
Sampling and Reconstruction

Digital Image Synthesisg g y
Yung-Yu Chuang
10/22/200810/22/2008

with slides by Pat Hanrahan, Torsten Moller and Brian Curless

Sampling theory

• Sampling theory: the theory of taking discrete
sample values (grid of color pixels) from sample values (grid of color pixels) from
functions defined over continuous domains
(incident radiance defined over the film plane)(incident radiance defined over the film plane)
and then using those samples to reconstruct new
functions that are similar to the original functions that are similar to the original
(reconstruction).

Sampler: selects sample points on the image plane
Filter: blends multiple samples together

Aliasing

• Reconstruction generates an approximation to
the original function Error is called aliasingthe original function. Error is called aliasing.

l l
sampling reconstruction

sample value

l i isample position

Sampling in computer graphics

• Artifacts due to sampling - Aliasing
J i– Jaggies

– Moire
Fli k i ll bj t– Flickering small objects

– Sparkling highlights
l b h h l ff– Temporal strobing (such as Wagon-wheel effect)

• Preventing these artifacts - Antialiasing

Jaggies

Retort sequence by Don Mitchell

Staircase pattern or jaggies

Moire pattern

• Sampling the
equationequation

)sin(22 yx +

Fourier analysis

• Can be used to evaluate the quality between
the reconstruction and the originalthe reconstruction and the original.

• The concept was introduced to Graphics by
R b t C k i 1986 (t d d b D Mit h ll)Robert Cook in 1986. (extended by Don Mitchell)

Rob Cook

V.P. of Pixar
1981 M.S. Cornell1981 M.S. Cornell
1987 SIGGRAPH Achievement

award
1999 Fellow of ACM
2001 Academic Award with

Ed Catmull and Loren Ed Catmull and Loren
Carpenter (for Renderman)

Fourier transforms

• Most functions can be decomposed into a
weighted sum of shifted sinusoidsweighted sum of shifted sinusoids.

• Each function has two representations
– Spatial domain - normal representation
– Frequency domain - spectral representation

• The Fourier transform converts between the
spatial and frequency domain

Spatial Frequency
() () i xF f x e dxωω

∞
−= ∫

Spatial
Domain

Frequency
Domain1() ()

2
i xf x F e dωω ω

π

−∞

∞

= ∫)(xf)(ωF
2π −∞
∫

Fourier analysis

spatial domain frequency domain

Fourier analysis

spatial domain frequency domain

Fourier analysis

spatial domain frequency domain

Convolution

• Definition

∫() () ()h x f g f x g x x dx′ ′ ′= ⊗ = −∫
• Convolution Theorem: Multiplication in the frequency

domain is equivalent to convolution in the space
domaindomain.

f g F G⊗ ↔ ×

• Symmetric Theorem: Multiplication in the space
domain is equivalent to convolution in the frequency domain is equivalent to convolution in the frequency
domain.

f g F G× ↔ ⊗f g

1D convolution theorem example 2D convolution theorem example
f(x,y) g(x,y) h(x,y)

∗ ⇒∗ ⇒

× ⇒⇒

F(sx,sy) G(sx,sy) H(sx,sy)

The delta function

• Dirac delta function, zero width, infinite height
and unit areaand unit area

Sifting and shifting

Shah/impulse train function

frequency domainspatial domain

,

Sampling
band limited

Reconstruction

The reconstructed function is obtained by interpolating The reconstructed function is obtained by interpolating
among the samples in some manner

In math forms

)()III())((~ FF Π)()III(s))((ssFF Π×∗=

)(sinc)III)((~ x(x)xff ∗×=

∑
∞

−=
i

ifixxf)()(sinc)(~
−∞=i

Reconstruction filters
The sinc filter, while ideal,
has two drawbacks:
• It has a large support (slow

to compute)
I i d i i i • It introduces ringing in
practice

The box filter is bad because
its Fourier transform is a sinc its Fourier transform is a sinc
filter which includes high
frequency contribution from
th i fi it i f th the infinite series of other
copies.

Aliasing

increase sample decrease sample increase sample
spacing in
spatial domain

p
spacing in
frequency domain

Aliasing

high-frequency
d t il l k i tdetails leak into
lower-frequency
regionsregions

Sampling theorem

Sampling theorem Aliasing due to under-sampling

Sampling theorem

• For band limited functions, we can just
increase the sampling rateincrease the sampling rate

• However, few of interesting functions in
t hi b d li it d i computer graphics are band limited, in

particular, functions with discontinuities.
• It is mostly because the discontinuity always

falls between two samples and the samples
provides no information about this discontinuity.

Aliasing

• Prealiasing: due to sampling under Nyquist rate
P li i d f i f • Postaliasing: due to use of imperfect
reconstruction filter

Antialiasing

• Antialiasing = Preventing aliasing

1. Analytically prefilter the signal
– Not solvable in general

2. Uniform supersampling and resamplep p g p
3. Nonuniform or stochastic sampling

Antialiasing (Prefiltering)

It is blurred, but
better than aliasing

Uniform supersampling

• Increasing the sampling rate moves each copy
of the spectra further apart potentially of the spectra further apart, potentially
reducing the overlap and thus aliasing
R lti l t b l d (filt d) • Resulting samples must be resampled (filtered)
to image sampling rate

s s
s

Pixel w Sample= ⋅∑

Samples Pixel

Point vs. Supersampled

Point 4x4 Supersampled

Checkerboard sequence by Tom Duff

Analytic vs. Supersampled

Exact Area 4x4 Supersampled

Non-uniform sampling

• Uniform sampling
– The spectrum of uniformly spaced samples is also a set of The spectrum of uniformly spaced samples is also a set of

uniformly spaced spikes
– Multiplying the signal by the sampling pattern corresponds to

l i f h h ik (i f)placing a copy of the spectrum at each spike (in freq. space)
– Aliases are coherent (structured), and very noticeable

• Non uniform sampling• Non-uniform sampling
– Samples at non-uniform locations have a different spectrum; a

single spike plus noise
– Sampling a signal in this way converts aliases into broadband

noise
Noise is incoherent (structurelss) and much less objectionable– Noise is incoherent (structurelss), and much less objectionable

• Aliases can’t be removed, but an be made less
noticeablenoticeable.

Antialiasing (nonuniform sampling)

• The impulse train is modified as

∑
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+iTx- ξδ

2
1

• It turns regular aliasing into noise But random

∑
−∞=

⎟
⎠

⎜
⎝ ⎠⎝i 2

• It turns regular aliasing into noise. But random
noise is less distracting than coherent aliasing.

Jittered vs. Uniform Supersampling

4x4 Jittered Sampling 4x4 Uniform

Prefer noise over aliasing

reference aliasing noise

Jittered sampling

Add uniform random jitter to each sampleAdd uniform random jitter to each sample

Poisson disk noise (Yellott)

• Blue noise
S h ld b i d l k • Spectrum should be noisy and lack any
concentrated spikes of energy (to avoid

h t li i)coherent aliasing)
• Spectrum should have deficiency of low-

frequency energy (to hide aliasing in less
noticeable high frequency)

Distribution of extrafoveal cones

Monkey eye
cone distribution

Fourier transform
cone distribution

Yellott theory
Aliases replaced by noisep y
Visual system less sensitive to high freq noise

Example

Aliasing

frequency
domain

function (a) function (b)

domain

alias=false
frequency

Stochastic sampling

Stochastic sampling
function (a) function (b)

Replace structure
alias by structurelessalias by structureless
(high-freq) noise

Antialiasing (adaptive sampling)

• Take more samples only when necessary.
However in practice it is hard to know where However, in practice, it is hard to know where
we need supersampling. Some heuristics could
be usedbe used.

• It only makes a less aliased image, but may not
b ffi i t th i l li be more efficient than simple supersampling
particular for complex scenes.

Application to ray tracing

• Sources of aliasing: object boundary, small
objects textures and materialsobjects, textures and materials

• Good news: we can do sampling easily
• Bad news: we can’t do prefiltering (because we

do not have the whole function)
• Key insight: we can never remove all aliasing,

so we develop techniques to mitigate its impact p q g p
on the quality of the final image.

pbrt sampling interface

• Creating good sample patterns can substantially
improve a ray tracer’s efficiency allowing it to improve a ray tracer s efficiency, allowing it to
create a high-quality image with fewer rays.
B l ti di i tl it t • Because evaluating radiance is costly, it pays to
spend time on generating better sampling.

• core/sampling.*, samplers/*
• random.cpp, stratified.cpp, pp pp
bestcandidate.cpp,
lowdiscrepancy.cpp, p y pp

An ineffective sampler A more effective sampler

Main rendering loop
void Scene::Render() {

Sample *sample = new Sample(surfaceIntegrator,
volumeIntegratorvolumeIntegrator,
this);

...
while (sampler >GetNextSample(sample)) {

fill in eye ray info and other samples for integrator
while (sampler->GetNextSample(sample)) {

RayDifferential ray;
float rW = camera->GenerateRay(*sample, &ray);
<Generate ray differentials for camera ray><Generate ray differentials for camera ray>
float alpha;
Spectrum Ls = 0.f;
if (rW > 0 f)if (rW > 0.f)

Ls = rW * Li(ray, sample, &alpha);
...
camera->film->AddSample(*sample ray Ls alpha);camera >film >AddSample(sample,ray,Ls,alpha);
...

}
......
camera->film->WriteImage();

}

Sample
struct Sample {
Sample(SurfaceIntegrator *surf,

store required information for one eye ray sample

VolumeIntegrator *vol,
const Scene *scene);

...
float imageX, imageY;
float lensU, lensV;
float time; Note that it stores all samples ;
// Integrator Sample Data
vector<u_int> n1D, n2D;
float **oneD **twoD;

p
required for one eye ray. That
is, it may depend on depth.float oneD, twoD;

...
} Sample is allocated once in Render(). Sampler is called to

fill in the information for each eye ray The integrator fill in the information for each eye ray. The integrator
can ask for multiple 1D and/or 2D samples, each with an
arbitrary number of entries, e.g. depending on #lights. y , g p g g
For example, WhittedIntegrator does not need samples.
DirectLighting needs samples proportional to #lights.

Data structure
•Different types of lights require different numbers of
samples, usually 2D samples.samples, usually 2D samples.

•Sampling BRDF requires 2D samples.
•Selection of BRDF components requires 1D samples.

3 1 2

D t D
n1D n2D 2 2 1 1 2 2 sample

allocate together to avoid cache miss

filled in by integrators

oneD twoD allocate together to avoid cache miss

mem

bsdfComponent lightSample bsdfSample
integrator

bsdfComponent lightSample bsdfSample

Sample
Sample::Sample(SurfaceIntegrator *surf,

VolumeIntegrator *vol, const Scene *scene) {
//// calculate required number of samples
// according to integration strategy
surf->RequestSamples(this, scene);
vol->RequestSamples(this, scene);
// Allocate storage for sample pointers// g p p
int nPtrs = n1D.size() + n2D.size();
if (!nPtrs) {

oneD = twoD = NULL;oneD = twoD = NULL;
return;

}
oneD=(float **)AllocAligned(nPtrs*sizeof(float *));oneD=(float **)AllocAligned(nPtrs*sizeof(float *));
twoD = oneD + n1D.size();

Sample
// Compute total number of sample values needed
int totSamples = 0;
for (u_int i = 0; i < n1D.size(); ++i)

totSamples += n1D[i];
for (u_int i = 0; i < n2D.size(); ++i)

totSamples += 2 * n2D[i];
// Allocate storage for sample values
float *mem = (float *)AllocAligned(totSamples *() g (p

sizeof(float));
for (u_int i = 0; i < n1D.size(); ++i) {

oneD[i] = mem;oneD[i] = mem;
mem += n1D[i];

}
for (u int i = 0; i < n2D size(); ++i) {for (u_int i = 0; i < n2D.size(); ++i) {

twoD[i] = mem;
mem += 2 * n2D[i];

}}
}

DirectLighting::RequestSamples
void RequestSamples(Sample *sample, Scene *scene) {
if (strategy == SAMPLE_ALL_UNIFORM) {

i t Li ht >li ht i ()u_int nLights = scene->lights.size();
lightSampleOffset = new int[nLights];
bsdfSampleOffset = new int[nLights];
b dfC tOff t i t[Li ht]bsdfComponentOffset = new int[nLights];
for (u_int i = 0; i < nLights; ++i) {

const Light *light = scene->lights[i];
i li h S lint lightSamples =

scene->sampler->RoundSize(light->nSamples);
lightSampleOffset[i] =

2sample->Add2D(lightSamples);
bsdfSampleOffset[i] =

sample->Add2D(lightSamples);
bsdfComponentOffset[i] =

sample->Add1D(lightSamples);
}
lightNumOffset = -1;

}

DirectLighting::RequestSamples
else {
// Allocate and request samples for sampling one lightlight

lightNumOffset = sample->Add1D(1);
lightSampleOffset = new int[1];
lightSampleOffset[0] = sample->Add2D(1);
bsdfComponentOffset = new int[1];
bsdfComponentOffset[0] = sample->Add1D(1);
bsdfSampleOffset = new int[1];
bsdfSampleOffset[0] = sample->Add2D(1);p [] p ();

}
}

PathIntegrator::RequestSamples
void PathIntegrator::RequestSamples(Sample *sample,

const Scene *scene)
{

for (int i = 0; i < SAMPLE_DEPTH; ++i) {
lightNumOffset[i] = sample->Add1D(1);lightNumOffset[i] = sample->Add1D(1);
lightPositionOffset[i] = sample->Add2D(1);

bsdfComponentOffset[i] = sample->Add1D(1);
bsdfDirectionOffset[i] = sample->Add2D(1);

outgoingComponentOffset[i] = sample->Add1D(1);
outgoingDirectionOffset[i] = sample->Add2D(1);

}
}

Sampler
Sampler(int xstart, int xend,

int ystart int yend int spp);
range of pixels

int ystart, int yend, int spp);
bool GetNextSample(Sample *sample);
int TotalSamples() l i lint TotalSamples()

samplesPerPixel *
(xPixelEnd xPixelStart) *

sample per pixel

(xPixelEnd - xPixelStart) *
(yPixelEnd - yPixelStart);

Random sampler
RandomSampler::RandomSampler(…) {
...
//

Just for illustration; does
not work well in practice

// Get storage for a pixel's worth of stratified samples imageSamples = (float *)AllocAligned(5 *
xPixelSamples * yPixelSamples * sizeof(float));

lensSamples = imageSamples +
2 * xPixelSamples * yPixelSamples;

timeSamples = lensSamples +
2 * xPixelSamples * yPixelSamples;

// prepare samples for the first pixel// p p p p
for (i=0; i<5*xPixelSamples*yPixelSamples; ++i)

imageSamples[i] = RandomFloat();
// Shift image samples to pixel coordinates// Shift image samples to pixel coordinates
for (o=0; o<2*xPixelSamples*yPixelSamples; o+=2) {

imageSamples[o] += xPos;
imageSamples[o+1] += yPos; }

private copy of the
current pixel positionimageSamples[o+1] += yPos; }

samplePos = 0;
}

current pixel position

#samples for current pixel

Random sampler
bool RandomSampler::GetNextSample(Sample *sample) {
if (samplePos == xPixelSamples * yPixelSamples) {

//// Advance to next pixel for sampling
if (++xPos == xPixelEnd) {

xPos = xPixelStart; number of generated
samples in this pixel++yPos; }

if (yPos == yPixelEnd)
return false;

samples in this pixel

;
for (i=0; i < 5*xPixelSamples*yPixelSamples; ++i)
imageSamples[i] = RandomFloat();

generate all samples for one pixel at once

imageSamples[i] = RandomFloat();
// Shift image samples to pixel coordinates
for (o=0; o<2*xPixelSamples*yPixelSamples; o+=2)for (o=0; o<2*xPixelSamples*yPixelSamples; o+=2)
{ imageSamples[o] += xPos;

imageSamples[o+1] += yPos; }
l 0samplePos = 0;

}

Random sampler
// Return next sample point according to samplePos
sample->imageX = imageSamples[2*samplePos];
sample->imageY = imageSamples[2*samplePos+1];
sample->lensU = lensSamples[2*samplePos];
sample->lensV = lensSamples[2*samplePos+1];
sample->time = timeSamples[samplePos];
// Generate samples for integrators// p g
for (u_int i = 0; i < sample->n1D.size(); ++i)

for (u_int j = 0; j < sample->n1D[i]; ++j)
sample->oneD[i][j] = RandomFloat();sample >oneD[i][j] = RandomFloat();

for (u_int i = 0; i < sample->n2D.size(); ++i)
for (u_int j = 0; j < 2*sample->n2D[i]; ++j)

sample >twoD[i][j] = RandomFloat();sample->twoD[i][j] = RandomFloat();
++samplePos;
return true;

}

Random sampling
a pixel

completely
randomrandom

Stratified sampling

• Subdivide the sampling domain into non-
overlapping regions (strata) and take a single overlapping regions (strata) and take a single
sample from each one so that it is less likely to
miss important featuresmiss important features.

Stratified sampling

completely
random

stratified
uniform

stratified
jitteredrandom uniform jittered

turns aliasing
into noiseinto noise

Comparison of sampling methods

256 l i l f256 samples per pixel as reference

1 sample per pixel (no jitter)

Comparison of sampling methods

1 l i l (ji d)1 sample per pixel (jittered)

4 samples per pixel (jittered)

Stratified sampling

reference random stratified
ji djittered

High dimension

• D dimension means ND cells.
S l i k l d i • Solution: make strata separately and associate
them randomly, also ensuring good distributions.

Stratified sampler
if (samplePos == xPixelSamples * yPixelSamples) {
// Advance to next pixel for stratified sampling
...
// Generate stratified samples for (xPos, yPos)
StratifiedSample2D(imageSamples,

xPixelSamples, yPixelSamples, jitterSamples);
StratifiedSample2D(lensSamples,

xPixelSamples, yPixelSamples, jitterSamples);p , y p , j p);
StratifiedSample1D(timeSamples,

xPixelSamples*yPixelSamples, jitterSamples);
// Shift stratified samples to pixel coordinates
...
// Decorrelate sample dimensions// Decorrelate sample dimensions
Shuffle(lensSamples,xPixelSamples*yPixelSamples,2);
Shuffle(timeSamples,xPixelSamples*yPixelSamples,1);

l 0samplePos = 0;
}

Stratified sampling
void StratifiedSample1D(float *samp, int nSamples,

bool jitter) {
/

n stratified samples within [0..1]
float invTot = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i) {

float delta = jitter ? RandomFloat() : 0.5f;
*samp++ = (i + delta) * invTot;

}
} nx*ny stratified samples within [0..1]X[0..1]}
void StratifiedSample2D(float *samp, int nx, int ny,

bool jitter) {
float dx = 1 f / nx dy = 1 f / ny;

nx ny stratified samples within [0..1]X[0..1]

float dx = 1.f / nx, dy = 1.f / ny;
for (int y = 0; y < ny; ++y)

for (int x = 0; x < nx; ++x) {
float jx = jitter ? RandomFloat() : 0 5f;float jx = jitter ? RandomFloat() : 0.5f;
float jy = jitter ? RandomFloat() : 0.5f;
*samp++ = (x + jx) * dx;
* (j) * d*samp++ = (y + jy) * dy;

}
}

Shuffle
void Shuffle(float *samp, int count, int dims) {
for (int i = 0; i < count; ++i) {(; ;) {

u_int other = RandomUInt() % count;
for (int j = 0; j < dims; ++j)

swap(samp[dims*i + j], samp[dims*other + j]);
}

}
d-dimensional vector swap

}

Stratified sampler
// Return next _StratifiedSampler_ sample point
sample->imageX = imageSamples[2*samplePos];p g g p [p];
sample->imageY = imageSamples[2*samplePos+1];
sample->lensU = lensSamples[2*samplePos];
sample->lensV = lensSamples[2*samplePos+1];
sample->time = timeSamples[samplePos];
// h t if i t t k f 7 t tifi d 2D l// what if integrator asks for 7 stratified 2D samples
// Generate stratified samples for integrators
for (u int i = 0; i < sample->n1D size(); ++i)for (u_int i 0; i < sample >n1D.size(); ++i)

LatinHypercube(sample->oneD[i], sample->n1D[i], 1);
for (u_int i = 0; i < sample->n2D.size(); ++i)

LatinHypercube(sample->twoD[i], sample->n2D[i], 2);

l P++samplePos;
return true;

Latin hypercube sampling

• Integrators could request an arbitrary n samples.
nx1 or 1xn doesn’t give a good sampling patternnx1 or 1xn doesn t give a good sampling pattern.

A worst case for stratified samplingA worst case for stratified sampling
LHS can prevent this to happen

Latin Hypercube
void LatinHypercube(float *samples,

int nSamples, int nDim)
{
// Generate LHS samples along diagonal
float delta = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i)

for (int j = 0; j < nDim; ++j)
samples[nDim*i+j] = (i+RandomFloat())*delta;p [j] (()) ;

// Permute LHS samples in each dimension
for (int i = 0; i < nDim; ++i) {
note the difference with shuffle
for (int i = 0; i < nDim; ++i) {

for (int j = 0; j < nSamples; ++j) {
u_int other = RandomUInt() % nSamples;
swap(samples[nDim * j + i]swap(samples[nDim * j + i],

samples[nDim * other + i]);
}

}}
}

Stratified sampling

Stratified sampling

1 l d 16 h d l i l

This is better because StratifiedSampler
could generate a good LHS pattern for this case

1 camera sample and 16 shadow samples per pixel

16 camera samples and each with 1 shadow sample per pixel

Low discrepancy sampling

• A possible problem with stratified sampling

• Discrepancy can be used to evaluate the quality
of patternsof patterns

Low discrepancy sampling

set of N sample points
a family of shapes

p p
maximal difference

volume estimated
by sample number

real
volume

When B is the set of AABBs
with a corner at the origin with a corner at the origin,
this is called star discrepancy

1D discrepancy

Uniform is optimal! However, we have learnt that
Irregular patterns are perceptually superior to uniform
samples. Fortunately, for higher dimension, the low-
discrepancy patterns are less uniform and works discrepancy patterns are less uniform and works
reasonably well as sample patterns in practice.
Next, we introduce methods specifically designed for , p y g
generating low-discrepancy sampling patterns.

Radical inverse
• A positive number n can be expressed in a base b as

• A radical inverse function in base b converts a
nonnegative integer n to a floating-point number in [0,1)g g g p [,)

inline double RadicalInverse(int n int base) {inline double RadicalInverse(int n, int base) {
double val = 0;
double invBase = 1. / base, invBi = invBase;
while (n > 0) {while (n > 0) {

int d_i = (n % base);
val += d_i * invBi;

/n /= base;
invBi *= invBase;

}
return val;

}

van der Corput sequence

• The simplest sequence
R i l li 1D li i h lf l • Recursively split 1D line in half, sample centers

• Achieve minimal possible discrepancy

High-dimensional sequence

• Two well-known low-discrepancy sequences
H lt– Halton

– Hammersley

Halton sequence

• Use relatively prime numbers as bases for each
dimension recursively split the dimension dimension recursively split the dimension

into pd parts, sample centers

• Achieve best possible discrepancy for N-Dp p y

• Can be used if N is not known in advance
• All prefixes of a sequence are well distributed

so as additional samples are added to the
sequence, low discrepancy will be maintained

Hammersley sequence

• Similar to Halton sequence.
Sli h l b di h H l• Slightly better discrepancy than Halton.

• Needs to know N in advance.

Folded radical inverse

• Add the offset i to the ith digit di and take the
modulus bmodulus b.

• It can be used to improve Hammersley and p y
Halton, called Hammersley-Zaremba and
Halton-Zaremba.

Radial inverse

Halton Hammersley
Better for that there Better for that there
are fewer clumps.

Folded radial inverse

Halton Hammersley
The improvement isThe improvement is
more obvious

Low discrepancy sampling

t tifi d jitt d 1 l / i lstratified jittered, 1 sample/pixel

Hammersley sequence, 1 sample/pixel

Best candidate sampling

• Stratified sampling doesn’t guarantee good
sampling across pixelssampling across pixels.

• Poisson disk pattern addresses this issue. The
P i di k tt i f i t ith Poisson disk pattern is a group of points with no
two of them closer to each other than some

ifi d di tspecified distance.
• It can be generated by dart throwing. It is

time-consuming.
• Best-candidate algorithm by Dan Mitchell. It g y

randomly generates many candidates but only
inserts the one farthest to all previous samples.p p

Best candidate sampling

stratified jittered best candidate

It avoids holes and clustersIt avoids holes and clusters.

Best candidate sampling

• Because of it is costly to generate best
candidate pattern pbrt computes a “tilable candidate pattern, pbrt computes a tilable
pattern” offline (by treating the square as a
rolled torus)rolled torus).

• tools/samplepat.cpp→sampler/sampledata.cpp

Best candidate sampling

t tifi d jitt d 1 l / i lstratified jittered, 1 sample/pixel

best candidate, 1 sample/pixel

Best candidate sampling

t tifi d jitt d 4 l / i lstratified jittered, 4 sample/pixel

best candidate, 4 sample/pixel

Comparisons

reference low-discrepancy best candidate

Reconstruction filters

• Given the chosen image samples, we can do the
following to compute pixel valuesfollowing to compute pixel values.
1. reconstruct a continuous function L’ from samples
2 filt L’ t f hi h th 2. prefilter L’ to remove frequency higher than

Nyquist limit
3 sample L’ at pixel locations3. sample L’ at pixel locations

• Because we will only sample L’ at pixel
l ti d t d t li itl locations, we do not need to explicitly
reconstruct L’s. Instead, we combine the first
t ttwo steps.

Reconstruction filters

• Ideal reconstruction filters do not exist because
of discontinuity in rendering We choose of discontinuity in rendering. We choose
nonuniform sampling, trading off noise for
aliasing There is no theory about ideal aliasing. There is no theory about ideal
reconstruction for nonuniform sampling yet.
I t d id i t l ti bl• Instead, we consider an interpolation problem

∑
∑ −−

= i iiii yxLyyxxf
yxI

),(),(
),()(

filter sampled radiance

∑ −−
i ii yyxxf

yxI
),(

),(),(yx

),(ii yx
final value

Filter
• provides an interface to f(x,y)

il t i t t filt d it t • Film stores a pointer to a filter and use it to
filter the output before writing it to disk.

Filt Filt (fl t fl t)
width, half of support

Filter::Filter(float xw, float yw)
Float Evaluate(float x, float y);

x y is guaranteed to be within the range;)(yxf

• filters/* (box, gaussian, mitchell, sinc,

x, y is guaranteed to be within the range;
range checking is not necessary

),(yxf

filters/ (box, gaussian, mitchell, sinc,
triangle)

Box filter

• Most commonly used in graphics. It’s just about
the worst filter possible incurring postaliasing the worst filter possible, incurring postaliasing
by high-frequency leakage.

Float BoxFilter::Evaluate(float x, float y)
no need to normalize since the weighted {
return 1.;
no need to normalize since the weighted
sum is divided by the total weight later.

}

Triangle filter
Float TriangleFilter::Evaluate(float x, float y)
{{

return max(0.f, xWidth-fabsf(x)) *
max(0.f, yWidth-fabsf(y));(, y (y));

}

Gaussian filter

• Gives reasonably good results in practice
Float GaussianFilter::Evaluate(float x float y)Float GaussianFilter::Evaluate(float x, float y)
{

return Gaussian(x expX)*Gaussian(y expY);return Gaussian(x, expX)*Gaussian(y, expY);
} Gaussian essentially has a infinite support; to compensate

this, the value at the end is calculated and subtracted.this, the value at the end is calculated and subtracted.

Mitchell filter

• parametric filters, tradeoff between ringing
and blurringand blurring

• Negative lobes improve sharpness; ringing starts
t t th i if th b lto enter the image if they become large.

Mitchell filter

• Separable filter
• Two parameters, p ,

B and C, B+2C=1
suggestedgg

FFT of a cubic filter.
Mitchell filter is a
combination of cubic combination of cubic
filters with C0 and C1

Continuity.

Windowed sinc filter

Lanczos
τπ
τπ

/
/sin)(

x
xxw =

sinc

Comparisons

box

Mitchell

Comparisons

windowed sinc

Mitchell

Comparisons

box Gaussian Mitchell

