.\)
        S = (float *)alloca(4 \({ }^{\Omega,}\) ns * sizeof(float));
        LatinHypercube(S, nS, 4);
    \}
    Spectrum \(\mathbf{r}=0 . ; \quad \pi \quad \pi N \sum_{i=1} \quad p\left(\omega_{i}^{\prime}\right) p\left(\omega_{i}^{\prime \prime}\right.\)
    for (int \(i=0 ; i<n s ;++i)\{\)
        Vector wo, wi;
        wo = UniformSampleHemisphere(S[4*i], S[4*i+1]);
        float pdf_o = INV_TWOPI, pdf_i = 0.f;
        Spectrum f
            =Sample_f(wo,\&wi,S[4*i+2],S[4*i+3],\&pdf_i);
        if (pdf_i > 0.)
            r += f * fabsf(wi.z * wo.z) / (pdf_o * pdf_i);
    \}
    return r / (M_PI*nS);
\}
```


Sampling BSDF (mixture of BxDFs)

- We would like to sample from the density that is the sum of individual densities

$$
p(\omega)=\frac{1}{N} \sum_{i=1}^{N} p_{i}(\omega)
$$

- Difficult. Instead, uniformly sample one component and use it for importance sampling. However, f and Pdf returns the sum.
- Three uniform random numbers are used, the first one determines which BxDF to be sampled (uniformly sampled) and then sample that BxDF using the other two random numbers

Sampling light sources

- Direct illumination from light sources makes an important contribution, so it is crucial to be able to generates
Sp: samples directions from a point p to the light
- Sr: random rays from the light source (for bidirectional light transport algorithms such as bidirectional path tracing and photon mapping)

Lights

- Essential data members:
- Transform LightToWorld, WorldToLight;
- int nSamples;
returns wi and radiance due to the light
- Spectrum Sample_L(Point \&p, Vector *wi, VisibilityTester *vis); Essentially a one-sample MC
- bool IsDeltaLight();

Interface

virtual Spectrum Sample_L(const Point \&p, float u1, float u2, Vector *wi, float *pdf, VisibilityTester *vis) const $=0$;
virtual float Pdf(const Point \&p, const Vector \&wi) const $=0$;

We don't have normals for volume
virtual Spectrum Sample_L(... Normal \&n, ...) \{
return Sample_L(p, u1, u2, wi, pdf, vis);
\} If we know normal, we could add consine falloff to better sample L.
virtual float Pdf(... Normal \&n, ...) \{
return Pdf(p, wi);
\} Default (simply forwarding to the one without normal).
virtual Spectrum Sample_L(const Scene *scene,
float u1, float u2, float u3, float u4,
Ray *ray, float *pdf) const $=0$; Rays leaving lights

Point lights

- Sp : delta distribution, treat similar to specular BxDF
- Sr: sampling of a uniform sphere

Point lights

```
Spectrum Sample_L(const Point &p, float u1, float u2,
    Vector *wi, float *pdf, VisibilityTester *vis)
{
    *pdf = 1.f; delta function
    return Sample_L(p, wi, visibility);
}
float Pdf(Point &, Vector &) const
{
    return 0.; for almost any direction, pdf is 0
}
Spectrum Sample_L(Scene *scene, float u1, float u2,
    float u3, float u4, Ray *ray, float *pdf) const
{
    ray->0 = lightPos;
    ray->d = UniformSampleSphere(u1, u2);
    *pdf = UniformSpherePdf();
    return Intensity;
}
```


Spotlights

- Sp: the same as a point light
- Sr: sampling of a cone (ignore the falloff)
$p(\omega)=c$ over cone $\longrightarrow p(\theta, \phi)=c \sin \theta$ over $\left[0, \theta_{\max }\right] \times[0,2 \pi]$
$1=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\theta^{\prime}} c \sin \theta d \theta d \phi=2 \pi c\left(1-\cos \theta_{\max }\right) \longrightarrow p(\theta, \phi)=\frac{\sin \theta}{2 \pi\left(1-\cos \theta_{\max }\right)}$
$p(\theta)=\int_{\phi=0}^{2 \pi} \frac{\sin \theta}{2 \pi\left(1-\cos \theta_{\max }\right)} d \phi=\frac{\sin \theta}{1-\cos \theta_{\max }}$
$P(\theta)=\int_{\theta=0}^{\theta^{\prime}} \frac{\sin \theta}{1-\cos \theta_{\max }} d \theta=\frac{1-\cos \theta^{\prime}}{1-\cos \theta_{\max }}=\xi_{1} \longrightarrow \cos \theta=\left(1-\xi_{1}\right)+\xi_{1} \cos \theta_{\max }$
$p(\phi \mid \theta)=\frac{p(\theta, \phi)}{p(\theta)}=\frac{1}{2 \pi} \longrightarrow P\left(\phi^{\prime} \mid \theta\right)=\int_{\phi=0}^{\phi^{\prime}} \frac{1}{2 \pi} d \phi=\frac{\phi^{\prime}}{2 \pi}=\xi_{2} \longrightarrow \phi=2 \pi \xi_{2}$

```
Spotlights
Spectrum Sample_L(Point &p, float u1, float u2,
    Vector *wi, float *pdf, VisibilityTester *vis)
{
    *pdf = 1.f;
    return Sample_L(p, wi, visibility);
}
float Pdf(const Point &, const Vector &)
{ return 0.; }
Spectrum Sample_L(Scene *scene, float u1, float u2,
    float u3, float u4, Ray *ray, float *pdf)
{
    ray->o = lightPos;
    Vector v = UniformSampleCone(u1, u2,cosTotalWidth);
    ray->d = LightToWorld(v);
    *pdf = UniformConePdf(cosTotalWidth);
    return Intensity * Falloff(ray->d);
}
```

- Ignore spatial variance; sampling routines are essentially the same as spot lights and point lights

Directional lights

- Sp: no need to sample
- Sr: create a virtual disk of the same radius as scene's bounding sphere and then sample the disk uniformly.

Directional lights

Spectrum Sample_L(Scene *scene, float u1, float u2, float u3, float u4, Ray *ray, float *pdf) const

Point worldCenter
float worldRadius;
scene->WorldBound().BoundingSphere(\&worldCenter,
\&worldRadius);
Vector v1, v2;
CoordinateSystem(lightDir, \&v1, \&v2);
float d1, d2;
ConcentricSampleDisk(u1, u2, \&d1, \&d2);
Point Pdisk =
worldCenter + worldRadius * (d1*v1 + d2*v2);
ray->o = Pdisk + worldRadius * lightDir;
ray->d = -lightDir;
*pdf = 1.f / (M_PI * worldRadius * worldRadius);
return L;

Area lights

- Defined by shapes
- Add shape sampling functions for Shape
- Sp: uses a density with respect to solid angle from the point p
Point Shape::Sample(Point \&P, float u1, float u2, Normal *Ns)
- Sr: generates points on the shape according to a density with respect to surface area
Point Shape::Sample(float u1, float u2, Normal *Ns)
- virtual float Shape::Pdf(Point \&Pshape)
\{ return 1.f / Area(); \}

Area light sampling method

- Most of work is done by Shape.

Spectrum Sample_L(Point \&p, Normal \&n, float u1,
float u2, Vector *wi, float *pdf,
VisibilityTester *visibility) const \{
Normal ns;
Point ps = shape->Sample(p, u1, u2, \&ns);
*wi $=$ Normalize(ps - p);
*pdf $=$ shape->Pdf(p, *wi);
visibility->SetSegment(p, ps);
return L(ps, ns, -*wi);
\}
float Pdf(Point \&p, Normal \&N, Vector \&Wi) const \{ return shape->Pdf(p, wi);
\}

Area light sampling method

Spectrum Sample_L(Scene *scene, float u1, float u2, float u3, float u4, Ray *ray, float *pdf) const \{

Normal ns;
ray->o = shape->Sample(u1, u2, \&ns);
ray->d = UniformSampleSphere(u3, u4);
if (Dot(ray->d, ns) < 0.) ray->d *= -1;
*pdf = shape->Pdf(ray->o) * INV_TWOPI;
return L(ray->o, ns, ray->d);
\}

Sampling spheres

- Only consider full spheres

Point Sample(float u1, float u2, Normal *ns) \{

Point $p=$ Point(0,0,0) + radius *
UniformSampleSphere(u1, u2);
*ns = Normalize(ObjectToWorld(
Normal(p.x, p.y, p.z)));
if (reverseOrientation) *ns *= -1.f;
return ObjectToWorld(p);
\}

Sampling spheres

Sampling spheres

Point Sample(Point \&p, float u1, float u2, Normal *ns) \{
// Compute coordinate system
Point c = ObjectToWorld(Point(0,0,0));
Vector wc = Normalize(c - p);
Vector wcX, wcY;
CoordinateSystem(wc, \&wcX, \&wcY);
// Sample uniformly if p is inside
if (DistanceSquared(p, c)

- radius*radius < 1e-4f)
return Sample(u1, u2, ns);
// Sample uniformly inside subtended cone
float cosThetaMax $=\operatorname{sqrtf}(\max (0 . f$,
1 - radius*radius/DistanceSquared(p,c)));

```
Sampling spheres
    DifferentialGeometry dgSphere;
    float thit;
    Point ps;
    Ray r(p, UniformSampleCone(u1, u2,
        cosThetaMax, wcX, wcY, wc));
    if (!Intersect(r, &thit, &dgSphere)) {
        ps = c - radius * wc; It's unexpected.
    } else {
        ps = r(thit);
    }
    *ns = Normal(Normalize(ps - c));
    if (reverseOrientation) *ns *= -1.f;
    return ps;
}
```


Infinite area lights

- Essentially an infinitely large sphere that surrounds the entire scene
- Sp:
- normal given: cosine weighted sampling
- otherwise: uniform spherical sampling
- does not take directional radiance distribution into account
- Sr:
- Uniformly sample two points p_{1} and p_{2} on the sphere
- Use p_{1} as the origin and $p_{2}-p_{1}$ as the direction
- It can be shown that $p_{2}-p_{1}$ is uniformly distributed (Li et. al. 2003)

Infinite area lights

```
Spectrum Sample_L(Scene *scene, float u1, float u2,
    float u3, float u4, Ray *ray, float *pdf) const
{
    Point wC; float wR;
    scene->WorldBound().BoundingSphere(&wC, &WR);
    wR *= 1.01f;
    Point p1 = wC + wR * UniformSampleSphere(u1, u2);
    Point p2 = wC + wR * UniformSampleSphere(u3, u4);
    ray->0 = p1
    ray->d = Normalize(p2-p1);
```



```
Vector to_center = Normalize(worldCenter - p1);
float costheta = AbsDot(to_center, ray->d);
    *pdf = costheta / ((4.f * M_PI * WR * WR));
    return Le(RayDifferential(ray->0, -ray->d));
}
```

- Structured Importance Sampling of Environment Maps, SIGGRAPH 2003

$$
\begin{aligned}
& \text { irradiance binary visibility } \\
& E(x)=\int_{\Omega_{2 \pi}} L_{i}(\vec{\omega}) \stackrel{\downarrow}{S}(x, \vec{\omega})(\vec{\omega} \cdot \vec{n}) d \vec{\omega}
\end{aligned}
$$

Infinite area light; easy to evaluate

Importance metric

illumination of a region

$$
\begin{aligned}
& \Gamma(L, \Delta \omega)=L^{a} \Delta \omega^{b} \\
& \text { solid angle of a region }
\end{aligned}
$$

- Illumination-based importance sampling (a=1, b=0)
- Area-based stratified sampling ($a=0, b=1$)

Variance in visibility

- After testing over 10 visibility maps, they found that variance in visibility is proportional to the square root of solid angle (if it is small)

$$
\begin{aligned}
& V[S, \Delta \omega] \approx \frac{\theta}{3 T_{K}} \begin{array}{c}
\text { parameter typically } \\
\text { between } 0.02 \text { and } 0.6
\end{array} \\
& \text { visibility map }
\end{aligned}
$$

- Thus, they empirically define the importance as

$$
\Gamma[L, \Delta \omega]=L \cdot\left(\min \left(\Delta \omega, \Delta \omega_{0}\right)\right)^{\frac{1}{4}}
$$

$$
t_{i}=i \sigma \quad i=0, \ldots, d-1
$$

the illumination map $\quad \Gamma_{4 \pi}=\Gamma\left(\sum L, \Delta \omega_{0}\right)=L \Delta \omega_{0}^{1 / 4}$

http://www.cs.virginia.edu/~jdl/papers/brdfsamp/lawrence_sig04.ppt

- Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions, SIGGRAPH 2005.

Wavelet decomposition

Sample warping

