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variance = noise in the image

without variance reduction with variance reductionwith variance reduction

Same amount of computation for rendering this scene with glossy reflection

Variance reduction

• Efficiency measure for an estimator
11Efficiency

Variance Cost
∝

•

• Although we call them variance reduction 
techniques, they are actually techniques to q , y y q
increase efficiency
– Stratified samplingp g
– Importance sampling

Russian roulette

• Assume that we want to estimate the following 
direct lighting integraldirect lighting integral
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• The Monte Carlo estimator is 
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• Since tracing the shadow ray is very costly, if 
we somewhat know that the contribution is 

ll   ld lik  t  ki  t ismall anyway, we would like to skip tracing.
• For example, we could skip tracing rays if |cos| iθ

or                   is small enough.),,( ior pf ωω



Russian roulette

• However, we can’t just ignore them since the 
estimate will be consistently under-estimated estimate will be consistently under-estimated 
otherwise.

• Russian roulette makes it possible to skip tracing • Russian roulette makes it possible to skip tracing 
rays when the integrand’s value is low while still 
computing the correct value on averagecomputing the correct value on average.

Russian roulette

• Select some termination probability q,
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• Russian roulette will actually increase variance, but 
improve efficiency if q is chosen so that samples that 
are likely to make a small contribution are skipped  (if are likely to make a small contribution are skipped. (if 
same number of samples are taken, RR could be worse. 
However, since RR could be faster, we could increase 
number of samples)

Careful sample placement

• Carefully place samples to less likely to miss 
important features of the integrandimportant features of the integrand

• Stratified sampling: the domain [0,1]s is split 
i t  t t  S S hi h  di j i t d into strata S1..Sk which are disjoint and 
completely cover the domain.
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Stratified sampling
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Thus, the variance can only be reduced by using 
stratified sampling.



Stratified sampling

without stratified sampling with stratified sampling

Bias

• Another approach to reduce variance is to 
introduce bias into the computationintroduce bias into the computation.
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• Example: estimate the mean of a set of random 

numbers Xi over [0..1].
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Pixel reconstruction
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Importance sampling

• The Monte Carlo estimator
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converges more quickly if the distribution p(x) is 
similar to f(x). The basic idea is to concentrate f( )
on where the integrand value is high to 
compute an accurate estimate more efficiently.p y

• So long as the random variables are sampled 
from a distribution that is similar in shape to from a distribution that is similar in shape to 
the integrand, variance is reduced.



Informal argument

• Since we can choose p(x) arbitrarily, let’s 
choose it so that p(x) f(x) That is p(x)=cf(x) To choose it so that p(x)～f(x). That is, p(x)=cf(x). To 
make p(x) a pdf, we have to choose c so that
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• Thus, for each sample Xi, we have
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Since c is a constant, the variance is zero!
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• This is an ideal case. If we can evaluate c, we 
won’t use Monte Carlo. However, if we know p(x), p( )
has a similar shape to f(x), variance decreases.

Importance sampling

• Bad distribution could hurt variance.
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method Sampling
function

variance Samples needed for 
standard error of 
0.008

importance (6-x)/16 56.8/N 887,500

importance 1/4 21.3/N 332,812

importance (x+2)/16 6 4/N 98 432importance (x+2)/16 6.4/N 98,432

importance x/8 0 1

stratified 1/4 21.3/N3 70

Importance sampling

• Fortunately, it is not too hard to find good 
sampling distributions for importance sampling sampling distributions for importance sampling 
for many integration problems in graphics. 
F  l  i    th  i t d i  • For example, in many cases, the integrand is 
the product of more than one function. It is 
ft  diffi lt t t  df i il  t  th  often difficult construct a pdf similar to the 

product, but sampling along one multiplicand is 
ft  h l f loften helpful.
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Multiple importance sampling
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• If we sample based on either L or f, it often 
performs poorly.performs poorly.

• Consider a near-mirror BRDF illuminated by an 
area light where L’s distribution is used to draw area light where L s distribution is used to draw 
samples. (It is better to sample by f.)
Consider a diffuse BRDF and a small light source  • Consider a diffuse BRDF and a small light source. 
If we sample according to f, it will lead to a 
larger variance than sampling by Llarger variance than sampling by L.

• It does not work by averaging two together 
ddsince variance is additive.



Multiple importance sampling

• To estimate                , MIS draws nf samples 
according to p and n samples to p  The Monte 
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according to pf and ng samples to pg, The Monte 
Carlo estimator given by MIS is 
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• Balance heuristic v.s. power heuristic
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Multiple importance sampling

• Assume a sample X is drawn from pf where pf(X)
is small  thus f(X) is small if p matches f  If  is small, thus f(X) is small if pf matches f. If, 
unfortunately, g(X) is large, then standard 
importance sampling gives a large value )()( XgXfimportance sampling gives a large value

• However, with the balance heuristic, the 
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Importance sampling Multiple importance sampling



Monte Carlo for rendering equation
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• Importance sampling: sample ωi according to 
BxDF f and L (especially for light sources)

• If don’t know anything about f and L, then use 
cosine-weighted sampling of hemisphere to find g p g p
a sampled ωi

Sampling reflection functions
Spectrum BxDF::Sample_f(const Vector &wo,
Vector *wi, float u1, float u2, float *pdf){Vector wi, float u1, float u2, float pdf){
*wi = CosineSampleHemisphere(u1, u2);
if (wo.z < 0.) wi->z *= -1.f;( ) ;
*pdf = Pdf(wo, *wi);
return f(wo, *wi);

}
For those who modified Sample_f, Pdf must be changed 

di laccordingly
float BxDF::Pdf(Vector &wo, Vector &wi) {

t S H i h ( i) ?return SameHemisphere(wo, wi) ? 
fabsf(wi.z) * INV_PI : 0.f;

} Pdf() i  f l f  lti l  i t  li g} Pdf() is useful for multiple importance sampling.

Sampling microfacet model

geometric attenuation G

microfacet distribution D Fresnel reflection F

Too complicated to sample according to f, sample 
D instead. It is often effective since D accounts for 
most variation for f.

Sampling microfacet model
Spectrum Microfacet::Sample_f(const Vector &wo, 

Vector *wi, float u1, float u2, float *pdf) {
distribution->Sample_f(wo, wi, u1, u2, pdf);
if (!SameHemisphere(wo, *wi)) 
return Spectrum(0 f);return Spectrum(0.f);
return f(wo, *wi);

}
float Microfacet::Pdf(const Vector &wo,

const Vector &wi) const {
if (!SameHemisphere(wo, wi)) return 0.f;if (!SameHemisphere(wo, wi)) return 0.f;
return distribution->Pdf(wo, wi);

}



Sampling Blinn microfacet model

• Blinn distribution: e
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Sampling Blinn microfacet model

• Convert half-angle PDF to incoming-angle PDF, 
that is  change from a density in term of ω to that is, change from a density in term of ωh to 
one in terms of ωi

transformation 
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Sampling anisotropic microfacet model

• Anisotropic model (after Ashikhmin and Shirley) 
for the first quadrant of the unit hemisphere for the first quadrant of the unit hemisphere 
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Estimate reflectance
Spectrum BxDF::rho(Vector &w, int nS, float *S)
{ ∫= iiihd df ωθωωωρ |cos|),()(if (!S) {

S=(float *)alloca(2*nS*sizeof(float));
LatinHypercube(S, nS, 2);
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Spectrum r = 0.;
for (int i = 0; i < nS; ++i) {
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( ; ; ) {
Vector wi;
float pdf = 0.f;
Spectrum f=Sample f(w &wi S[2*i] S[2*i+1] &pdf);Spectrum f=Sample_f(w,&wi,S[2 i],S[2 i+1],&pdf);
if (pdf > 0.) r += f * fabsf(wi.z) / pdf;

}
return r / nS;return r / nS;

}



Estimate reflectance
Spectrum BxDF::rho(int nS, float *S) const 
{

∫ ∫=hh ddf ωωθθωωρ |coscos|)(1
if (!S) {

S = (float *)alloca(4 * nS * sizeof(float));
LatinHypercube(S, nS, 4);
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Spectrum r = 0.;
for (int i = 0; i < nS; ++i) {
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Vector wo, wi;
wo = UniformSampleHemisphere(S[4*i], S[4*i+1]);
float pdf o = INV TWOPI pdf i = 0 f;float pdf_o = INV_TWOPI, pdf_i = 0.f;
Spectrum f

=Sample_f(wo,&wi,S[4*i+2],S[4*i+3],&pdf_i);
if (pdf i > 0 )if (pdf_i > 0.)

r += f * fabsf(wi.z * wo.z) / (pdf_o * pdf_i);
}

/ ( * S)return r / (M_PI*nS);
}

Sampling BSDF (mixture of BxDFs)

• We would like to sample from the density that 
is the sum of individual densitiesis the sum of individual densities

• Difficult. Instead, uniformly sample one , y p
component and use it for importance sampling. 
However, f and Pdf returns the sum.,

• Three uniform random numbers are used, the 
first one determines which BxDF to be sampled first one determines which BxDF to be sampled 
(uniformly sampled) and then sample that BxDF 
using the other two random numbersusing the other two random numbers

Sampling light sources
• Direct illumination from light sources makes an 

important contribution, so it is crucial to be able to important contribution, so it is crucial to be able to 
generates 
– Sp: samples directions from a point p to the lightSp: samples directions from a point p to the light
– Sr: random rays from the light source (for 

bidirectional light transport algorithms such as g p g
bidirectional path tracing and photon mapping)

small sphere light

diff  BRDF

small sphere light

diffuse BRDF

Lights

• Essential data members:
T f Li htT W ld W ldT Li ht– Transform LightToWorld, WorldToLight;

– int nSamples;
l f

returns wi and radiance due to the light 
• Essential functions:

– Spectrum Sample_L(Point &p, Vector *wi,  
) E ti ll   l  MC 

g
assuming visibility=1; initializes vis

VisibilityTester *vis);
– bool IsDeltaLight();

Essentially a one-sample MC 
Estimator. Not returning pdf.

p
wi



Interface
virtual Spectrum Sample_L(const Point &p,
float u1, float u2, Vector *wi, float *pdf,float u1, float u2, Vector wi, float pdf,
VisibilityTester *vis) const = 0;

virtual float Pdf(const Point &p,
W  d ’t h  

( p,
const Vector &wi) const = 0;

virtual Spectrum Sample_L(… Normal &n, …) {
We don’t have 
normals for volume.

_
return Sample_L(p, u1, u2, wi, pdf, vis);

} If we know normal, we could add consine falloff to better sample L.

virtual float Pdf(… Normal &n, …) {
return Pdf(p, wi);

}
virtual Spectrum Sample_L(const Scene *scene, 
fl t 1 fl t 2 fl t 3 fl t 4

Default (simply forwarding to the one without normal).

float u1, float u2, float u3, float u4,
Ray *ray, float *pdf) const = 0;Rays leaving lights

Point lights

• Sp: delta distribution, treat similar to specular 
BxDFBxDF

• Sr: sampling of a uniform sphere

Point lights
Spectrum Sample_L(const Point &p, float u1, float u2,
Vector *wi, float *pdf, VisibilityTester *vis) 

{
*pdf = 1.f;
return Sample_L(p, wi, visibility);

delta function

}
float Pdf(Point &, Vector &) const 
{{

return 0.;
}
Spectrum Sample L(Scene *scene float u1 float u2

for almost any direction, pdf is 0

Spectrum Sample_L(Scene scene, float u1, float u2,
float u3, float u4, Ray *ray, float *pdf) const 

{
ray >o = lightPos;ray->o = lightPos;
ray->d = UniformSampleSphere(u1, u2);
*pdf = UniformSpherePdf();

ireturn Intensity;
}

Spotlights

• Sp: the same as a point light
S  li  f   (i  h  f ll ff)• Sr: sampling of a cone (ignore the falloff)
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Spotlights
Spectrum Sample_L(Point &p, float u1, float u2,
Vector *wi, float *pdf, VisibilityTester *vis)

{
*pdf = 1.f;
return Sample_L(p, wi, visibility);

}
float Pdf(const Point &, const Vector &)
{  return 0.; }{ ; }
Spectrum Sample_L(Scene *scene, float u1, float u2,
float u3 float u4 Ray *ray float *pdf)float u3, float u4, Ray ray, float pdf) 

{
ray->o = lightPos;
Vector v = UniformSampleCone(u1 u2 cosTotalWidth);Vector v = UniformSampleCone(u1, u2,cosTotalWidth);
ray->d = LightToWorld(v);
*pdf = UniformConePdf(cosTotalWidth);

i * ll ff( d)return Intensity * Falloff(ray->d);
}

Projection lights and goniophotometric lights

• Ignore spatial variance; sampling routines are 
essentially the same as spot lights and point essentially the same as spot lights and point 
lights

Directional lights

• Sp: no need to sample
S    i l di k f h   di   • Sr: create a virtual disk of the same radius as 
scene’s bounding sphere and then sample the 
di k if ldisk uniformly.

Directional lights
Spectrum Sample_L(Scene *scene, float u1, float u2,
float u3, float u4, Ray *ray, float *pdf) const 

{
Point worldCenter;
float worldRadius;
scene->WorldBound().BoundingSphere(&worldCenter,

&worldRadius);
Vector v1, v2;, ;
CoordinateSystem(lightDir, &v1, &v2);
float d1, d2;
ConcentricSampleDisk(u1 u2 &d1 &d2);ConcentricSampleDisk(u1, u2, &d1, &d2);
Point Pdisk =

worldCenter + worldRadius * (d1*v1 + d2*v2);
ray >o = Pdisk + worldRadius * lightDir;ray->o = Pdisk + worldRadius * lightDir;
ray->d = -lightDir;
*pdf = 1.f / (M_PI * worldRadius * worldRadius);
return L;

}



Area lights

• Defined by shapes
Add h  li  f ti  f  h• Add shape sampling functions for Shape

• Sp: uses a density with respect to solid angle 
from the point p
Point Shape::Sample(Point &P, float u1, 
float u2, Normal *Ns)

• Sr: generates points on the shape according to 
a density with respect to surface area
Point Shape::Sample(float u1, float u2, 
Normal *Ns)

• virtual float Shape::Pdf(Point &Pshape) 
{  return 1.f / Area(); }

Area light sampling method

• Most of work is done by Shape.
Spectrum Sample L(Point &p Normal &n float u1Spectrum Sample_L(Point &p, Normal &n, float u1, 
float u2, Vector *wi, float *pdf, 
VisibilityTester *visibility) const {y y) {
Normal ns;
Point ps = shape->Sample(p, u1, u2, &ns);
*wi = Normalize(ps - p);
*pdf = shape->Pdf(p, *wi);
visibility >SetSegment(p ps);visibility->SetSegment(p, ps);
return L(ps, ns, -*wi);

}
float Pdf(Point &p, Normal &N, Vector &wi) const {

return shape->Pdf(p, wi);
}

Area light sampling method
Spectrum Sample_L(Scene *scene, float u1, float u2,
float u3, float u4, Ray *ray, float *pdf) const , , y y, p )

{
Normal ns;
ray->o = shape->Sample(u1, u2, &ns);
ray->d = UniformSampleSphere(u3, u4);
if (Dot(ray >d ns) < 0 ) ray >d *= 1;if (Dot(ray->d, ns) < 0.) ray->d *= -1;
*pdf = shape->Pdf(ray->o) * INV_TWOPI;
return L(ray->o, ns, ray->d);( y , , y )

}

Sampling spheres

• Only consider full spheres

Point Sample(float u1, float u2, Normal *ns)
{{
Point p = Point(0,0,0) + radius *

( 1 2)UniformSampleSphere(u1, u2);
*ns = Normalize(ObjectToWorld(

Normal(p.x, p.y, p.z)));
if (reverseOrientation) *ns *= -1.f;
return ObjectToWorld(p);

}



Sampling spheres
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Sampling spheres
Point Sample(Point &p, float u1, float u2, 

Normal *ns) {) {
// Compute coordinate system 
Point c = ObjectToWorld(Point(0,0,0));
Vector wc = Normalize(c - p);
Vector wcX, wcY;
CoordinateSystem(wc &wcX &wcY);CoordinateSystem(wc, &wcX, &wcY);
// Sample uniformly if p is inside
if (DistanceSquared(p, c) q p,

- radius*radius < 1e-4f)
return Sample(u1, u2, ns);

// l if l i id b d d// Sample uniformly inside subtended cone
float cosThetaMax = sqrtf(max(0.f, 
1 - radius*radius/DistanceSquared(p c)));1 radius*radius/DistanceSquared(p,c)));

Sampling spheres
DifferentialGeometry dgSphere;
float thit;
Point ps;
Ray r(p, UniformSampleCone(u1, u2,  

cosThetaMax, wcX, wcY, wc));
if (!Intersect(r, &thit, &dgSphere)) {
ps = c - radius * wc; It’s unexpectedps = c - radius * wc;

} else {
ps = r(thit);

It s unexpected.

p
}
*ns = Normal(Normalize(ps - c));
if ( i i ) * * 1 fif (reverseOrientation) *ns *= -1.f;
return ps;

}}

Infinite area lights

• Essentially an infinitely large sphere that 
surrounds the entire scenesurrounds the entire scene

• Sp: 
normal given: cosine weighted sampling– normal given: cosine weighted sampling

– otherwise: uniform spherical sampling
does not take directional radiance distribution – does not take directional radiance distribution 
into account 

• Sr:• Sr:
– Uniformly sample two points p1 and p2 on the sphere
– Use p1 as the origin and p2-p1 as the directionUse p1 as the origin and p2 p1 as the direction
– It can be shown that p2-p1 is uniformly distributed 

(Li et. al. 2003)



Infinite area lights
Spectrum Sample_L(Scene *scene, float u1, float u2, 
float u3, float u4, Ray *ray, float *pdf) const 

{
Point wC; float wR;
scene->WorldBound().BoundingSphere(&wC, &wR);
wR *= 1.01f;
Point p1 = wC + wR * UniformSampleSphere(u1, u2);
Point p2 = wC + wR * UniformSampleSphere(u3, u4);p p p ( , );
ray->o = p1;
ray->d = Normalize(p2-p1);

p1

p2

Vector to center = Normalize(worldCenter p1);Vector to_center = Normalize(worldCenter - p1);
float costheta = AbsDot(to_center,ray->d);
*pdf = costheta / ((4.f * M_PI * wR * wR));

( iff i l( d))return Le(RayDifferential(ray->o, -ray->d));
}

Sampling lights

• Structured Importance Sampling of Environment 
Maps  SIGGRAPH 2003Maps, SIGGRAPH 2003

irradiance
binary visibility

irradiance

Infinite area light; easy to evaluate

Importance metric

illumination of a region

baLL ωω Δ=ΔΓ ),(

• Illumination-based importance sampling (a=1  

solid angle of a region

• Illumination based importance sampling (a 1, 
b=0)

• Area based stratified sampling (a=0  b=1)• Area-based stratified sampling (a=0, b=1)

Variance in visibility

• After testing over 10 visibility maps, they found 
that variance in visibility is proportional to the that variance in visibility is proportional to the 
square root of solid angle (if it is small)
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Hierarchical thresholding
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Hierarchical stratification

Results Sampling BRDF

http://www.cs.virginia.edu/~jdl/papers/brdfsamp/lawrence_sig04.ppt



Sampling product

• Wavelet Importance Sampling: Efficiently 
Evaluating Products of Complex Functions  Evaluating Products of Complex Functions, 
SIGGRAPH 2005.

Sampling product

Wavelet decomposition Sample warping
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