Film

Digital Image Synthesis
Yung-Yn Chuang
11/5/2008

with slides by Pat Hanrahan and Matt Pharr

Film

= Film class simulates the sensing device in the
simulated camera. It determines samples’
contributions to the nearby pixels and writes
the final floating-point image to a file on disk.

 Tone mapping operations can be used to display
the floating-point image on a display.

e core/film.*

Film

ImageFi1lm

class Film {
public:
Film(int xres, int yres)
: XResolution(xres),
virtual ~FilmQ {}

yResolution(yres) {}

virtual void AddSample(Sample &sample, Ray &ray,

Spectrum &L, Float alpha);

virtual void Writelmage()

virtual void GetSampleExtent(int *xstart,int

*xend,

*yend);

//(Film Publi% D%ta
amera uses hli o_computs
const i1nt xResolution, y

int *ystart, int

raster-to-camera transform
esolution;

= film/image.cpp implements the only film
plug-in in pbrt. It simply filters samples and
writes the resulting image.

ImageFilm: :ImageFilm(int xres, int yres,Filter *filt,
Ffloat crop[4],string &filename, bool premult, int wf)
{ useful for debugging, in NDC space write frequency

pixels = new BlockedArray<Pixel>(xPixelCount,
yPixelCount);
<precompute Ffilter table>

AddSample

Writelmage

© extent® © © ©
_______________ 1
: e o o o o o o o o :
@) E e e60e o ¢O» o o O : ©) Z
|® o o o o o o o ol I(x,y) = if(x—x,.,y—yi)L(x,.,y,.)
: a4 ial:npole 3 : zif(x_xi’y_yi)
O I o .O.] o O‘ o o Q : O
: P e e
| |
o : .8, -y @ .1 : o
L“““"“ﬁr‘eﬁﬁrﬁputed
o o o Filtertable 4
grid of pixels find the nearest neighbor

in the filter table

» Called to store the final image or partial images
to disk

e The device-independent RGB is converted to
the device-dependent RGB. First, convert to
device-independent XYZ. Then, convert to
device-dependent RGB according to your
display. Here, pbrt uses the HDTV standard.

e Pbrt uses the EXR format to store image.

Portable floatMap (.pfm)

e 12 bytes per pixel, 4 for each channel

[NN [[[[[TTTITTTITITTITTITITITIT]
(T T T e T P PP i rrfrad

C N [[[[[[TTTTTTTTTITTITITTITIT]
sign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm

image format: PF
768 512
1
<binary image data>

Floating Point TIFF similar

Radiance format (.pic, .hdr, .rad)

32 bits/pixel
(N [[[[[[]

red green blue exponent

(145, 215, 87, 149) = (145, 215, 87, 103) =
(145, 215, 87) * 2°(149-128) = (145, 215, 87) * 2/(103-128) =
1190000 0.00000432

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

ILM’s OpenEXR (.exr)

Tone mapping

« 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

« Several lossless compression options, 2:1 typical
e Compatible with the “half” datatype in NVidia's Cg
= Supported natively on GeForce FX and Quadro FX

e Available at http://www.openexr.net/

» Converts HDR images to LDR image for display
void ApplylmagingPipeline(float *rgb,

int xResolution, int yResolution,

float *yWeight, weights to convert RGB to Y

float bloomRadius, float bloomWeight,

const char *toneMapName,

const ParamSet *toneMapParams,

float gamma, float dither,

int maxDisplayValue)

= Not called in pbrt, but used by tools. It is

possible to write a Film plugin to call tone
mapping and store regular image.

Image pipeline

Bloom

e Possibly apply bloom effect to image
e Apply tone reproduction to image
Handle out-of-gamut RGB values
Apply gamma correction to image
Map image to display range

Dither image

without bloom with bloom
blurred glow

a much brighter feel

Bloom

Tone mapping

e Apply a very wide filter that falls off quickly to
obtain a filtered image

£ y)= (1——”2(1#}

» Blend the original image and the filtered image
by a user-specified weight to obtain the final
image

e Two categories:

- Spatially uniform (global): find a monotonic mapping
to map pixel values to the display’s dynamic range

- Spatially varying (local): based on the fact that
human eye is more sensitive to local contrast than
overall luminance

e core/tonemap.h, tonemaps/*

class ToneMap {
public:
// ToneMap Interface
virtual ~ToneMap() { } input radiance array
virtual void Map(const float *y,int xRes,int yRes,
float maxDisplayY, float *scale) const = 0;
}; display’s limit scale factor for each pixel

Maximum to white

class MaxWhiteOp : public ToneMap {
public:
// MaxWhiteOp Public Methods
void Map(const float *y, int xRes, int yRes,
float maxDisplayY, float *scale) const {
// Compute maximum luminance of all pixels
float maxY = 0.;
for (int i = 0; 1 < xRes * yRes; ++i)
maxY = max(maxY, y[il);
float s = maxDisplayY / maxY;
for (int i = 0; i < xXRes * yRes; ++i)
scale[i] = s;
} 1. Does not consider HVS, two images different in scales will

¥ be rendered the same
2. Asmall number of bright pixels can cause the overall image

too dark to see

Results

input

max-to-white

Contrast-based scale

Results

e Developed by Ward (1994); compress the range
but maintain the JND (just noticeable
difference)

AY(Y*) =0.0594(1.219+ (Y)**)?*

e If the radiance is Y%, the difference larger than

AY is noticeable. display real
radiance radiance

| |
e Find s so that AY(Y)=sAY(Y") ; it gives

(12194 () *
1.219+(Y)*
» We calculate the log average radiance as AY!

input

contrast-based '

Varying adaptation luminance

Varying adaptation luminance

e |t computes a local adaptation luminance that
smoothly varies over the image. The local
adaptation luminance is then used to compute
a scale factor.

» How to compute a local adaptation luminance?
Find most blurred value Bs(x,y) so that the local
contrast /c(x,y) is smaller than a threshold.

Bs(xly)_BZS(xly)

B,(x,»)

Y(x,y)=B(x,y)

le(s,x,y) =

= With the smooth local adaptation luminance
image, the scale can be computed in a similar

way to contrast-based method.
T(Y“(x,y)) target display luminance

=)
__ ymax C(Y)_C(len) c(Y)= r_dar
=1 CYpa) = C (Vi) M= TVI(Y")

capacity function (intensity
levels in terms of JND)

Y10.0014 Y <0.0034
) 2.4483+log(Y /0.0034)/0.4027 0.0034<Y <1
" 116563+ (¥ —1)/0.4027 1<Y <7.2444

32.0693+log(Y /7.2444)/0.0556 otherwise

Results

Spatially varying nonlinear scale

with fixed radius

= Empirical approach which works very well in
practice. Similar to Reinhard 2002.

(1+ y(z,y))
1+ y(x,»)
not the luminance Y, but the y
component in XYZ space
base on local
contrast
Results Final stages
input « Handle out-of-range gamut: scale by the

nonlinear scale

maximum of three channels for each pixel (if
the max > 1.0)

Apply gamma correction: inverse gamma
mapping for CRT‘s gamma mapping

Map to display range: scaled by
maxDisplayValue (usually 255)

Dither image: add some noise in pixel values

