Cameras

Digital Image Synthesis

Yung-Yu Chuang

10/15/2008

with slides by Pat Hanrahan and Matt Pharr

Camera


```
class Camera {
public: return a weight, useful for simulating real lens
  virtual float GenerateRay(const Sample
                 &sample, Ray *ray) const = 0;
                                 corresponding
                sample position
  Film *film; at the image plane normalized ray in
                                 the world space
protected:
  Transform WorldToCamera, CameraToWorld;
  float ClipHither, ClipYon;
  float ShutterOpen, ShutterClose;
};
                            for simulating
                            motion blur, not
                            Implemented yet
     hither
                von
```

Camera space

Coordinate spaces

- world space
- object space
- camera space (origin: camera position, z: viewing direction, y: up direction)
- screen space: a 3D space defined on the image plane, z ranges from 0(near) to 1(far)
- normalized device space (NDC): (x, y) ranges from (0,0) to (1,1) for the rendered image, z is the same as the screen space
- raster space: similar to NDC, but the range of (x,y) is from (0,0) to (xRes, yRes)

Screen space

Projective camera models

• Transform a 3D scene coordinate to a 2D image coordinate by a 4x4 projective matrix class ProjectiveCamera: public Camera { public: camera to screen projection (3D to 2D) ProjectiveCamera (Transform &world2cam, Transform &proj, float Screen[4], float hither, float yon, float sopen, float sclose, float lensr, float focald, Film *film); protected:
 Transform CameraToScreen, WorldToScreen, RasterToCamera;
 Transform ScreenToRaster, RasterToScreen; float LensRadius, FocalDistance; };

Projective camera models

Projective camera models

Orthographic camera

OrthoCamera::GenerateRay


```
float OrthoCamera::GenerateRay
   (const Sample &sample, Ray *ray) const {
   Point Pras(sample.imageX,sample.imageY,0);
   Point Pcamera;
   RasterToCamera(Pras, &Pcamera);
   ray->o = Pcamera;
   ray->d = Vector(0,0,1);
   <Modify ray for depth of field>
   ray->mint = 0.;
   ray->maxt = ClipYon - ClipHither;
   ray->d = Normalize(ray->d);
   CameraToWorld(*ray, ray);
   return 1.f;
}
```

Perspective camera

Perspective camera

Perspective camera

PerspectiveCamera::GenerateRay

Depth of field

- Circle of confusion \$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}\$
 Depth of field: the range of distances from the
- Depth of field: the range of distances from the lens at which objects appear in focus (circle of confusion roughly smaller than a pixel)

Depth of field

without depth of field

Depth of field

Sample the lens

with depth of field

Sample the lens

In GenerateRay(...)

Environment camera

 $\phi = 0..2\pi$

Environment camera

EnvironmentCamera

EnvironmentCamera::GenerateRay

Distributed ray tracing

- SIGGRAPH 1984, by Robert L. Cook, Thomas Porter and Loren Carpenter from LucasFilm.
- Apply distribution-based sampling to many parts of the ray-tracing algorithm.

Distributed ray tracing

Gloss/Translucency

 Perturb directions reflection/transmission, with distribution based on angle from ideal ray

Depth of field

· Perturb eye position on lens

Soft shadow

Perturb illumination rays across area light

Motion blur

· Perturb eye ray samples in time

Distributed ray tracing

DRT: Gloss/Translucency

• Blurry reflections and refractions are produced by randomly perturbing the reflection and refraction rays from their "true" directions.

Glossy reflection

Translucency

Depth of field

Soft shadows

Motion blur

Adventures of Andre & Wally B (1986)

Realistic camera model

- Most camera models in graphics are not geometrically or radiometrically correct.
- Model a camera with a lens system and a film backplane. A lens system consists of a sequence of simple lens elements, stops and apertures.

Why a realistic camera model?

- Physically-based rendering. For more accurate comparison to empirical data.
- Seamlessly merge CGI and real scene, for example, VFX.
- For vision and scientific applications.
- The camera metaphor is familiar to most 3d graphics system users.

Real Lens

Cutaway section of a Vivitar Series 1 90mm f/2.5 lens Cover photo, Kingslake, *Optics in Photography*

Exposure

- Two main parameters:
 - Aperture (in f stop)

Full aperture

Medium aperture

Stopped down

- Shutter speed (in fraction of a second)

Blade (closing) Blade (open) Focal plane (closed)

Focal plane (open)

Double Gauss

Radius (mm)	Thick (mm)	n _d	V-no	aperture
58.950	7.520	1.670	47.1	50.4
169.660	0.240			50.4
38.550	8.050	1.670	47.1	46.0
81.540	6.550	1.699	30.1	46.0
25.500	11.410			36.0
	9.000			34.2
-28.990	2.360	1.603	38.0	34.0
81.540	12.130	1.658	57.3	40.0
-40.770	0.380			40.0
874.130	6.440	1.717	48.0	40.0
-79 460	72 228			40.0

Data from W. Smith, Modern Lens Design, p 312

Measurement equation

$$R = \int \int \int \int L(T(x, \omega, \lambda); \lambda) S(x, t) P(x, \lambda) \cos \theta \, dx \, d\omega \, dt \, d\lambda$$

L: radiance T: image to object space transformation

S: shutter function P: sensor response characteristics

Measurement equation

$$R = \Delta t \cdot \int \int L(T(x,\omega)) \cos \theta \, dx \, d\omega$$

L: radiance T: image to object space transformation

Solving the integral

Problem: given a function f and domain Ω , how to calculate

$$\int_{\Omega} f(x)dx$$

Solution: Monte Carlo method:

$$\int_{\Omega} f(x)dx \approx \left[\frac{1}{N} \sum_{i=1}^{N} f(x_i)\right] \cdot \int_{\Omega} dx$$

where x_1, x_2, \dots, x_N are uniform distributed random samples in Ω .

Algorithm

- For each pixel on the image, generate some random samples x_i and ω_i uniformly.
- **②** For each x_i and ω_i , calculate $T(x_i, \omega_i)$.
- **③** Shoot the ray according to the result of $T(x_i, \omega_i)$ into the scene, and calculate the radiance.
- Set the pixel value to the average of radiance.

Tracing rays through lens system

- ② Calculate the intersection point p for each lens element E_i from rear to front.
 - Return zero if p is outside the aperture of E_i .
 - Ompute the new direction by Snell's law if the medium is different.

Sampling a disk uniformly

- Now we need to obtain random samples on a disk uniformly.
- How about uniformly sample r in [0,R] and θ in $[0,2\pi]$ and let $x=r\cos\theta,y=r\sin\theta$?
 - ▶ The result is not uniform due to coordinate transformation.

Rejection

- Uniformly sample a point in the bounding square of the disk.
- If the sample lies outside the disk, reject it and sample another one.

Another method

- \bullet Sample r and θ in a specific way so that the result is uniform after coordinate transformation.
- Let

$$r = \sqrt{\xi_1}, \ \theta = 2\pi \xi_2$$

where ξ_1 and ξ_2 are random samples distributed in [0,1] uniforml uniformly.

 This produce uniform samples on a disk after coordinate transformation. We will prove it later in chapter 14 "Monte Carlo integration".

Ray Tracing Through Lenses

200 mm telephoto

35 mm wide-angle

50 mm double-gauss

16 mm fisheye

From Kolb, Mitchell and Hanrahan (1995)

Assignment #2

- ► Hint: sample.lensU and sample.lensV are two random samples distributed in [0, 1] uniformly.
- Trace this ray through the lens system. You can return zero if this ray is blocked by an aperture stop.
- **1** Fill ray with the result and return $\frac{\cos^4 \theta'}{Z^2}$ as its weight.

Assignment #2

- Write the "realistic" camera plugin for PBRT which implements the realistic camera model.
- The description of lens system will be provided.
- GenerateRay(const Sample &sample, Ray *ray)
 - ► PBRT generate rays by calling GenerateRay(), which is a virtual function of Camera.
 - ▶ PBRT will give you pixel location in sample.
 - You need to fill the content of ray and return a value for its weight.

Whitted's method

Whitted's method

Whitted's Method					
$\sqrt{}$	/	×	+		
	1			$n = \eta_2/\eta_1$	
	3	3	2	$I' = I/(-I \cdot N)$	
			3	J = I' + N	
1	1	8	5	$\alpha = 1/\sqrt{n^2(I' \cdot I') - (J \cdot J)}$	
		3	3	$T' = \alpha J - N$	
1	3	3	2	T = T'/ T'	
2	8	17	15	TOTAL	

Heckber's method

Heckbert's method

Heckbert's Method					
$\sqrt{}$	/	×	+		
	1			$\eta = \eta_1/\eta_2$	
		3	2	$c_1 = -I \cdot N$	
1		3	2	$c_2 = \sqrt{1 - \eta^2 (1 - c_1^2)}$	
		7	4	$T = \eta I + (\eta c_1 - c_2)N$	
1	1	13	8	TOTAL	

Other method

$$\begin{split} T &= \eta I + (\eta c_1 - \sqrt{1 - \eta^2 (1 - c_1^2)}) N \\ &= \frac{I}{n} + \frac{c_1 - n\sqrt{1 - (1 - c_1^2)/n^2}}{n} \, N \\ &= \frac{I + (c_1 - \sqrt{n^2 - 1 + c_1^2}) N}{n} \end{split}$$

Other Method					
$\sqrt{}$	/	×	+		
	1			$n = \eta_2/\eta_1$	
		3	2	$c_1 = -I \cdot N$	
1		2	3	$\beta = c_1 - \sqrt{n^2 - 1 + c_1^2}$	
	3	3	3	$T = (I + \beta N)/n$	
1	4	8	8	TOTAL	